參考文獻 |
[1] J. Wan and J. Lo, “LMI relaxations for nonlinear fuzzy control systems via homogeneous polynomials,” in The 2008 IEEE World Congress on Computational Intelligence, FUZZ 2008, Hong Kong, CN, June 2008, pp. 134–140.
[2] L. Li and X. Liu, “New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays,” Information Sciences, vol.179, pp. 1134–1148, 2009.
[3] Y. Cao and P. Frank, “Robust H1 disturbance attenuation for a class of uncertain discrete-time fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406–415, Aug. 2000.
[4] R. Palhares, C. de Souza, and P. Peres, “Robust H1 filtering for uncertain discrete time state-delayed systems,” IEEE Trans. Signal Processing, vol. 49, no. 8, pp.1696–1703, Aug. 2001.
[5] C. de Souza, R. Palhares, and P. Peres, “Robust H1 filtering design for uncertain linear systems with multiple time-varying state delays,” IEEE Trans. Signal Processing, vol. 49, no. 3, pp. 569–576, Mar. 2001.
[6] Y. Lin and J. Lo, “H1 filter/control design for discrete-time Takagi-Sugeno fuzzy systems with time delays,” in Proc. 2004 Conf. Asia Contr., vol. 1, Melbourne,AU, Dec. 2004, pp. 1516–1522.
[7] ——, “Exponential stability of filtering problems for delay fuzzy systems,” in Proc.2004 IEEE Int’l Conf. Networking, Sensing and Control, vol. 2, Taipei, TW, Mar.2004, pp. 926–931.
[8] H. Wu and H. Li, “New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay,” IEEE Trans.Fuzzy Systems, vol. 15, no. 3, pp. 482–493, June 2007.
[9] B. Chen, X. Liu, S. Tong, and C. Lin, “Guaranteed cost control of T-S fuzzy systems with state and input delays,” Fuzzy Set and Systems, vol. 158, pp. 2251–2267, 2007.
[10] ——, “New delay-dependent stabilization conditions of T-S fuzzy systems with constant delay,” Fuzzy Set and Systems, vol. 158, 2007.
[11] J. Kim, D. Oh, and H. Park, “Guaranteed cost and H1 filtering for time delay systems,” in Proc. the Amer. Contr. Conf., Arlington, VA, 2001, pp. 4014–4019.
[12] Y. Cao and P. Frank, “Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models,” Fuzzy Set and Systems, vol. 124,pp. 213–229, 2001.
[13] C. Lin, Q. Wang, and T. Lee, “Delay-dependent LMI conditions for stability and stabilization of T-S fuzzy systems with bounded time-delay,” Fuzzy Set and Systems, vol. 157, pp. 1229–1247, 2006.
[14] E. Tian and C. Peng, “Delay-dependent stability analysis and synthesis of uncertain T-S fuzzy systems with time-varying delay,” IEEE Trans. Fuzzy Systems, vol.157, pp. 544–559, 2006.
[15] M. Wu, Y. He, and J. She, “New delay-dependent stability criteria and stabilizing method for neutral systems,” IEEE Trans. Fuzzy Systems, vol. 49, no. 12, pp.2266–2271, Dec. 2004.
[16] Y. He, M. Wu, J. She, and G. Liu, “Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays,” Syst. & Contr. Lett., vol. 51, 2004.
[17] A. Sala and C. Ari˜no, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,”Fuzzy Set and Systems, vol. 158, pp. 2671–2686, 2007.
[18] V. Montagner, R. Oliveira, and P. Peres, “Necessary and sufficient LMI conditions to compute quadratically stabilizing state feedback controller for Takagi-sugeno systems,” in Proc. of the 2007 American Control Conference, July 2007, pp. 4059–4064.
[19] B. Chen, X. Liu, S. Tong, and C. Lin, “Robust fuzzy control of nonlinear systems with input delay,” Chaos, Solitons and Fractals, vol. 37, pp. 894–901, 2008.
[20] R. Oliveira and P. Peres, “Stability of polytopes of matrices via affine parameterdependent Lyapunov functions: Asymptotically exact LMI conditions,” Linear Algebra and its Applications, vol. 405, pp. 209–228, 2005.
[21] ——, “LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability,” in Proc. of 44th IEEE Conf. on Deci and Contr, Seville, Spain, Dec. 2005, pp. 1660–1665.
[22] ——, “LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions,” Syst. & Contr. Lett., vol. 55, pp. 52–61, 2006.
[23] ——, “Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxatiions,” IEEE Trans. Automatic Control, vol. 52, no. 7, pp. 1334–1340, July 2007.
[24] A. Sala and C. Ari˜no, “Design of multiple-parameterization PDC controllers via relaxed condition for multi- dimensional fuzzy summations,”in Proc. of Fuzz-IEEE’07., London, UK, 2007, doi:10.1109/FUZZY.2007.4295495.
[25] X. Liu and Q. Zhang, “New approaches to H1 controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, pp. 1571–1582,2003.
[26] M. Teixeira, E. Assuncao, and R. Avellar, “On relaxed LMI-based design for fuzzy regulators and fuzzy observers,”IEEE Trans. Fuzzy Systems, vol. 11, no. 5, pp.613–623, 2003.
[27] K. Tanaka, T. Ikeda, and H.Wang,“Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,no. 2, pp. 250–265, May 1998.
[28] C.-H. Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-S. Lee,“A new LMI-based approach to relaxed quadratic stabilzation of T-s fuzzy control systems,"IEEE Trans. Fuzzy Systems, vol. 14, no. 3, pp. 386–397, 2006.
|