博碩士論文 88326007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:18.191.202.45
姓名 黃欣栩(Hsin-Hsu Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 UV/TiO2程序光催化降解水中單氯苯之研究
(Photocatalytic degradation of monochlorobenzene in water by UV/TiO2 process)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用四種具不同表面特性之二氧化鈦(TiO2)作為光觸媒,用以探討單氯苯(MCB)於UV/TiO2程序中的吸附、降解以及礦化反應行為。氣相吸附實驗結果指出,MCB於TiO2表面之單位面積吸附容量不受晶相影響,液相吸附結果則顯示,MCB於TiO2表面的吸附行為,明顯受到水分子存在的抑制,理論最大MCB吸附量介於0.164至2.071 ?mol MCB/m2 of TiO2之間。
光催化降解結果顯示,相較於直接光解以及UV/H2O2程序,UV/TiO2程序能有效降解MCB,且具高表面積或高表面位置密度之光觸媒,有較佳之光催化活性。實驗結果顯示MCB的降解反應與初始濃度、入射光強度以及光觸媒劑量有關。MCB的降解可以Langmuir-Hinshelwood反應動力式描述,由光強度與降解速率的低關聯性,可知電子-電洞再結合效應明顯,而最適光觸媒劑量介於1.0至2.0 g/L。溶液pH值會影響MCB的吸附以及氫氧自由基(•OH)的產生,進而影響光催化降解效率,一般而言,中性環境下,有較佳之MCB降解效果,而較佳之礦化效率發生於酸性環境。
溶氧的存在被證實有助於光催化降解反應,降解及礦化效率機會隨溶氧濃度增加而增加。H2O2由於同時具有捕捉電子與•OH自由基的能力,在適量的添加下,有助於MCB的降解與礦化。礦化過程中,有機中間產物的生成與降解可以簡易二階段反應動力式描述。
MCB光催化降解過程中,同時伴隨著礦化及脫氯反應,然根據水中氯離子濃度以及反應後TiO2表面分析,證實MCB經脫氯反應所形成之氯離子,會與TiO2表面結合。
摘要(英) In this investigation, the reaction sequence for the photocatalytic degradation of monochlorobenzene (MCB) in UV/TiO2 process, including substrate adsorption, degradation, and mineralization, was studied. Four commercial powder TiO2 with different characteristics were used as photocatalyst. The gaseous adsorption results illustrated that the adsorption capacity of MCB vapor on the base of the same surface area, was independent of crystalline. Moreover, the adsorption of MCB onto TiO2 surface was suppressed in aqueous solution obviously. For isotherm adsorption in aqueous phase, the theoretical maximum adsorption capacity of MCB onto TiO2 surface was in the range of 0.164 to 2.071 ?mol MCB/m2 of TiO2.
As compared with direct photolysis and H2O2-assisted photocatalysis, UV/TiO2 process was proven to be an effective method for the degradation of MCB. Large surface area and higher surface sites capacity of TiO2 photocatalyst and higher relative surface coverage of MCB were favor for the photocatalytic degradation. In accordance with the experimental results, the degradation of MCB was a function of the initial substrate concentration, incident light intensity, and TiO2 dosage. Langmuir-Hinshelwood kinetic model was applied to simulate the degradation of MCB. In addition, the low dependency of the initial degradation rate on the light intensity revealed the considerable adverse effect of e–-h+ pair recombination. In this study, the optimum photocatalyst dosage was in the range of 1.0 to 2.0 g/L. The influence of the solution pH on the degradation of MCB can be explained by the generation of hydroxyl radicals (•OH) and the potential for the adsorption. Experimental results revealed that the neutral medium was beneficial for the degradation of MCB. In comparison, the mineralization was most improved at acidic condition.
Oxygen was proven to be a determining parameter for improving the photocatalytic degradation. Both degradation and mineralization efficiencies were improved with increasing DO concentration. Owing to H2O2 acted as electron and •OH radicals scavenger, the addition of H2O2 should in a proper dosage range to promote the degradation and mineralization of MCB. A simplified two-step consecutive kinetic model was used to model the mineralization of MCB.
Mineralization and dechlorination were both occurred during the photocatalytic degradation of MCB. Nevertheless, an analysis of Cl– ion concentration in the bulk solution and the characteristics of used TiO2 concluded that the Cl– ions reacted with TiO2 particles.
關鍵字(中) ★ 礦化
★ 降解
★ 二氧化鈦
★ 單氯苯
★ 吸附
關鍵字(英) ★ Titanium dioxide
★ Monochlorobenzene
★ Adsorption
★ Degradation
★ Mineralization
論文目次 Chinese Abstract I
English Abstract II
Acknowledgment III
Table of Contents V
List of Figures IX
List of Tables XIII
Nomenclature XV
Chapter
1 Introduction 1
1-1 Background 1
1-2 Objectives and scope 3
2 Literature Review 5
2-1 Properties of MCB 5
2-1-1 Properties and application of MCB 5
2-1-2 Fate of MCB in environment and its toxicity 7
2-2 Fundamental of UV/TiO2 process 10
2-2-1 Photochemistry theory 10
2-2-2 Basic properties of TiO2 17
2-2-3 Adsorption onto TiO2 surface 19
2-2-4 Mechanism of UV/TiO2 Photocatalysis 26
2-3 Factors affecting UV/TiO2 process 32
2-3-1 Photocatalytic reaction parameters 32
2-3-2 Factors affecting photocatalytic activity of TiO2 44
2-4 Reaction kinetics of UV/TiO2 process 49
2-4-1 Langmuir-Hinshelwood kinetics 49
2-4-2 Two-step consecutive kinetics 53
2-5 Evaluation of photocatalytic efficiency 56
2-6 UV/TiO2 process research trends 58
3 Experimental Methods 69
3-1 Materials 69
3-2 Instruments and apparatus 71
3-2-1 Instruments 71
3-2-2 Apparatus 73
3-3 Analytical procedures 77
3-4 Experimental procedures 78
3-4-1 Characterization of TiO2 photocatalyst 78
3-4-2 Adsorption experiment 80
3-4-3 Background experiment 81
3-4-4 Photocatalytic degradation of MCB 85
4 Results and Discussion 87
4-1 Characteristics of TiO2 photocatalyst 87
4-1-1 Surface properties of TiO2 87
4-1-2 Acid-base chemistry of TiO2 92
4-2 Adsorption behavior of MCB onto TiO2 surface 96
4-2-1 Gaseous adsorption 96
4-2-2 Aqueous adsorption 101
4-3 Photocatalytic degradation of MCB by UV/TiO2 process 108
4-3-1 Estimation of photocatalytic efficiency 108
4-3-2 Effect of substrate concentration 112
4-3-3 Effect of light intensity 117
4-3-4 Effect of photocatalyst dosage 122
4-3-5 Effect of solution pH 125
4-4 Effect of oxygen and H2O2 on the photocatalytic degradation of MCB in UV/TiO2 process 134
4-4-1 DO concentration effect 134
4-4-2 H2O2 dosage effect 144
4-4-3 Sequencing replenishment of H2O2 into UV/TiO2 system for the photocatalytic degradation of MCB 153
4-5 Evaluation of the photocatalytic degradation of MCB in UV/TiO2 process 156
5 Conclusions and Recommendations 163
5-1 Conclusions 163
5-2 Recommendations 166
References 167
Appendix
Appendix 1 Photographs of experimental apparatus A-1
Appendix 2 Calibration curves A-3
Appendix 3 Surface acidity calculation A-5
Appendix 4 Photocatalytic degradation of MCB in UV/TiO2 process by Merck A-7
Appendix 5 Photocatalytic degradation of MCB in UV/TiO2 process by Aldrich A-16
Appendix 6 Photocatalytic oxidation of MeOH in UV/TiO2 process A-25
參考文獻 [1] USEPA, Water-related environmental fate of 129 priority pollutants, Volume II: Halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines, miscellanelus compounds, EPA 440/4-79-029b. United States Environmental Protection Agency, Washington DC (1979).
[2] Stafford, U., K.A. Gray, and P.V. Kamat, “Photocatalytic degradation of organic contaminants: Halophenols and related model compounds,” Hetero. Chem. Rev., 3(2), pp.77-104 (1996).
[3] Herrmann, J.-M., “Heterogeneous photo- catalysis: Fundamentals and applications to the removal of various type of aqueous pollutants,” Catal. Today, 53 (1), pp.115-129 (1999).
[4] Chhor, K., J.F. Bocquet, and C. Colbeau-Justin, “Comparative studies of phenol and salicylic acid photocatalytic degradation: Influence of adsorbed oxygen,” Mater. Chem. Phys., 86(1), pp.123-131 (2004).
[5] Uyguner, C.S. and M. Bekbölet, “Evaluation of humic acid, Chromium(VI) and TiO2 ternary system in relation to adsorptive interactions,” Appl. Catal. B Environ., 49(4), pp.267-275 (2004).
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2008-3-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明