摘要(英) |
For mechanical systems, the primary source that failure occurs is due to the cumulative damage which executed in the operating process. A dynamic reliability model is developed in this thesis to meet the reliability degradation on the process.Mechanical systems usually bear an oscillating load as a result of the unavoidable vibrations and friction. In this situation, some destructive energy accumulates inside the system and leads to the damage generating failure.
The destructive energy accumulation is propotional to the operating time. Therefore, the ratio of operating time to the mean life of system can properly describe the destructive energy accumulation and this ratio can be defined as cumulative damage D. Based on this idea, a model for the strength decay is proposed. When the complex system bears one-peak-distribution loading, assume the system is perfect initially, i.e. the reliability is one, D should be zero. When the system is failure, i.e. the reliability is zero, D should be one. Consequently, the most appropriate parameter to scale D is reliability. Typical definition data of mechanical systems checked with this model satisfying results are conclude.
The next problem is developing the two-level loading model which is considered that the failure modes in both stages are similar to the loading of nonadjustment and the concept of the part fitting. The advantage of this model is that it can represent the two-level loading completely by adding only one parameter and the physical meaning of this model is obvious enough to show the sequence and phenomenon of the system. The fitting results are also satisfied.
|
參考文獻 |
[1]K.C. Kapur , and L.R. Lamberson , Reliability in Engineering Design,John Wiley & Sons , N.Y,1977.
[2]S.S. Rao , Reliability-Based Design , McGraw-Hill,Inc., N.Y, 1993.
[3]張豪麟,系統動態可靠度與其失效率關係的探討,國立中央大學機械工程學系研究所碩士論文,民國八十八年。
[4]王國雄,「系統演化與力學分析架構的類比」,中華民國第二十屆全國力學會議,viii~xv頁,民國八十五年。
[5]彭鴻霖,韋伯分佈可靠度評估技術,可靠度技術手冊,民國八十九年。
[6]許芳勳,動態可靠度模型之探討及其應用,國立中央大學機械工程學系研究所博士論文,民國九十年。
[7]D.J. Davis, “An analysis of some failure data” , Journal of the American Statistical Association, Vol.47, pp.113–150,1952.
[8]劉偉彥,失效率函數與可靠度成等差或等比及混合型關係之探討,國立中央大學機械工程學系研究所碩士論文,民國九十七年。
[9]陳鴻銘,失效率與失效率機率函數間關係之探討,國立中央大學
機械工程學系研究所碩士論文,民國九十七年。
[10]王碩銘,潛變-破裂動態可靠度退化模式之探討,國立中央大學機械工程學系研究所碩士論文,民國八十三年。
[11]K.S. Wang, E.H. Wan, and W.C. Yang, “A Preliminary Investigation of New Mechanical Product Development Based on Reliability Theory”, J. of Reliability Engineering and System Safety,Vol.40,pp.187-194,1993.
[12]K.S. Wang, S.T. Chang, Y.C. Shen, “Dynamic Reliability Models for Fatigue Crack Growth Problem” , Engineering Fracture Mechanics,Vol.54, No.4, pp.543-556, 1996.
[13]K.S. Wang, C.S. Chen, J.J. Huang, “Dynamic Reliability Behavior for Sliding Wear of Carburized Steel ,Reliability Engineering & System Safety, Vol.58, pp.31-41 ,1997.
[14]陳崇齡,調整負載與系統動態可靠度影響之探討,國立中央大學機械工程學系研究所博士班資格考論文計畫書,民國九十七年。
[15]E.A.Elsayed,”Reliability Engineering,”Addison Wesley Longman,pp.340-342,June 1996.
[16]許金竹,預防更換對機械系統動態可靠度影響之研究,國立中央大學機械工程學系研究所碩士論文,民國八十二年。
[17]林冠甫,新產品動態可靠度的預估,國立中央大學機械工程學系研究所碩士論文,民國八十年。
[18]王培戎,機電系統失效與動態可靠度之研究,國立中央大學機械工程學系研究所碩士論文,民國八十二年。
[19]萬英豪,彈性製造系統可靠度在模糊資訊中之預測及改進研究,國立中央大學機械工程學系研究所博士論文,民國八十二年。
[20]K.S. Wang, Y. C. Shen, J. J. Huang,“Loading Adjustment for Fatigue Problem Based on Reliability Consideration”,International Journal of Fatigue, Vol.19, No.10, pp.693-702, 1997.
[21]王國雄,沈盈志,「具平均應力金屬疲勞壽限預估模式之探討」,中華民國力學期刊,第十三卷第三期,245-254頁,民國八十六年。
[22]沈盈志,金屬材料疲勞累積效應與可靠度關係之探討,國立中央大學機械工程學系研究所博士論文,民國八十六年。
[23]S.Tanaka,M.Ichikawa,S.Akita,“A Probabilistic Investigation Of Fatigue Life And Cumulative Cycle Ratio“,Fracture Mechanics, Vol.20, No.3, pp501-513, 1984.
[24]石逸群,累積失效與可靠度關係之探討,國立中央大學機械工程學
系研究所碩士論文,民國八十九年。
[25]楊萬騏,機件硬化層動態可靠度退化模式之探討,國立中央大學機
械工程學系研究所碩士論文,民國八十二年。
[26]黃中岑,光纖材料之靜力疲勞可靠度分析,國立中央大學機械工程
學系研究所碩士論文,民國九十年。
[27]參考文獻[1] , 第335頁。
[28]參考文獻[2] , 第6頁。
|