博碩士論文 86346001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.22.248.193
姓名 郭家倫(Gia-Luen Guo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 纖維床生物反應器祛除甲苯與三氯乙烯之研究
(Study on Removal of toluene and Trichloroethylene by Fibrous-bed Bioreactors)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 下水污泥灰渣特性及應用於水泥 砂漿之研究★ 以Microtox檢測方法評估實際廢水生物毒性之研究
★ 化學置換程序回收氯化銅蝕刻廢液之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以甲苯為生長基質,誘導純菌Pseudomonas putida F1產生甲苯雙氧加氧酵素 (Toluene dioxygenase),同時量測菌體的生長特性與甲苯分解動力,並就菌體附著於纖維床(Fibrous-bed)的特性進行研究,此外,將附著P. putida F1菌體之纖維床,應用於生物濾床技術與共代謝生物反應器(Cometabolism bioreactor),並分別探討氣相甲苯污染物的祛除效果與共代謝分解液相三氯乙烯之特性。
實驗結果顯示,藉由供給氣態甲苯的方式,進行菌體培養,P. putida F1可持續獲得碳源,且不會發生高濃度甲苯毒性抑制的現象。此外,纖維床附著菌體的機制包括棉纖維的截留、棉纖維與菌體間的氫鍵作用及胞外聚合物的生成,且附著的位置主要為棉纖維非孔隙的部份。而值得注意地,在本研究中,菌體在纖維床上具有良好的附著能力,附著菌體量可達95000g VSS/m3,且80%以上的比例為胞外聚合物。此外,以生物滴濾床與浸沈式生物濾床操作,當進流甲苯負荷分別在70 g/m3/h與150 g/m3/h以下時,兩者操作方式均能維持90%以上的甲苯祛除率,且浸沈式生物濾床的操作尚具有避免阻塞的功能。
纖維床生物反應器以批次操作的方式,分批共代謝祛除液相三氯乙烯,當起始三氯乙烯濃度介於2.4~47.6 mg/l之間時,由於纖維床具有較高的菌體附著量,三氯乙烯的分解作用能符合擬一階反應動力,且溶氧濃度介於1~10 mg/l時,分解三氯乙烯之擬一階速率常數值,會隨溶氧濃度增加而提高。在操作的過程中,若每30min添加0.005% (w/v)的過氧化氫,即能持續維持8-9 mg/l的溶氧濃度,在4 h的操作時程內,三氯乙烯的祛除率可達98%。另外,纖維床上P. putida F1生物膜共代謝分解三氯乙烯的轉化容量(Transformation capacity)達0.26 mg/mg,且在18h的操作時程內,三氯乙烯祛除率僅由98%略微降低至93%,故毒性代謝產物對於纖維床上菌體的抑制作用應可忽略。由於三氯乙烯與甲苯雙氧加氧酵素之間具有較佳的親和力,因此,甲苯對於三氯乙烯所產生的競爭性抑制作用並不顯著,當起始甲苯濃度在95 mg/l以下時,於4 h的操作時程內,三氯乙烯祛除率仍能夠維持在90%以上。
摘要(英) This study was aimed to develop a novel fibrous-bed bioreactor (FBR) for removing toluene and trichloroethylene (TCE). The attached specificity of Pseudomonas putida F1 was investigated for the fibrous-bed when toluene was the carbon source. In addition, the FBR were operated at the biofiltration processes to evaluate the performance of removing toluene vapor. The FBR was also used as the co-metabolism bioreactor to study the co-metabolic degradation of TCE in contaminated solution.
Results indicated that the culture of cells with the supply of toluene vapor was an acceptable way to obtain high specific-growth rate because the carbon source was supplied continuously without toxic inhibition of high concentration toluene. Moreover, the study proposed that the attached site of biomass was primarily on the surface of cloth fiber. The biomass could attach into the fibrous-bed by means of the entrapment of cloth fiber, hydrogen bonds between the biomass and fibrous matrix, and generation of extracellular polymeric substance (EPS) matrix. Additionally, the fibrous-bed exhibited superior ability for cells attachment. The attached biomass approached 95000 g VSS/m3, and over 80% of biomass was the EPS.
The removal of toluene vapor was over 90% when FBR was operated at a trickling filter and the inlet loading was below 70 g/m3/h. However, when FBR was operated in the mode of submerged biofilter, the removal of toluene was greater than 90% when inlet loading was below 150 g/m3/h. Also, the operation of submerged biofilter avoided the problem of clogging.
Furthermore, the FBR was operated in the mode of the sequential batch. Attached biomass of fibrous-bed utilized toluene to induce toluene dioxygenase (TDO) and co-metabolized TCE. Because the FBR has attached great amount of biomass, the degradation of TCE followed the first order rate equation even the TCE concentrations was as high as between 2.4 mg/l and 47.6 mg/l. This rate constant also increase with the increase of dissolved oxygen in the range of 1.0 and 10 mg/l. Adding 0.005%(w/v) of hydrogen peroxide per 30 min was an efficient way to sustain 8-9 mg/l of dissolved oxygen in this reactor. The removal of TCE was 98% within 4 h of operation period. Moreover, the transformation capacity of TCE co-metabolism was 0.26 mg/mg by P. putida F1 biofilm. The inhibition of toxic metabolite was neglected within 18 h of operation period because the removal of TCE decreased somewhat from 98% to 93%. Also, the competitive inhibition of toluene degradation was limited on co-metabolism of TCE. The removal of TCE was still over 90% within 4 h of operation period when the initial toluene concentration was below 95 mg/l.
關鍵字(中) ★ 共代謝
★ 纖維床生物反應器
★ 生物濾床
★ 三氯乙烯
★ 甲苯
★ Pseudomonas putida F1
關鍵字(英) ★ Trichloroethylene
★ Biofiltration
★ Fibrous-bed bioreactor
★ Toluene
★ Cometabolism
論文目次 纖維床生物反應器祛除甲苯與三氯乙烯之研究
目錄 …………………………………………………………………. Ⅰ
圖目錄 …………………………………………………………………. Ⅳ
表目錄 …………………………………………………………………. Ⅷ
第一章 前 言………………………………………………………... 1
1-1 研究緣起………………………………………………………. 1
1-2 研究目的與內容………………………………………………. 3
第二章 文獻回顧……………………………………………………... 6
2-1 甲苯與三氯乙烯之污染特性…………………………………. 6
2-1-1 污染來源…………………………………………………. 6
2-1-2 環境危害性……………………………………………….. 9
2-2 生物濾床技術祛除甲苯之研究現況…………………………. 12
2-2-1 生物濾床技術原理與型式……………………………….. 12
2-2-2 生物濾床法之影響因子………………………………….. 14
2-2-3 生物濾床與生物滴濾床祛除甲苯研究之回顧………….. 16
2-3 三氯乙烯共代謝分解之研究現況……………………………. 22
2-3-1 好氧共代謝原理………………………………………….. 22
2-3-2 共代謝分解菌株研究之回顧…………………………….. 24
2-3-3 三氯乙烯共代謝分解途徑與產物……………………….. 33
2-3-4 共代謝分解動力研究之評析…………………………….. 36
2-3-5 生物反應器祛除三氯乙烯之研究現況………………….. 45
第三章 實驗設備、材料與方法…………………………………..…. 53
3-1 研究流程………………………………………………………. 53
3-2 纖維床生物反應器設計與操作………………………………. 55
3-2-1 設計說明………………………………………………….. 55
3-2-2 操作配置………………………………………………….. 58
3-3 實驗方法與步驟………………………………………………. 61
3-3-1 背景實驗………………………………………………….. 61
3-3-2 P. putida F1分解甲苯批次實驗………………………….. 66
3-3-3 纖維床附著菌體實驗…………………………………….. 69
3-3-4 氣相甲苯污染祛除之研究……………………………….. 70
3-3-5 液相三氯乙烯共代謝祛除之研究……………………….. 73
3-3-6 菌體觀察與鑑定………………………………………….. 81
3-4 實驗材料與設備………………………………………………. 82
3-4-1 實驗材料………………………………………………….. 82
3-4-2 實驗設備………………………………………………….. 86
3-5 分析方法………………………………………………………. 88
3-5-1 甲苯濃度………………………………………………….. 88
3-5-2 液相三氯乙烯濃度……………………………………….. 89
3-5-3 菌體量分析……………………………………………….. 90
3-6 操作及評估參數定義…………………………………………. 92
第四章 結果與討論…………………………………………………... 94
4-1 P. putida F1分解甲苯之批次實驗……………………………. 94
4-1-1 生長曲線測試…………………………………………….. 94
4-1-2 甲苯分解動力參數建立………………………………….. 97
4-2 纖維床附著菌體特性之研究…………………………………. 101
4-2-1 纖維床體的孔隙與比表面積…………………………….. 101
4-2-2 纖維床附著菌體實驗…………………………………….. 105
4-2-3 菌體附著情形之微觀觀察……………………………….. 120
4-2-4 纖維床附著菌體機制之評估…………………………….. 125
4-3 氣相甲苯污染祛除之研究……………………………………. 130
4-3-1 進流濃度與負荷的影響………………………………….. 130
4-3-2 營養鹽的影響…………………………………………….. 140
4-3-3 甲苯祛除動力式建立與模擬…………………………….. 153
4-3-4 氣相甲苯祛除效果之評估……………………………….. 163
4-4 液相三氯乙烯污染共代謝祛除之研究………………………. 170
4-4-1 批次共代謝祛除三氯乙烯之效果評估………………….. 172
4-4-2 過氧化氫添加的影響…………………………………….. 177
4-4-3 共代謝分解之抑制作用評估…………………………….. 185
4-4-4 連續流操作共代謝祛除三氯乙烯之評估……………….. 197
4-4-5 批次共代謝祛除三氯乙烯之反應動力建立與模擬…….. 205
第五章 結論與建議……………………………………………………. 215
5-1 結論……………………………………………………………. 215
5-2 建議……………………………………………………………. 217
參考文獻………………………………………………………………….. 218
附錄A 背景實驗結果
附錄B 本研究相關動力模式參數之符號定義與數值
附錄C Biolog菌種鑑定結果
參考文獻 參考文獻
1. Abumaizar, R. J., E. H. Smith, and W. Kocher, “Analytical Model of Dual-Media Biofilter for Removal of Organic Air Pollutants,” Journal of Environmental Engineering, 123(6), pp. 606-614 (1997).
2. Alonson, C., M. T. Suidan, G. A. Sorial, F. L. Smith, P. Biswas, P. J. Smith, and R. C. Brenner, “Gas Treatment in Trickle-Bed Biofilter: Biomss, How Much Is Enough ?,” Biotechnology and Bioengineering, 54(6), pp. 583-594 (1997).
3. Alvarez-Cohen, L and G. E. Speitel Jr, “Kinetics of Aerobic Cometabolism of Chlorinated Solvents,” Biodegradation, 12(2), pp. 105-126 (2001).
4. Alvarez-Cohen, L. and P.L. McCarty, “Effects of Toxicity, Aeration, and Reductant Supply on Trichloroethylene Transformation by a Mixed Methanotrophic Culture,” Applied and Environmental Microbiology, 57(1), pp. 228- 235 (1991).
5. Anderson, J. E. and P. L. McCarty, “Effect of Three Chlorinated Ethenes on Growth Rates for a Methanotrophic Mixed Culture,” Environmental Science Technology, 30(12), pp. 3517-3524 (1996).
6. Anderson, J. E. and P. L. McCarty, “Transformation Yield of Chlorinated Ethenes by a Methanotrophic Mixed Culture Expressing Particlulate Methane Monooxygenase,” Applied and Environmental Microbiology, 63(2), pp. 687-693 (1997).
7. Arcangeli, J. P., E. Arvin, M. Mejlhede, and F. R. Lauritsen, “Biodegradation of Cis-1,2-Dichloroethylene at Low Concentrations with Methane-Oxidizing Bacteria in a Biofilm Reactor,” Water Research, 30(8), pp. 1885-1893 (1996).
8. Arcangeli, J. P. and E. Arvin, “Modeling of the Cometabolic Biodegradation of Trichloroethylene by Toluene-Oxidizing Bacteria in a Biofilm System,” Environmental Science Technology, 31(11), pp. 3044-3052 (1997).
9. Arp, D. J., C. M. Yeager, and M. R. Hyman, “Molecular and Cellular Fundamentals of Aerobic Cometabolism of Trichloroethylene,” Biodegradation, 12(2), pp. 81-103 (2001).
10. Arvin, E., “Biodegradation Kinetics of Chlorinated Aliphatic Hydrocarbons with Methane Oxidizing Bacteria in an Aerobic Fixed Biofilm Reactor,” Water Research, 25(7), pp. 873-881 (1991).
11. Aziz, C. E., G. Georgiou, and G. E. Speitiel Jr, “Cometabolism of Chlorinated Solvents and Binary Chlorinated Solvent Mixtures Using M. trichosporium OB3b PP358,” Biotechnology and Bioengineering, 65(1), pp. 100-107 (1999).
12. Aziz, C. E., M. W. Fitch, L. K., Linquist, J. G. Pressman, G. Georgiou, and G. E. Speitel Jr, “Methanotrophic Biodegradation of Trichloroethylene in a Hollow Fiber Membrane Bioreactor,” Environmental Science Technology, 29(10), pp. 2574-2583 (1995).
13. Bagley, D. M. and J. M. Gossett, “Tetrachloroethene Transformation to Trichloroethene and cis-1,2-Dichloroethene by Sulfate-Reducing Enrichment Cultures,” Applied and Environmental Microbiology, 56(8), pp 2511-2516 (1990).
14. Bielefeldt, A. R., H. D. Stensel, and S. E. Strand, “Cometabolic Degradation of TCE and DCE Without Intermediate Toxicity,” Journal of Environmental Engineering-ASCE, 121(11), pp. 791-797 (1995).
15. Bohn, H., “Consider Biofiltration for Decontaminating Gases,” Chemical Engineering Progress, 88(4), pp. 34-40 (1992).
16. Brar, S. K. and S. K. Gupta, “Biodegradation of Trichloroethylene in a Rotating Biological Contactor,” Water Research, 34(17), pp. 4207-4214 (2000).
17. Broholm, K, T. H. Christensen, and B. K. Jensen, “Modeling TCE Degradation by a Mixed Culture of Methane-Oxidizing Bacteria,” Water Research, 26(9), pp. 1177-1185 (1992).
18. Chang, H. L. and L. Alvarez-cohen, “Model for the Cometabolic Biodegradation of Chlorinated Organics,” Environmental Science and Technology, 29(9), pp. 2357-2367 (1995).
19. Chang, H. L. and L. Alvarez-cohen, “The Biodegradation of Individual and Multiple Chlorinated Aliphatics by Mixed and Pure Methane Oxidizing Cultures,” Applied and Environmental Microbiology,” 62(9), pp. 3371-3377 (1996).
20. Chang, H. L. and L. Alvarez-cohen, “Transformation Capacities of Chlorinated Organics by Mixed Culture Enriched on Methane, Propane, Toluene, or Phenol,” Biotechnology and Bioengineering, 45(5), pp. 440-449 (1995).
21. Chang, H. L. and L. Alvarez-Cohen, “Two-Stage Methanotrophic Bioreactor for the Treatment of Chlorinated Organic Wastewater,” Water Research, 31(8), pp. 2026-2036 (1997).
22. Chang, M. K., T. C. Voice, and C. S. Criddle, “Kinetics of Competitive Inhibition and Cometabolism in the Biodegradation of Benzene, Toluene, and p-Xylene by Two Pseudomonas Isolates,” Biotechnology and Bioengineering, 41(9), pp. 1057-1065 (1993).
23. Chang, W. K. and C. S. Criddle, “Experimental Evaluation of a Model for Cometabolism: Prediction of Simultaneous Degradation of Trichloroethylene and Methane by a Methanotrophic Mixed Culture,” Biotechnology and Bioengineering, 56(5), pp. 491-501 (1997).
24. Cho, M. C., D. O. Kang, B. D. Yoon, and K. Lee, “Toluene Degradation Pathway From Pseudomonas putida F1: Substrate Specificity and Gene Induction by 1-Substituted Benzenes,” Journal of Industrial Microbiology & Biotechnology, 25(3), pp. 163-170 (2000).
25. Chu, K. H. and L. Alvarez-Cohen, “Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-oxidizing Bacteria,” Applied and Environmental Microbiology, 64(9), pp. 3451-3457 (1998).
26. Chu, K. H. and L. Alvarez-Cohen, “Trichloroethylene Degratation by Methane-Oxidizing Cultures Growth with Various Nitrogen Sources,” Water Environment Research, 68(1), pp. 76-82 (1996).
27. Corsi, R. L. and L. Seed, “Biofiltration of BTEX: Media, Substrate, and Loadings Effects,” Environmental Progress, 14(3), pp. 151-158 (1995).
28. Costura, R. K. and P. J. J. Alvarez, “Expression and Longevity of Toluene Dioxygenase in Pseudomonas putida F1 Induced at Different Dissolved Oxygen Concentrations,” Water. Research, 34(11), pp. 3014-3018 (2000).
29. Cox, C. D., H. J. Woo, and K. G. Robinson, “Cometabolic Biodegradation of Trichloroethylene (TCE) in the Gas Phase,” Water Science and Technology, 37(8), pp. 97-104 (1998).
30. Cox, H. H. J. and M. A. Deshusses, “Chemical Removal of Biomass From Waste Air Biotrickling Filters: Screening of Chemicals of Potential Interest,” Water Research, 33(10), pp. 2383-2391 (1999).
31. Criddle, C. S., “The Kinetics of Cometabolism,” Biotechnology and Bioengineering, 41(11), pp. 1048-1056 (1993).
32. Den, W., M. Pirbazari, C. C. Huang, and K. P. Shen, “Technology Review for Vapor Phase Biofiltration Part I:Technological Development and Applications,” Journal of Chinese Institute of Environmental Engineering, 8(3), pp. 159-179 (1998).
33. Den, W., M. Pirbazari, C. C. Huang, and K. P. Shen, “Technology Review for Vapor Phase Biofiltration Part II:Biofilter Design and Operation,” Journal of Chinese Institute of Environmental Engineering, 8(3), pp. 181-196 (1998).
34. DiSpirito, A. A., J. Gulledge, A. K. Shiemke, J. C. Murrel, M. E. Lidstrom, and C. L. Krema, “Trichloroethylene Oxidation by the Membrane Associated Methane Monooxygenase in TypeⅠ, TypeⅡ and Type X Methanotrophs,” Biodegradation, 2, pp. 151-164 (1992).
35. Dobbins, D. C., J. Peltola, J. M. Kustritz, T. J. Chresand, and J. C. Preston, “Pilot-Scale Demonstration of a Two-Stage Methanotrophic Bioreactor for Biodegradation of Trichloroethylene in Groundwater,” Journal of Air & Waste Management Association, 45(1), pp. 12-19 (1995).
36. Ely, R. L., K. J. Williamson, and D. J. Arp, “Cometabolism of Chlorinated Solvents by Nitrifying Bacteria: Kinetics Substrate Interactions, Toxicity Effects, and Bacterial Response,” Biotechnology and Bioengineering, 54(6), pp. 520-534 (1997).
37. Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman, and D. J. Arp, “A Cometabolic Kinetics Model Incorporating Enzyme Inhibition, Inactivation and Recovery:Ⅰ. Model Development, Analysis and Testing,” Biotechnology and Bioengineering, 46(3), pp. 218-231 (1995).
38. El-Farhan, Y. H., K. M. Scow, S. Fan, and D. E. Rolston, “Kinetics of Trichloroethylene Cometabolism and Toluene Biodegradation: Model Application to Soil Batch Experiments,” Journal of Environmental Quality, 29(3), pp. 778-786 (2000).
39. Ensign, S. A., M. R. Hyman, and D. J. Arp, “Cometabolic Degradation of Chlorinated Alkenes by Alkene Monooxygenase in a Propylene Grown Xanthobacter Strain,” Applied and Environmental Microbiology, 58(9), pp. 3038-3046 (1992).
40. Ensley, B. D., “Biochemical Diversity of Trichloroethylene Metabolism,” Annual Review of Microbiology, 45, pp 283-299 (1991)
41. Fang, H. H. P., K. Y. Chan, and L. C. Xu, “Quantification of Bacteria Adhesion Forces Using Atomic Force Microscopy (AFM),” Journal of Microbiological Methods, 40(1), pp. 89-97 (2000).
42. Fitch, M. W., G. E. Speitel Jr, and, G. Georgiou, “Degradation of Trichloroethylene by Methanol-Grown Cultures of Methylosonus Trichosporium OB3b PP358,” Applied and Environmental Microbiology, 62(3), pp. 1124-1128 (1996).
43. Flemming, H. C., “Sorption Sites in Biofilms,” Water Science and Technology, 32(8), pp. 27-33 (1995).
44. Flemming, H. C. and J. Wingender, “Relevance of Microbial Extracellular Polymeric Substances (EPSs) - Part Ⅰ: Structural and Ecological Aspects,” Water Science and Technology, 43(6), pp. 1-8 (2001).
45. Fogel, M. M., S, Fogel, A. R. Taddeo, “Biodegradation of Chlorinated Ethenes by a Methane-Utilizing Mixed Culture,” Applied and Environmental Microbiology, 51(4), pp. 720-724 (1986).
46. Folsom B. R. and P. J. Chapman, “Performance Characterization of a Model Bioreactor for the Biodegradation of Trichloroethylene by Pseudomonas cepacia G4,” Applied and Environmental Microbiology, 57(6), pp. 1602-1608 (1991).
47. Folsom, B. R., P. J. Chapman, and P. H. Pritchard, “Phenol and Trichloroethylene Degradation by Pseudomonas cepacia G4: Kinetics and Interactions Between Substrates,” Applied and Environmental Microbiology, 56(5), pp. 1279-1285 (1990).
48. Fox, B. G., J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, “Haloalkene Oxidation by the Soluble Methane Monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and Environmental Implications,” Biochemistry, 29(27), pp. 6419-6427 (1990).
49. Freedman, D. L. and J. M. Gossett, “Biological Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene Under Methanogenic Conditions,” Applied and Environmental Microbiology, 55(9), pp 2144-2151 (1989).
50. Freitas Dos Santos, L. M., U. Hommerich, and A. G. Livingston, “Dichloroethane Removal from Gas Streams by an Extractive Membrane Bioreactor,” Biotechnology Progress, 11(2), pp. 194-201 (1995).
51. Futamata, H., S. Harayama, and K. Watanabe, “Diversity in Kinetics of Trichloroethylene-Degrading Activities Exhibited by Phenol-Degrading Bacteria,” Appiled Microbiology and Biotechnology, 55(2), pp. 248-253 (2001).
52. Gribbins, M. J. and R. C. Loehr, “Effect of Media Nitrogen Concentration on Biofilter Performance,” Journal of The Air & Waste Management Association, 48(3), pp. 216-226 (1998).
53. Haber, C. L., L. N. Allen, S. Zhao, and R. S. Hanson, “Methylotrophic Bacteria: Biochemical Diversity and Genetics,” Science, 221(16), pp. 1147-1153 (1983).
54. Harker, A. R. and Y. Kim, “Trichloroethylene Degradation by Two Independent Aromatic-Degrading Pathways in Alcaligenes eutrophus JMP134,” Applied and Environmental Microbiology, 56(4), pp. 1179-1181 (1990).
55. Heald, S and R. O. Jenkins, “Trichloroethylene Removal and Oxidation Toxicity Mediated by Toluene Dioxygenase of Pseudomonas putida,” Applied and Environmental Microbiology, 60(12), pp. 4634-4637 (1994).
56. Hecht, V, D. Brebbermann, P. Bremer, and W. D. Deckwer, “Cometabolic Degradation of Trichloroethylene in a Bubble Column Bioscrubber,” Biotechnology and Bioengineering, 47(4), pp. 461-469 (1994).
57. Henry, S. M. and D. Grbic-Galic, “Effect of Mineral Media on Trichloroethylene Oxidation by Aquifer Methanotrophs,” Microbial Ecology, 20(2), pp. 151-169 (1990).
58. Henry, S. M. and D. Grbic-Galic, “Influence of Endogenous and Exogenous Electron Donors and Trichloroethylene Oxidation Toxicity on Trichloroethylene Oxidation by Methanotrophic Cultures from a Groundwater Aquifer,” Applied and Environmental Microbiology, 57(1), pp. 236-244 (1991).
59. Herbst, B. and U. Wiesmann, “Kinetics and Reaction Engineering Aspects of the Biodegradation of Dichloromethane and Dichloroethane,” Water Research, 30(5), pp. 1069-1076 (1996).
60. Holubar, P., C. Andorfer and R. Braun, “Effects of Nitrogen Limitation on Biofilm Formation in a Hydrocarbon-Degrading Trickling-Bed Filter,” Applied Microbiology and Biotechnology, 51(4), pp. 536-540 (1999).
61. Hopkins, G. D., J. Munakata, L. Semprini, and P. L. McCarty, “Trichloroethylene Concentration Effects on Pilot Field-Scale In-Situ Groundwater Bioremediation by Phenol-Oxidizing Microorganisms,” Environmental Science and Technology, 27(12), pp. 2542-2547 (1993).
62. Hwang, S. J., and H. M. Tang, “Kinetic Behavior of the Toluene Biofiltration Process,” Journal of The Air & Waste Management Association, 47(6), pp. 664-673 (1997).
63. Hyman M. R., and Wood P. M., “Suicidal Inactivation and Labelling of Ammonia Monooxygenase by Acetylene,” Biochemical Journal, 227(3), pp. 719-725 (1985).
64. Jahn, A. and P. H. Nielsen, “Extraction of Extracellular Polymeric Substances (EPS) from Biofilms Using a Cation Exchange Resin,” Water Science and Technology, 32(8), pp. 157-164 (1995).
65. Jahn, A., T. Gridbe and P. H. Nielsen, “Compositioin of Pseudomonas putida biofilm: Accumulation of Protein in the Biofilm Matrix,” Biofouling, 14(1), pp. 49-57 (1999).
66. Jiang, H. Y., R. E. Parales, D. T. Gibson, “The Alpha-Subunit of Toluene Dioxygenase from Pseudomonas Putida F1 Can Accept Electrons from Reduced Ferredoxin(Tol) But Is Catalytically Inactive in the Absence of the Beta-Subunit,” Applied and Environmental Microbiology, 65(1), pp. 315-318 (1999).
67. Kang, J. M., E. Y. Lee, and S. Park, “Co-metabolic Biodegradation of Trichloroethylene by Methylosinus trichosporium Is Stimulated by Low Concentrations Methane or Methanol,” Biotechnology Letters, 23(22), pp. 1877-1882 (2001).
68. Kelly, C. J., P. R. Bienkowski and P. S. Sayler, “Kinetic Analysis of a Tod-Lux Bacterial Reporter for Toluene Degradation and Trichloroethylene Cometabolism,” Biotechnology and Bioengineering, 69(3), pp. 256-265 (2000).
69. Kennes, C., H. H. J. Cox, H. J. Doddema, and W. Harder, “Design and Performance of Biofilters for the Removal of Alkylbenzene Vapors,” Journal of Chemical Technology and Biotechnology, 66(3), pp. 300-304 (1996).
70. Kiared, K., L. Bibeau, R. Brzezinski, G. Viel, and M. Heitz, “Biological Elimination of VOCs in Biofilter,” Environmental Progress, 15(3), pp. 148-152 (1996).
71. Landa, A. S., E. M. Sipkema, J. Weijma, AACM Beenackers, J. Dolfing and D. B. Janssen, “Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate,” Applied and Environmental Microbiology, 60(9), pp. 3368-3374 (1994).
72. Lau, P. C. K., H. Bergeron, D. Labbe, Y, Wang, R. Brousseau, D. T. Gibson, “Sequence and Expression of the Todgih Genes Involved in the Last 3 Steps of Toluene Degradation by Pseudomonas Putida F1,” Gene, 146(1), pp 7-13 (1994).
73. Leahy, J. G., A. M. Byrne and R. H. Olsen, “Comparison of Factors Influencing Trichloroethylene Degradation by Toluene-Oxidizing Bacteria,” Applied and Environmental Microbiology, 62(3), pp. 825-833 (1996).
74. Lebeault, J. M., “Selecting Innovative Cleanup Technologies for Soil and Groundwater: From a Physiological to an Engineering Approach,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 129-146 (1997).
75. Leson, G. and A. M. Winer, “Biofiltration: An Innovative Air Pollution Control Technology for VOC Emissions,” Journal of The Air & Waste Management Association, 41(8), pp. 1045-1054 (1991).
76. Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer, “Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium,” Applied and Environmental Microbiology, 54(4), pp. 951-956 (1988).
77. Lontoh, S, A. A. DiSpirito and J. D. Semrau, “Dichloromethane and Trichloroethylene Inhibition of Methane Oxidation by the Membrane-Associated Methane Monooxygenase of Methylosinus trichlorporium OB3b,” Archives of Microbiology, 171(5), pp. 301-308 (1999).
78. Lontoh, S., and J. D. Semrau, “Methane and Trichloroethylene Degradation by Methylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase,” Applied and Environmental Microbiology, 64(3), pp. 1106-1114 (1998).
79. Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179 (1997).
80. Martin, F. J., and R. C. Loehr, “Effect of Periods of Non-Use on Biofilter Performance,” Journal of The Air & Waste Management Association, 46(6), pp. 539-546 (1996).
81. Matteau, Y., and B. Ramsay, “Thermophilic Toluene Biofiltration,” Journal of The Air & Waste Management Association, 49(3), pp. 350-354 (1999).
82. McFarland, M. J., C. M. Vogel and J. C. Spain, “Methanotrophic Cometabolism of Trichloroethylene (TCE) in a Two Stage Bioreactor System,” Water Research, 26(2), pp. 259-265 (1992).
83. Miller, R. E., and F. P. Guengerich, “Oxidation of Trichloroethlyene by Liver Microsomal Cytochrome P-450: Evidence for Chlorine Migration in a Transition State Not Involving Trichloroethylene Oxide,” Biochemistry, 21(5), pp. 1090-1097 (1982).
84. Morgenroth, E., D. Edward, D. P. Y. Chang, and K. M. Scow, “Nutrient Limitation in A Compost Biofilter Degrading Hexane,” Journal of The Air & Waste Management Association, 46(4), pp. 300-308 (1996).
85. Murray, W. D., and M. Richardson, “Progress Toward The Biological Treatment of C1 and C2 Halogenated Hydrocarbons”, Critical Reviews in Environmental Science and technology, 23(3), pp. 195-217 (1993).
86. Nakano, Y., W. Nishijima, E. Soto, and M. Okada, “Relationship Between Growth Rate of Phenol Utilizing Bacteria and the Toxic Effect of Metabolic Intermediates of Trichloroethylene (TCE),” Water Research, 33(4), pp. 1085-1089 (1999).
87. Nielsol, M. J. K., S. O. Montgomery and P. H. Pritchard, “Trichloroethylene Metabolism by Microorganisms that Degrade Aromatic Compounds,” Applied and Environmental Microbiology, 54(2), pp. 604-606 (1988).
88. Nelsol, M. J. K., S. O. Montgomery, E. J. O’Neill and P. H. Pritchard, “Aerobic Metabolism of Trichloroethylene by a Bacteria Isolate,” Applied and Environmental Microbiology, 52(2), pp. 383-384 (1986).
89. Nielsen, P. H., A. Jahn, and R. Palmgren, “Conceptual Model for Production and Composition of Exopolymers in Biofilms,” Water Science and Technology, 36(1), pp. 11-19 (1997).
90. Oh, Y. S., Z. Shareefdeen, B. C. Baltzis and R. Bartha, “Interactions Between Benzene, Toluene, and p-Xylene (BTX) During Their Biodegradation,” Biotechnology and Bioengineering, 44(4), pp. 533-538 (1994).
91. Oldenhuis, R., J. Y. Oedzes, J. J. Van Der Waarde and D. B. Janssen, “Kinetics of Chlorinated Hydrocarbons Degradation by Methylosins Trichosporium OB3b and Toxicity of Trichloroethylene,” Applied and Environmental Microbiology, 57(1), pp. 7-14 (1991).
92. Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen and B. Withoit, “Degradation of Chlorinated Aliphatic Hydrocarbons by Methylosinus trichlosporium OB3b Expressing soluble Methane Monooxygenase,” Applied and Environmental Microbiology, 55(11), pp. 2819-2826 (1989).
93. Pardieck, D. L., E. J. Bouwer and A. T. Stone, “Hydrogen Peroxide Use to Increase Oxidant Capacity for In Situ Bioremediation of Contaminated Soils and Aquifers: A review, Journal of Contaminant Hydrology,” 9(3), pp. 221-242 (1992).
94. Park, J, Y. M. Chen, J. J. Kukor, and L. M. Abriola, “Influence of Substrate Exposure History on Biodegradation in a Porous Medium,” Journal of Contaminant Hydrology, 51(3-4), pp. 233-256 (2001).
95. Pedersen, A. R., and E. Arvin, “Removal of Toluene in Waste Gases Using a Biological Trickling Filter,” Biodegradation, 6, pp. 109-118 (1995).
96. Pedersen, A. R., and E. Arvin, “The Function of a Toluene-Degrading Bacterial Community in a Waste Gas Trickling Filter,” Water Science and Technology, 39(7), pp. 131-137 (1999).
97. Pedersen, A. R., and E. Arvin, “Toluene Removal in a Biofilm Reactor for Waste Gas Treatment,” Water Science and Technology, 36(1), pp. 69-76 (1997).
98. Quigley, C. J., and R. L. Corsi, “Emissions of VOCs from a Municipal Sewer,” Journal of The Air & Waste Management Association, 45(5), pp. 395-403 (1995).
99. Rasche M. E., M. R. Hyman and D. J. Arp, “Factors Limiting Aliphatic Chlorocarbon Degradation by Nitrosomona europaea – Cometabolic Inactivation of Ammonia Monooxygenase and Suhstrate Specificity,” Applied and Environmental Microbiology, 57(10), pp. 2986-2994 (1991).
100. Saeki H., M. Akira, K. Furuhaski, B. Averhoff and G. Gottschalk, “Degradation of Trichloroethylene by a Linear Plasmid-Encoded Alkene Monooxygenase in Rhodococcu corallinu (Nocardia corallina) B-276,” Microbiology, 145(7), pp. 1721-1730 (1999).
101. Sahasrabudhe, S. R., A. J. Modi and V. V. Modi, “Dehalogenation of 3-Chlorobenzoate by Immobilized Pseudomonas sp. B13 Cells,” Biotechnology and Bioengineering, 31(8), pp. 889-893 (1988).
102. Satinder, K. B., and S. K. Gupta, “Biodegradation of Trichloroethylene in a Rotating Biological Contactor,” Water Research, 34(17), pp. 4207-4214 (2000).
103. Schindler, I., and A. Friedl, “Degradation of Toluene/heptane Mixtures in a Trickling-Bed Bioreactor,” Applied Microbiology and Biotechnology, 44, pp. 230-233 (1995).
104. Schmitt, J., D. Nivens, D. C. White and H. C. Flemming, “Changes of Biofilm Properties in Response to Sorbed Substances-an FTIR-ATR Study,” Water Science and Technology, 32(8), pp. 149-155 (1995).
105. Segar, R. L., S. L. De Wys and G. E. Speitel, “Sustained Trichloroethylene Cometabolism by Phenol-Degrading Bacteria in Sequencing Biofilm Reactors,” Water Environment Research, 67(5), pp. 764-774 (1995).
106. Shen, T. T., Assessment and Control of VOC Emissions from Waste Treatment and Disposal Facilities, Van Nostrand Reinhold , New York (1993).
107. Shields, M. S., S. O. Montgomery, P. J. Chapman, S. M. Cuskey and P. H. Pritchard, “Novel Pathway of Toluene Metabolism in the Trichloroethylene-Degrading Bacterium G4,” Applied and Environmental Microbiology, 55(6), pp. 1624-1629 (1989).
108. Shim, H. S., and J. L. Lim, “Performance of Packed-Bed Bioreactors for the Cometabolic Degradation of Trichloroethylene by Phenol-Oxidizing Microogranisms,” Environmental Technology, 12(12), pp. 1351-1359 (1996).
109. Shim, H., “BTEX Degardation by a Coculture of Pseudomonas putida and Psudomonas fluorescens Immobilized in a Fibrous-Bed Bioreactor,” Dissertation, The Ohio State University (1997).
110. Shimomura, T., F. Suda, H. Uchiyamaand and O. Yagi, “Biodegradation of Trichloroethylene by Methylocstis sp. Strain M Immobilized in Gel Beads in a Fluidized-Bed Bioreactor. Water Research, 31(9), pp. 2383-2386 (1997).
111. Shurtiff, M. M., G. F. Parkin, L. J. Weather and D. T. Gibson, “Biotransformation of Trichloroethylene by a Phenol-Induced Mixed Culture,” Journal of Environmental Engineering-ASCE. 122(7), pp. 581-589 (1996).
112. Sipkema, E. M., W. de Koning, J. E. T. Van Hylckama Vlieg, K. J. Ganzeveld, D. B. Janssen and A. A. C. M. Beenackers, “Trichloroethylene Degradation in a Two-Step System by Methylosinus trichosporium OB3b. Optimization of System Performance: Use of Formate and Methane,” Biotechnology and Bioengineering, 63(1), pp. 56-67 (1999).
113. Smith, F. L., G. A. Sorial, M. T. Suidan, A. W. Breen, P. Biswas, and R. C. Brenner, “Development of Two Biomass Control Strategies for Extended, Stable Operation of Highly Efficient Biofilters with High Toluene Loadings,” Environmental Science and Technology, 30(5), pp. 1744-1751 (1996).
114. Smith, F. L., G. A. Sorial, M. T. Suidan, A. Pandit, P. Biswas and R. C. Brenner, “Evaluation of Trickle Bed Air Biofilter Performance as a Function of Inlet VOC Concentration and Loading, and Biomass Control,” Journal of The Air & Waste Management Association, 48(7), pp. 627-636 (1998).
115. Smith, L. H., P. K. Kitanidis and P. L. McCarty, “Numerical Modeling and Uncertainties in Rate Coefficients for Methane Utilization and TCE Cometabolism by a Methane-Oxidizing Mixed Culture,” Biotechnology and Bioengineering, 53(3), pp. 320-331 (1997).
116. Solomons, T. W. G., “Fundamentals of Organic Chemistry,” 3th edition, Wiley Interscience, New York, (1990).
117. Sorial, G. A., F. L. Smith, M. T. Suidan, and P. Biswas, “Evaluation of Trickle Bed Biofilter Media for Toluene Removal,” Journal of The Air & Waste Management Association, 45(8), pp. 801-810 (1995).
118. Späth, R., H. C. Flemming, and S. Wuertz, “Sorption Properties of Biofilms,” Water Science and Technology, 37(4-5), pp. 207-210 (1998).
119. Speitel, G. E., and D. S. McLay, “Biofilm Reactors for Treatment of Gas Streams Containing Chlorinated Solvents,” Journal of Environmental Engineering-ASCE, 119(4), pp. 658-678 (1993).
120. Speitel, G. E., and R. L. Segar, “Cometabolism in Biofilm Reactors,” Water Science and Technology, 31(1), pp. 1-14 (1995).
121. Strand, S. E., M. D., Bjelland and H. D. Stensel, “Kinetics of Chlorinated Hydrocarbon Degradation by Suspended Cultures of Methane-Oxidizing Bacteria,” Journal of Water Pollution Control Federal, 62(2), pp.124-129 (1990).
122. Strandberg, G. W., T. L. Donaldson and L. L. Farr, “Degradation of Trichloroethylene and trans-1, 2-Dichloroethylene by a Methanotrophic Consortium in a Fixed-Film, Packed-Bed Bioreactor,” Environmental Science and Technology, 23(11), pp. 1422-1425 (1989).
123. Sullivan, J. P., D. Dickinson and H. A. Chase, “Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and Their Application to Bioremediation,” Critical Reviews in Microbiology, 24(4), pp. 335-373 (1998).
124. Sun, A. K., and T. K. Wood, “Trichloroethylene Degradation and Mineralization by pseudomonads and Methylosinus trichosporium OB3b,” Applied Microbiology and Biotechnology, 45(1-2), pp. 248-256 (1996).
125. Sutherland, I. W., “Exopolysaccharides in Biofilms, Flocs and Related Structures,” Water Science and Technology, 43(6), pp. 77-86 (2001).
126. Swanson, W. J., and R. C. Loehr, “Biofiltration: Fundamentals, Design and Operations Principles, and Applications”, Journal of Environmental Engineering-ASCE, 123(6), pp. 538-546 (1997).
127. Tahraoui, K., R. Samson and D. Rho, “Biodegradation of BTX from Wash Gases in a Biofilter Reactor”, 87th Annual Meeting & Exhibition, Cincinnati, Ohio (1994).
128. Tompson, A. F., R. B. Knapp, M. L. Hanna and R. T. Taylor, “Simulation of TCE Migration and Biodegradation in a Porous Medium Under Conditions of Finite Degradation Capacity,” Advances in Water Resources, 17, pp. 241-249 (1994).
129. Tschantz, M. F., J. P. Bowman, T. L. Donaldson, P. R. Bienkowski, J. M. Strong-Gunderson, A. V., Palumbo, S. E. Herbes and G. S. Sayler, “Methanotrophic TCE Biodegradation in a Multi-Stage Bioreactor,” Environmental Science and Technology, 29(8), pp. 2073-2082 (1995).
130. Tsien, H. C., G. A. Brusseau, R. S. Hanson and L. P. Wackett, “Biodegradation of Trichloroethylene by Methylosinus trichosporium OB3B,” Applied and Environmental Microbiology, 55(12), pp. 3155-3161 (1989).
131. Tursman, J. F., and D. J. Cork, “Subsurface Contaminant Bioremediation Engineering,” Critical Reviews in Environmental Control, 22(1/2), pp. 1-26 (1992).
132. van Hylckama Vlieg, J. E. T. and D. B. Janssen, “Formation and Detoxification of Reactive Intermediates in the Metabolism of Chlorinated Ethenes,” Journal of Biotechnology, 85(2), pp. 81-102 (2001).
133. Vannelli, T., M. Logan, D. M. Arciero and A. B. Hopper, “Degradation of Halogenated Aliphatic Compounds by the Ammonia-Oxidiaing Bacterium Nitrosomonas europaea,” Applied and Environmental Microbiology, 56(4), pp. 1169-1171 (1990).
134. Vecht, S. D., M. W. Platt, Z. Er-el and I. Goldberg, “The Growth of Pseudomonas putida on m-Toluic Acid and Toluene in Batch Chemostat Cultures,” Applied Microbiology and Biotechnology, 27(5-6), pp. 587-592 (1988).
135. Vogel, T. M., “Transformation of Halogenated Alphatic Compunds,” Environmental Science and Technology, 2(8), pp. 722-736(1987).
136. Wackett, L. P., and D. T. Gibson, “Degradation of Trichloroethylene by Toluene Dioxygenase in Whole-cell Studies with Pseudomonas putida F1,” Applied and Environmental Microbiology, 54(7), pp. 1703-1708 (1988).
137. Wackett, L. P., G. A. Brusseau, S. R. Householder and R. S. Hanson, “Survey of Microbial Oxygenase: Trichloroethylene degradation by Propane-Oxidizing Bacteria,” Applied and Environmental Microbiology, 55(11), pp. 2960-2964 (1989).
138. Wacktt, L. P., and S. R. Householder, “Toxicity of Trichloroethylene to Pseudomonas putida F1 is Mediated by Toluene Dioxygenase,” Applied and Environmental Microbiology, 55(10), pp. 2723-2728 (1989).
139. Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hopper, “Degradation of Halogenated Aliphatic Compounds by the Ammonia-Oxidiaing Bacterium nitrosomonas europaea,” Applied and Environmental Microbiology, 56(4), pp. 1169-1171 (1990).
140. Weber, F. J., and S. Hartmans, “Prevention of Clogging in a Biological Trickle-Bed Reactor Removing Toluene from Contaminated Air,” Biotechnology and Bioengineering, 50(1), pp. 91-97 (1996).
141. Weber, F. J., and S. Hartmans, “Use of Activated Carbon as a Buffer in Biofiltration of Waste Gases with Fluctuating Concentrations of Toluene,” Applied Microbiology and Biotechnology, 43(2), pp. 365-369 (1995).
142. Webster, T. S., J. S. Devinny, E. M. Torres and S. S. Basrai, “Biofiltration of Odors, Toxics and Volatile Organic Compounds from Publicly Owned Treatment Works,” Environmental Progress, 15(3), pp. 141-147 (1996).
143. Wilson, J. T., and B. H. Wilson, “Biotransformation of Trichloroethylene in Soil,” Applied and Environmental Microbiology, 49(1), pp. 242-243 (1985).
144. Winter, R. B., K. M. Yen and B. D. Ensley, “Efficient Degradation of Trichloroethylene by a Recombinant Escherichia coli,” Bio/Technology, 7, pp. 282-285 (1989).
145. Wu, G., B. Conti, A. Leroux, R. Brzezinski, G. Viel and M. Heitz, “A High Performance Biofilter for VOC Emission Control,” Journal of The Air & Waste Management Association, 49(2), pp. 185-192 (1999).
146. Yang, S. T., and C. H. Shu, “Kinetics and Stability of GM-CSF Production by Recombinant Yeast Cells Immobilized in a Fibrous-Bed Bioreactor,” Biotechnology Progress, 12(4), pp. 449-456 (1996).
147. Yang, S. T., H. Zhu, and Y. Li, “Continuous Propionate Production from Whey Permeate Using a Novel Fibrous Bed Bioreactor,” Biotechnology and Bioengineering, 43(11), pp. 1124-1130 (1994).
148. Yang, S. T., I. C. Tang, and H. Zhu, “A Novel Fermentation Process for Calcium Magnesium Acetate (CMA) Production from Cheese Whey,” Applied Biochemistry and Biotechnology, 34/35(9), pp. 569-583 (1992).
149. Yang, S. T., Y. M. Lo, and D.B. Min, “Xanthan Gum Fermentation by Xanthomonas campestris Immobilized in a Novel Centrifugal Fibrous-Bed Bioreactor,” Biotechnology Progress, 12(5), pp. 630-637 (1996).
150. Yang, S. T., Y. M. Lo and D. Chattopadhyay, “Production of Cell-Free Xanthan Fermentation Broth by Cell Adsorption on Fibers,” Biotechnology Progress, 14(2), pp. 259-264 (1998).
151. Yeager, C. M., P. J. Bottomley, D. J. Arp, “Cytotoxicity Associated with Trichloroethylene Oxidation in Burkholderia capacia G4,” Applied and Environmental Microbiology, 67(5), pp. 2107-2115 (2001).
152. Yu, H. B., B. J. Kim, and B. E. Rittmann, “The Roles of Intermediates in Biodegradation of Benzene, Toluene, and p-Xylene by Pseudomonas putida F1,” Biodegradation, 12(6), pp. 455-463 (2001).
153. Zhou, Q., Y. L. Huang, D. H. Tseng, H. Shim and S. T. Yang, “A Trickling Fibrous-Bed Bioreactor for Biofiltration of Benzene in Air,” Journal of Chemical Technology and Biotechnology, 73(4), pp. 359-368 (1998).
154. Zilli, M., F. A. Ferraiolo, and A. Converti, “Macro-Kinetic Investigation on Phenol Uptake from Air by Biofiltration: Influence of Superficial Gas Flow Rate and Inlet Pollutant Concentration,” Biotechnology and Bioengineering, 49(4), pp. 391-398 (1996).
155. Zylstra, G. J., L. P. Wackett, and D. T. Gibson, “Trichloroethylene Degradation by Escherichia coli Containing the Cloned Pseudomonas putida F1 Toluene Dioxygenase Genes,” Applied and Environmental Microbiology, 55(12), pp. 3162-3166 (1989).
156. 朱振華、盧重興、林明瑞,「以生物濾床法處理含BTEX廢氣程序控制之研究」,第十四屆空氣污染控制技術研討會論文集,台中,第63-70頁(1997)。
157. 江美幸、李季眉、盧至人、黃士尹,「甲烷分解菌與酚分解菌共代謝三氯乙烯之比較,第二十屆廢水處理技術研討會論文集,台南,第1-79 - 1-84頁 (1995)。
158. 行政院勞工委員會,物質安全資料表範例 (1997)。
159. 行政院環境保護署,「甲級毒性化學物質專業技術管理人員訓練教材」,上冊,第二章,第29-30頁 (1996)。
160. 李春樹、高銘木,「堆肥生物濾床去除苯、甲苯及二甲苯混合廢氣之研究」,第十三屆空氣污染控制技術研討會論文集,台北,第143-150頁(1996a)。
161. 周明顯、吳非隆,「以生物滴濾床處理排氣中甲苯成份之操作性能之研究」,第十二屆空氣污染控制技術研討會論文集,新竹,第611-618頁(1995)。
162. 周明顯、鄭文熙,「以生物濾床法處理揮發性有機物—本土化濾料篩選研究(以丁酮及甲苯為進料成份)」,第十一屆空氣污染控制技術研討會論文集,台中,第153-165頁 (1994)。
163. 官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第710-718頁,台中 (1998)。
164. 林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中 (1994)。
165. 劉熾章,「纖維理化」,新學識出版社,台北 (1988)。
166. 蔡文田,「含氯有機溶劑之毒性及新陳代謝機制」,工業污染防治,第11卷,第3期,第175-187頁 (1992)。
167. 蔡文田,邱伸彥,「蒸氣脫脂用含氯溶劑之特性、管制和污染預防」,工業污染防治,第41期,第145-160頁 (1992)。
168. 盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁 (1989)。
169. 謝祝欽、許耀升、陳仁泰、陳著和、高永昇,「加油站大氣VOCs逸散性影響之研究」,第十三屆空氣污染控制技術研討會論文集,台北,第265-272頁 (1996)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2002-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明