博碩士論文 88346006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.149.234.50
姓名 張怡塘(Yi-Tang Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 化學傳輸行為對土壤微生物分解多環芳香烴化合物之影響
(Fates impact on PAH biodegradation in the soil/water system with surfactants)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 土壤環境中多環芳香烴化合物 (PAH) 之生物復育經常利用界面活性劑淋洗技術。過程中化學傳輸行為與生物分解會同時發生,此時生物分解PAH之作用受界面活性劑之影響而發生促進或抑制現象。本研究選用不含土壤有機質黏土-鈣蒙特石與含有機質(1.883 %)土壤-台中土,及Triton X-100與Brij 35兩種非離子界面活性劑,利用自PAH污染土壤中篩選之微生物與分解PAH之體外酵素laccase分解含不同界面活性劑之水溶液系統與土壤/水系統中之PAH,探討PAH在不同界面活性劑-土壤組合之傳輸行為對生物分解的影響,及分解過程土壤中與溶液中微生物族群之結構與生理生化反應,並探討可能之代謝途徑。
水溶液系統中,PAH之分解速率受到PAH結構之影響,系統中存在之界面活性劑亦可被微生物所利用,成為微生物的碳源。PAH與界面活性劑兩分子間之分子內聚能 (cohesive energy) 可用於解釋PAH與界面活性劑之生物分解。兩分子之內聚能愈接近,代表兩者間之分子鍵結形式相同者愈多,系統中微生物分泌之體外酵素於分解PAH與界面活性劑過程可相互周轉利用,PAH與界面活性劑之分解速率因此會加快。在土壤/水系統中,因受鈣蒙特石顆粒對微生物之干擾作用及PAH與界面活性劑於台中土發生之分佈作用影響,其微生物分解速率大多較水溶液系統慢。當PAH-界面活性劑-土壤/水系統之組合不同時,PAH與界面活性劑之分解速率也不同,並且系統中所含之界面活性劑濃度與結構不同也會造成影響。在微生物族群數量與結構方面,水溶液系統或土壤/水系統之自由態總生菌數都有增加之趨勢,其中假單胞菌屬 (Pseudomonas sp.) 為分解過程之優勢菌,不過所增加之數量受到系統不同PAH種類與土壤性質之影響。Domain Bacteria,phylum/subclass之 α-, β-, γ-Proteobacteria族群於分解過程佔有極高比例,且不受到添加界面活性劑之影響。Brevundimonas (Pseudomonas) diminuta, Caulobacter sp.、Mycoplana bullata, Burkholderia sp.、Pseudomonas aeruginosa等特定族群於水溶液系統或土壤/水系統之自由態佔有高比例,用於負責分解PAH。此外,分解過程之族群生理圖譜 (community-level physiological profiling, CLPP)、代謝潛能與對Biolog之碳源利用率、API ZYM水解酵素反應、代謝途徑等也因組合不同而發生改變。
胞外酵素laccase分解PAH方面,實驗結果顯示,水溶液系統含有Triton X-100與Brij 35之溶液中laccase皆促進PAH的分解作用,又因微胞比單體為更有效之分佈介質,使得含微胞相時的溶液能促使生物分解速率加快。另外由於Brij 35碳氫鏈較Triton X-100碳氫鏈長許多,形成之微胞結構較大,造成較大的立體結構障礙,故含微胞之Triton X-100溶液對PAH分解速率大於Brij 35。鈣蒙特石/水系統中兩種界面活性劑仍具促進分解作用,且酵素可直接利用溶於水溶性微胞與吸附性微胞之PAH,使得當平衡溶液含界面活性劑微胞時之分解速率大於平衡溶液含單體者。分別比較鈣蒙特石/水系統中附著態與自由態分解情形,因PAH與酵素在自由態之質傳速率大於附著態,使得分解行為在自由態中較明顯。進一步將酵素固定在鈣蒙特石上,分解不同界面活性劑溶液的PAH結果顯示,添加Triton X-100有促進分解作用,但添加Brij 35卻有抑制分解之現象,推測原因為鈣蒙特石對Brij 35之吸附量較TX-100少,PAH多進入溶液中微胞,反而阻礙固定化酵素之作用。
摘要(英) Combined bioremediation with surfactant flushing system is believed to be an important process to remove polycyclic aromatic hydrocarbon compounds (PAH) in soil/water systems. Many chemical reactions were generated in the integrated process so as to affect biodegradation. The PAH’s hydrophobicity results in these compounds being strongly sorbed onto soils. The use of surfactants may change the sorption behavior of PAH in soil environment. The aim of this study was to evaluate the fate impacts on PAH biodegradation in soil/water systems with nonionic surfactants. The ability of PAH-biodegraders and fungal laccase in degrading PAHs, naphthalene and phenanthrene, was analyzed. The nonionic surfactants tested were Triton X-100 and Brij 35. Soils selected were composed of a clay (Ca-montmorillonite) and a natural soil (Taichung soil). Bacterial community and physiological profile of free-state and attached microorganisms were determined during biodegradation. A comparative study was also carried out by application of free and immobilized laccases in the soil-water system.
In aqueous, PAHs were mineralized completely but the biodegrading rate was affected by the structure complexity of PAH. PAH-biodegrading bacteria enabled to utilize nonionic surfactant as carbon source in systems. The influence of surfactant additives on PAH biodegradation was successfully evaluated using chemical molecular interaction method, based on the theory of cohesive energy density (CED). Results from this study suggested, PAH have a relatively higher CED value because aromatics compounds with labile π are more polarized to prompt molecular attractions by the induced dipole force. Under different PAH-surfactant compositions, similar CED values are related to facilitate their intermolecular attractions through π-π electron interactions to represent a similar biodegradation pattern. Extracellular enzymatic activity measurements revealed that when induced enzymes targeted same molecular bonding on PAH and surfactant, rapid PAH degradation rate was observed. In soil/water systems,
PAH biodegradation was influenced by the composition of PAH-surfactant-soil/water systems. Particle size of Ca-montmorillonite and the partition of surfactant on Taichung soil played an important role. Rate of biodegradation also was found to be affected by the distribution of PAH in the monomer or micelle surfactant bulk. For bacterial number and diversity, Pseudomonas sp. was dominant during biodegradation although their numbers were affected by PAHs and the soil composition. α-, β-, γ-Proteobacteria of Domain Bacteria had a high percentage. Especially Brevundimonas (Pseudomonas) diminuta, Caulobacter sp., Mycoplana bullata, Burkholderia sp., Pseudomonas aeruginosa took advantage in aqueous or free state in soil/water systems. Moreover, community-level physiological profiling (CLPP), carbon degradation potential, Biolog carbon utilization, API ZYM enzymatic activities even metabolic pathway were alternative in different PAH-surfactant-soil/water systems.
Addition of Triton X-100 and Brij 35 enhanced the biodegradation of aqueous PAH by free laccase. When micelles existed in water systems, PAH biodegradation was greater than that of below critical micelle concentration (CMC). The same results were also found in the Ca-montmorillonite-water system. The phenomena can be ascribed to more amount of PAH partition on into micelles than that of monomers. Micellar phase were to provide microorganisms for extra phase to biodegrade PAH effectively. To compare PAH biodegradation in difference phase, the rate in the aqueous phase was higher than that in the soil phase. On immobilized laccase systems, an inhibited biodegradation in the presence of Brij 35 was observed, and an opposite effect presented in the presence of Triton X-100. Different phenomenon in bioavailability may correlate with smaller Brij 35 sorption on Ca-montmorillonite. PAH was easily into the aqueous Brij 35 micelles, instead of interceptions with immobilized laccase.
關鍵字(中) ★ 分子內聚能
★ 非離子界面活性劑
★ 多環芳香烴化合物 (PAH)
★ 族群生理圖譜 (CLPP)
★ 胞外酵素laccase
關鍵字(英) ★ cohesive energy
★ PAH
★ nonionic surfactant
★ CLPP
★ laccase
論文目次 目次…………………………………………………………………….................頁次
目錄……………………………………………………………………………... I
圖目錄…………………………………………………………………………... VI
表目錄…………………………………………………………………………... X
第一章 前言……………………………………………………………………. 1
1-1 研究緣起………………………………………………………… 1
1-2 研究目的與內容………………………………………………… 3
第二章 文獻回顧……………………………………………………………….. 7
2-1 多環芳香烴化合物……………………………………………… 7
2-1-1 定義與來源……………………………………………. 7
2-1-2 特性……………………………………………………. 7
2-1-3 毒性……………………………………………………. 11
2-1-4 污染現狀………………………………………………. 11
2-2 界面活性劑……………………………………………………… 12
2-2-1 定義…………………………………………………… 12
2-2-2 種類與用途…………………………………………… 12
2-2-3 界面活性劑之性質…………………………………… 12
2-2-4 界面活性劑應用於土壤/地下水有機污染物之復育.. 14
2-2-5 界面活性劑對環境之影響…………………………… 15
2-3 PAH與界面活性劑於土壤/水系統之傳輸行為……………….. 16
2-3-1 傳輸行為描述………………………………………… 16
2-3-2 PAH於土壤/水系統之傳輸行為…………………….. 16
2-3-3 界面活性劑於土壤/水系統之傳輸行為…………….. 17
2-4 生物分解及其生理生化反應…………………………………… 20
2-4-1 PAH之生物分解……………………………………… 20
2-4-2 界面活性劑之生物分解………………………………. 21
2-4-3 界面活性劑對PAH生物分解之影響………………… 23
2-4-4 酵素分解PAH之原理與應用………………………… 25
2-5 微生物族群結構與生理生化特性……………………………… 28
2-5-1 微生物菌群變化………………………………………. 28
2-5-2 族群生理圖譜與生理生化反應………………………. 31
2-6 環境因子對生物分解有機污染物之影響……………………… 34
2-7 有機污染物之傳輸行為與生物分解之關係…………………… 37
2-7-1 PAH之傳輸行為與生物分解之關係…………………. 37
2-7-2 界面活性劑之傳輸行為與生物分解之關係…………. 38
2-8 本章總結………………………………………………………… 39
第三章 研究流程與方法……………………………………………………… .........41
3-1 研究流程………………………………………………………… 41
3-2 研究材料………………………………………………………… 44
3-2-1 多環芳香烴化合物(PAH)…………………………….. 44
3-2-2 界面活性劑……………………………………………. 45
3-2-3 PAH分解菌……………………………………………. 46
3-2-4 土壤……………………………………………………. 48
3-2-5 關鍵酵素………………………………………………. 49
3-3 實驗設計………………………………………………………… 50
3-3-1 PAH分解族群結構與生化特性………………………. 50
3-3-2 添加界面活性劑之水系統中PAH之生物分解……… 52
3-3-3 含界面活性劑之土壤/水系統中PAH之生物分解…... 55
3-3-4 關鍵酵素對PAH分解作用之影響……………………. 59
3-4 研究方法………………………………………………………… 62
3-4-1 PAH、TX-100與DMF之分析方法………………….. 62
3-4-2 Brij35之分析方法……………………………………. 66
3-4-3 菌種鑑定- Biolog®系統……………………………… 66
3-4-4 生菌數分析與菌落培養特徵測定……………………. 68
3-4-5 比攝氧率(SOUR)分析………………………………... 69
3-4-6 細菌生長實驗(OD590)………………………………… 70
3-4-7 水解酵素活性反應分析-APIZYM系統……………… 70
3-4-8 微生物族群結構測定-螢光原位雜交技術(FISH)…… 71
3-4-9 碳源利用情形與代謝潛能分析………………………. 76
3-4-10 族群生理圖譜(CLPP)與群集分析……………………. 77
3-4-11 土壤有機質之生物分解………………………………. 80
3-4-12 自由態(free)與固定化(immobilized)關鍵酵素之
製作.........................................81
3-4-13 關鍵酵素laccase活性分析………………………….. 81
3-4-14 laccase對PAH之分解………………………………… 85
3-4-15 laccase對界面活性劑之分解實驗…………………… 88
第四章 PAH分解菌之族群分佈與生化特性………………………………… .........90
4-1 基質降解能力試驗……………………………………………… 90
4-2 菌種鑑定與族群結構解析……………………………………… 91
4-2-1 菌種鑑定………………………………………………. 91
4-2-2 微生物菌群結構………………………………………. 91
4-3 添加有機溶劑對PAH分解菌之影響…………………………… 96
4-3-1 PAH降解能力比較……………………………………. 97
4-3-2 生物分解含DMF之PAH基質之菌種鑑定…………. 97
4-3-3 生物分解含DMF之PAH基質之菌群分佈…………. 104
4-3-4 系統添加DMF前後之微生物生菌數………………... 104
4-3-5 兩系統微生物於不同PAH碳源生長密度之比較…… 105
4-3-6 族群生理圖譜(CLPP)及其群集關係…………………. 107
4-3-7 碳源利用情形…………………………………………. 111
4-3-8 酵素活性反應…………………………………………. 116
4-4 PAH分解菌代謝反應之推測…………………………………… 121
4-5 本章總結………………………………………………………… 129
第五章 水溶液系統中界面活性劑對微生物分解PAH之影響…………….... 130
5-1 PAH與界面活性劑之生物分解………………………………… 130
5-1-1 PAH之生物分解………………………………………. 130
5-1-2 界面活性劑之生物分解………………………………. 132
5-2 水系統中之界面活性劑對PAH生物分解之影響……………... 134
5-2-1 PAH之生物分解………………………………………. 134
5-2-2 界面活性劑之生物分解………………………………. 135
5-2-3 分子內聚能……………………………………………. 137
5-2-4 應用分子內聚能解釋PAH與界面活性劑之生物分解 140
5-2-5 不同結構界面活性劑對生物分解PAH之影響……… 142
5-3 生物分解過程之微生物族群數量與結構……………………… 144
5-3-1 微生物族群數量………………………………………. 144
5-3-2 微生物族群結構………………………………………. 146
5-4 分解過程之生理生化反應……………………………………… 150
5-4-1 族群生理圖譜(CLPP)與群集分析……………………. 150
5-4-2 碳源利用情形與代謝潛能……………………………. 154
5-4-3 水解酵素活性反應與代謝途徑變化…………………. 158
5-5 含不同界面活性劑laccase對PAH生物分解…………….…….. 165
5-5-1 laccase在含TX-100溶液中對PAH之分解作用……. 165
5-5-2 laccase在含Brij35溶液中對PAH之分解作用……… 167
5-5-3 比較PAH在不同界面活性劑系統之生物有效性…… 169
5-6 本章總結………………………………………………………… 172
第六章 土壤/水系統中界面活性劑對微生物分解PAH之影響…………….. .........174
6-1 土壤/水系統中PAH之生物分解……………………………….. 175
6-1-1 PAH於不同土壤/水系統之生物分解………………… 175
6-1-2 生物分解PAH過程中微生物數量與族群結構之變化 179
6-1-3 生物分解PAH過程之族群生理圖譜(CLPP)與群集分析 183
6-1-4 生物分解PAH過程之生理生化反應………………… 189
6-2 PAH分解菌對界面活性劑之生物分解………………………… 195
6-2-1 界面活性劑於不同土壤/水系統之生物分解………… 195
6-2-2 生物分解界面活性劑過程中微生物數量與族群結構
之變化.......................................198
6-2-3 生物分解界面活性劑過程之族群生理圖譜與群集分
析...........................................203
6-2-4 生物分解界面活性劑過程之生理生化反應…………. 209
6-3 添加界面活性劑對土壤/水系統中PAH生物分解之影響…….. 216
6-3-1 不同土壤/水系統之生物分解速率…………………… 216
6-3-2 生物分解過程微生物數量與族群結構變化…………. 226
6-3-3 生物分解過程之族群生理圖譜(CLPP)與群集分析…. 236
6-3-4 生物分解過程之生理生化反應………………………. 244
6-4 關鍵酵素對鈣蒙特石/水系統中PAH分解作用之影響…….…. 253
6-4-1 鈣蒙特石/水系統中自由態酵素對PAH之分解……... 253
6-4-2 鈣蒙特石/水系統中固定化酵素對PAH之分解……... 258
6-5 本章總結………………………………………………………… 267
第七章 結論與建議……………………………………………………………. 268
7-1 結論……………………………………………………………… 268
7-2 建議……………………………………………………………… 272
參考文獻………………………………………………………………………... 274
附錄A、本研究使用之實驗設備、試劑與培養基
附錄B、本研究之菌落培養特徵
圖目錄
目次………………………………………………………………………………........頁次
圖1-1 本論文研究架構……………………………………………………… 4
圖3-1 本實驗研究流程……………………………………………………… 42
圖3-2 本研究Chemostat示意圖…………………………………………… 47
圖3-3 鈣蒙特石結構示意圖………………………………………………… 48
圖3-4 PAH分解族群結構與生化特性之研究架構流程圖………………… 51
圖3-5 本實驗使用之特殊設計雙耳採樣口血清瓶………………………… 53
圖3-6 本實驗使用於分解單一界面活性劑基質之特殊血清瓶…………… 54
圖3-7 水系統中添加界面活性劑對PAH生物分解之影響研究架構流程圖... 55
圖3-8 添加界面活性劑於土壤/水系統中對生物分解PAH之影響研究架構流程圖 56
圖3-9 關鍵酵素laccase影響PAH分解作用之研究架構流程圖…………. 61
圖3-10 樣品以GC/FID分析PAH之前處理步驟…………………………… .........64
圖3-11 Biolog系統菌種鑑定流程圖………………………………………… 67
圖3-12 比攝氧率(SOUR) 實驗設備示意.圖..................................................... .........69
圖3-13 台中土有機質之生物分解實驗……………………………………… 80
圖3-14 laccase固定化步驟之實驗流程……………………………………… 82
圖3-15 含界面活性劑水系統laccase之相對活性…………………………… 83
圖3-16 土壤/水系統中自由態與固定化酵素活性變化……………………... 84
圖3-17 水系統中自由態酵素對PAH分解之實驗流程……………………... 86
圖3-18 土壤/水系統中自由態酵素對PAH分解之實驗流程………………. 87
圖3-19 Laccase對界面活性劑之分解……………………………………….. 89
圖4-1 單一PAH為基質碳源之微生物生長濃度曲線,微生物基質分別為:
(a)PAH-MSB,(b)PAH-DMF-MSB......................................106
圖4-2 C1與C2 Chemostat系統之(a)族群生理圖譜與(b)群集關係……… 108
圖4-3 Biolog系統分離菌株所得之CLPP,微生物基質分別為:
(a)PAH-MSB;(b)PAH-DMF-MSB…………………………………............109
圖4-4 利用Biolog 分離菌株所得之群集分析,微生物基質分別為:
(a)PAH-MSB;(b)PAH-DMF-MSB......................................110
圖4-5 Biolog GN2培養盤95個碳源之利用情形(培養72 hours)…………. 111
圖4-6 C1與C2 Chemostat系統代謝潛能比較圖………………………….. 112
圖4-7 C1與C2系統API ZYM 酵素活性反應 (培養60小時)…………..... 117
圖4-8 C1與C2系統API ZYM 酵素活性反應之主成份分析……………. .........117
圖4-9 C1系統分離菌株酵素活性反應結果 (單位: nanomole)…………… 119
圖4-10 C2系統分離菌株酵素活性反應結果 (單位: nanomole)…………… 119
圖4-11 主成份分析C1與C2 Chemostat系統分離菌株酵素活性反應……. 120
圖4-12 Chemostat系統之代謝反應推測圖…………………………………... 124
圖4-13 Chemostat系統之醣生與醣解作用代謝反應推測圖………………... 125
圖4-14 Pseudomonas sp. 對應API ZYM之生理生化反應…………………. 127
圖4-15 脂解酶EC No. 3.1.1.3與醣脂質代謝之關係………………………... 128
圖5-1 PAH與界面活性劑在水系統之生物分解…………………………… 131
圖5-2 (a)球狀微胞(b)低水溶性有機物溶於微胞之剖面圖………………... 132
圖5-3 生物分解PAH之降解曲線:(a)NAP(b)PHE(c)PYR及降解速率
μm與比攝氧率比值:(d)NAP(e)PHE(f)PYR............................135
圖5-4 界面活性劑之生物分解……………………………………………… 137
圖5-5 PAH與界面活性劑間之溶解度參數差值…………………………… 141
圖5-6 水系統PAH生物分解之生菌數變化:(a)NAP-Surfactant,
(b)PHE-Surfactant, (c)PYR-Surfactant............................145
圖5-7 PAH生物分解過程之微生物族群結構……………………………… 147
圖5-8 生物分解3種PAH之(a)CLPP與(b)群集分析 (培養72hrs)………. 150
圖5-9 生物分解TX-100之(a)CLPP與(b)群集分析 (培養72hrs)………… 151
圖5-10 生物分解Brij 35之(a)CLPP與(b)群集分析 (培養72hrs)………….. 151
圖5-11 生物分解界面活性劑之(a)CLPP與(b)叢集分析(培養72hrs)………. 151
圖5-12 生物分解3種PAH與2種界面活性劑為碳源之CLPP……………..... 152
圖5-13 生物分解NAP-界面活性劑之(a)CLPP(b)叢集分析………………… 153
圖5-14 生物分解PHE-界面活性劑之(a)CLPP(b)叢集分析………………… 153
圖5-15 生物分解PYR-界面活性劑之(a)CLPP(b)叢集分析………………… 153
圖5-16 生物分解PAH之水解酵素活性反應………………………………... 159
圖5-17 生物分解PAH酵素活性反應之主成份分析………………………... 159
圖5-18 生物分解界面活性劑之水解酵素活性反應………………………… 161
圖5-19 生物分解界面活性劑酵素活性反應之主成份分析………………… 161
圖5-20 生物分解PAH於不同界面活性劑下之水解酵素活性反應……….. 162
圖5-21 生物分解NAP-Surfactant 水解酵素活性反應之主成份分析……… 162
圖5-22 生物分解PHE-Surfactant 水解酵素活性反應之主成份分析……… 163
圖5-23 生物分解PYR-Surfactant 水解酵素活性反應之主成份分析……… 163
圖5-24 水系統含TX-100溶液中laccase 對PAH 之分解(a)NAP(b)PHE…. 166
圖5-25 水系統含Brij 35溶液中laccase 對PAH 之分解(a)NAP(b)PHE….. 168
圖5-26 laccase於水系統對PAH之分解(a)NAP(b)PHE…………………….. 170
圖6-1 土壤/水系統中PAH生物分解……………………………………….. 178
圖6-2 土壤/水系統溶液中分解PAH之生菌數,包括TGE agar
(
參考文獻 Abdulkareem, J. H., Al-Adhami, Bryjak J., Greb-Markiewicz B. and Peczyñska- Czzoch W. (2002), Immobilization of wood-rotting fungi laccase on modified cellulose and acrylic carriers, Process Biochemistry, 37, 1387-1394.
Abed, R.M.M., Safi, N.M.D., Köster J., Beer D., El-Nahhal, Y., Rullkötter, J. and Garcia-Pichel, F. (2002), Microbial diversity of a heavy polluted microbial mat and its community changes following degradation of petroleum compounds, Appl. Environ. Microbiol., 68, 1674-1683.
Aislabie J., Mcleod M. and Fraserm R. (1998), Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica, Appl. Microbiol. Biotechnol., 49 210-214.
Alexander, M., (1999), Biodegradation and bioremediation, 2nd ed., Academic Press., San Diego, CA., U.S.A.
Aly, M.A., Allah-Abd, A. and Srorr, T. (1998), Biodegradation of anionic surfactants in the presence of organic contaminants, Wat. Res. 32, 944-947.
Amann R., Ludwig W., Schulze R., Spring S., Moore E. and Schleifer K.-H. (1996), rRNA-targeted oligonucleotide probes for the identification of genuine and former pseudomonads. Syst. Appl. Microbiol. 19, 501 - 509.
Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R. and Stahl. D.A. (1990), Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol., 56, 1919-1925.
Amann, R.I., Ludwig, W., Schliefe, K.H. (1995), Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., Mar., 143-169.
Arino S., Marchal R. and Vandecasteele J.P. (1998), Involvement of a rhamnolipid- producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community, J. Appl. Microbiol., 84 769-776.
Aronstein, B. N., Calvillo, T. Y., Alexander, M. (1991), Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil, Environ. Sci. Technol., 25, 1728-1731.
Atlas, R. M. and R. Bartha (1998), Microbial Ecology: Fundamentals and Application, 4th, Benjamin/Cummings Publishing Company, Inc., U.S.A.
Azúa, I., Unanue, M., Ayo, B., Artolozaga, I., Arrieta, J.M. and Iriberri, J. (2003), Influence of organic matter quality in the cleavage of polymers by marine bacterial communities, J. Plank. Res., 25, 1451-1460.
Baker, K.H. and Herson, D.S. (1994), Bioremediation, McGraw-Hill, Inc., New York, U.S.A.
Bakken L.R. and Lindahl V. (1995), Recovery of bacteria cells for soil, in: J.T. Trevors, J.D. van Elsas (Eds.), Nucleic acids in the environment, Springer-Verlag Berlin Heidelberg, New York, 9-27.
Banerjee, M.R., Burton D.L. and Depoe S. (1997), Impact of sewage sludge application on soil biological characteristics, Agriculture Ecosystem and Environment, 66, 241-249.
Barkay, T., Navon-Venezia, S., Ron, E.Z., Rosenberg, E. (1999), Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan., Appl. Environ. Micro., 65, 2697-2702.
Bastiaens. L. (1998), Isolation and characterisation of polycyclic aromatic hydrocarbon- degrading bacteria, evaluation of the use of the isolates in soil slurry bioremediation, Leuven : Katholieke Universiteit Leuven.
Bateman, T.J., Dodgson, K.S., and White, G.F. (1986), Primary alkylsulphatase activities of the detergent-degrading bacterium Pseudomonas C12B, Biochem. J., 236, 401-408.
Batzing, B.L. (2002), Microbiology-an introduction, Thomson Learning, U.S.A.
Bauer J.E. and Capone D.G. (1985), Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments, Appl Environ Microbiol., 50, 81–90.
Bauer, J.E. and Capone, D.G. (1988), Effect of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons, Appl. Environ. Microbiol., 54, 1649-1655.
Bidle, K. D. and Fletcher, M. (1995), Comparison of free-living and particle- associated bacterial communities in the Chesapeake Bay by stable low-molecular- weight RNA analysis. Appl. Environ. Microbiol., 61, 944-952.
Biedlingmaier, S. and Schmidt, A. (1983), Alkylsulfonic acids and some S-containing detergents as Sulfur sources for growth of Chlorella fusca, Arch Microiol. 136, 124-130.
Bøjrseth, A. and Ramahl, T. (1985), Handbook of polycyclic aromatic hydrocarbons (Volume 2): emission source and recent progress in analytical chemistry, Marcel Dekker and Basel, Inc., New York, U.S.A.
Bollag, J.-M. (1992), Decontaminating soil with enzyme:An in situ method using phenolic and anilinic compounds, Environ. Sci. Technol., 26, 1876-1881.
Boonchan, S., Britz, M.L. and Stanley, G.A. (1998), Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia, Biotechnology and Bioengineering, 59, 482-494.
Bouchez, M., Blanchet, D. and Vandecasteels, J.-P. (1995), Substrate availability in phenanthrene biodegradation: transfer mechanism and influence on metabolism, Appl. Microbiol. Biotechnol., 43, 952-960.
Boyle, D., Wiesner, C. and Richardson, A. (1998), Factors affecting the degradation of polyaromatic hydrocarbons in soil by white rot fungi., Soil Biology and Biochemistry, 30(7), 873-882.
Breedveld, G..D. and Karlsen, D.A. (2000), Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Appl. Microbiol. Biotechnol. 54, 255-261.
Brinch U.C., Ekelund F. and Jacobsen C.S. (2002), Method for spiking soil samples with organics compounds. Appl. Environ. Microbiol., 68, 1808-1816.
Brosius J., Dull T.J., Sleeter D.D. and Noller H.F. (1981), Gene organization and primary structure of a ribosomal RNA opern from Escherichia coli, J. Mol. Biol. 148, 107-127.
Busse, H.J., Denner E.M.B. and Lubitz W. (1996), Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics, Journal of Biotechnology, 47, 3-38.
Cain, R.B. (1987), Biodegradation of anionic surfactants, Biochem. Soc. (UK) Trans., 15, 7Ss-22s.
Carmichael, L.M., Christman, R.F. and Pfaender, F.K., (1997), Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils. Environ. Sci. Technol. 31, 126–132.
Carriere, P.P.E. and Mesania, F.A. (1995), Enhanced biodegradation of creosote-contaminated soil, Waste management, 15, 579-583.
Cerniglia C.E. and Heitkamp M.A. (1989), Microbial degradation of PAH in the aquatic environment. In: Metabolism of polycyclic aromatic hydrocarbons in the environment, Varanasi U. (eds.), Boca Raton, Fla., CRC Press, Inc., U.S.A.
Chang, Y.-T., Lee, J. -F. and Chao, H.-P. (2005), Variability of communities and physiological characteristics between free-living bacteria and attached-bacteria during the PAH biodegradation in soil/water system, 3rd European Bioremediation Conference, July 4-7, Chania, Greece.
Chang, Y.-T., Lee, J.-F, Chao, H.-P. and Liao, W.-L. (2006), Bacterial community changes with N-N dimethylforamide (DMF) additives during polycyclic aromatic hydrocarbons (PAH) biodegradation, Environ. Technol., 27, 1-14.
Charbeneau, R.J., Bedient P.B. and Loehr R. C. (1992), Groundwater Remediation, Technomic Publishing Company, Inc., Lancaster, PA, U.S.A.
Chiou, C.T. (2002), Partition and adsorption of organic contaminants in environmental systems, Wiley Interscience, Hoboken, New Jersey, U.S.A.
Chiou, C.T. Mcgroddy, S.E. and Kile, D.E. (1998), Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments, Environ. Sci. Technol., 32, 264-269.
Chiou, C.T., Malcolm R.L., Brinton T.I. and Kile D.E. (1986), Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fuivic acids, Environ. Sci. Technol., 20, 502-508.
Chiou, C.V., Mcgroddy, S. E., Kile, D. E. (1998), Water solubility enhancement DDT and Trichlorobenzene by some surfactant below and above the critical micelle concentration, Environ. Sci. Technol., 32, 264-269.
Coble, R.L. (1968), Development of Microstructures in Ceramic Systems, 8-80 in Ceramic Microstructures, Fulrath R. M.and Pask. J. A. (Ed.) Wiley, New York, U.S.A..
Corcia, A.D., Costantino, A., Crescenzi, C., Marinoni, E. and Samperi, R. (1998), Characterization of recalcitrant intermediates from biotransformation of the branched alkyl side chain of nonylphenol ethoxylate surfactants, Environ. Sci. Technol., 32, 2401-2409.
Cornelissen, G., Noort, C.M.V. and Govers, H.A. (1998), Mechansim of slow desorption of organic compounds from sediments: a study using model sorbents, Environ. Sci. Technol., 32, 3124-3131.
Cornelissen, G., Noort, C.M.V. and Grovers, H.A. (1997a), Desorption kinetics of chlorobenezenes, polycyclic aromatic hydrocarbons, and polychlorinated biophenyls: sediment ectraction with tenax and effects of contact time, Environmental toxicology and chemistry, 16, 1351-1357.
Cornelissen, G., Noort, C.M.V., Parsons, J.R. and Govers, H.A. (1997b), Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments, Environ. Sci. Technol., 31, 454-460.
Crenarchaeota in lake Michigan sediment, Appl. Environ. Micro., 2089-2092.
Delong, E.F., Wickham G.S. and Pace N.R. (1989), Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells, Science, 243, 1360-1363.
Deschênes L., Lafrance P., Villeneuve J.P. and Samson R. (1996), Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote- contaminated soil, Appl. Microbiol. Biotechnol., 46, 638-646.
Dianese, A.C., Ji, P. and Wilson, M. (2003), Nutritional similarity between leaf-associated nonpathogenic bacteria and the pathogen is not predictive of efficacy in biological control of bacterial spot of tomato. Appl. Environ. Microbiol., 69, 3484-3491.
Edward, D.A., Luthy, R.G. and Liu, Z. (1991), Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions, Environ. Sci. Technol. 25, 127-133.
Edwards, D.A., Liu, Z. and Luthy, R.G. (1992), Interactions between nonionic surfactant monomers, hydrophobic organic compounds and soil, Wat. Sci.Tech., 26, 147-158.
Faber K. (2004), Biotransformations in organic chemistry, Springer-Verlag, Berlin-New York.
Field J.A., Boelsma F., Baten H. and Rulkens W.H. (1995), Oxidation of anthracene in water/solvent mixtures by the white-rot fungus, Bjerkandera sp. strain BOS55, Appl. Microbiol. Biotechnol., 44, 234-240.
Friedrich, U., Schallenberg, M. and Holliger, C. (1999), Pelagic bacteria-particle interactions and community-specific growth rates in four lakes along a trophic gradient. Microb. Ecol., 37, 49-61.
Fu, M.H., Mayton H. and Alexander M. (1994), Desorption and biodegradation of sorbed styrene in soil and aquifer solids, Environ. Toxicol. Chem., 13, 794-753.
Garland J.L. and Mills A.L. (1991), Classification and characterization of the heterotrophic microbial communities on the basis of pattern of community-level sole-carbon-source utilization. Appl. Environ. Microbiol., 57, 2351-2359.
Garland, J.L. (1997), Analysis and interpretation of community-level physiological profiles in microbial ecology, FEMS Microbiology Ecology, 24, 289-300.
Garrity, G.M., Boone, D.R. and Castenholz, R.W. (Eds.) (2001), Bergey's manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic bacteria, 2nd edition, Springer.
Gauthier, T. D., Seitz, W. R. and Grant, C. L. (1987), Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values, Environ. Sci. Technol., 21, 243-248.
Georgi, A. and Kopinke, F.-D. (2002), Validation of a modified Flory-Huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances, Environmental Toxicology and Chemistry, 21(9), 1766-1774.
Gianfreda, L. and Bollag, J.-M. (1999), Effect of soils on the behavior of immobilized enzymes, Soil Sci. Soc. Am. J., 58, 672-1681.
Gieseke, A., Purkhold, U., Wagner, M., Amann, R. and Schramm, A. (2001), Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm, Appl. Environ. Micro., 1351-1362.
Goloub, T.P., Koopal, L.K. and Bijsterbosch, B.H. and Sidorova, M.P. (1991), Adsorption of cationic surfactants on silica, Langmuir, 12, 3188-3194,
Gomez, E., Bisaro, V. and Conti, M. (2000), Potential C-source Utilization patterns of bacterial communities as influenced by clearing and land use in a vertical soil of Argentina, Applied Soil Ecology, 15, 273-281.
Gordon, A.S. and Millero, F.J. (1985), Adsorption-mediated decrease in the biodegradation rate of organic compounds, Microbial Ecology, 11, 289-298.
Gu, T.B. and Rupprecht, H. (1992), Surfactant adsorption and surface micellization, Progress. Colloid Polym. Sci., 88, 74-85.
Guerin, W. F. and Boyd, S. A. (1990), Influence of sorption on biodegradation of naphthalene by soil bacteria, 82nd Annual Meeting, Soil Science Society of America.
Guha, S. and Jaffe, P.R. (1996), “Biodegradation hydrophobic compounds partitioned into the micellar phase of nonionic surfactants”, Environ. Sci. Technol., 30, 1382-1391.
Guha, S. and Jaffé, P.R. (1996), Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants, Environ. Sci. Technol. 30, 1382-1391.
Hance, R.J. (1974), Soil organic matter and the adsorption and decomposition of the herbicides atrazine and linuron. Soil Biology and Biochemistry, 6, 39-42.
Harayama, S. (1997), Polycyclic aromatic hydrocarbon bioremediation design, Environ. Biot., 8, 268-273.
Harayama, S., Kasai, Y. and Hara, A. (2004), Microbial communities in oil-contamintated seawater, Curr. Opin. Biotech., 15, 205-214.
Hart, H., Hart, D. and Craine, L. (1995), Organic chemistry, 9th Ed., Houghton Mifflin Company.
Harvery, R. W., Smith, R.L. and George, L. (1984), Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod. Mass. aquifer, Appl. Environ. Microbiol., 48, 1197-1202.
Harvey R. G. (1997), Polycyclic aromatic hydrocarbons, Wiley-VCH, New York.
Hatakka, A., Steffen, K.T., Tuomela, M. and Hofrichter, M. (2001), Fungal processes for bioremediation., Proceedings of the First European Bioremediation Conference, Chania, Crete, Greece, 353-356.
Hatzinger, P.B. and Alexander, M. (1995), Effect of aging on chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol., 29, 537-545.
Heerden, J. van, Korft, C., Ehlers, M.M. and Cloete, T.E. (2002), Biolog for the determination of diversity in microbial communities, Water SA, 28, 29-36.
Hiemenz, P. C. and Rajagopalan, R. (1997), Principles of colloid and surface chemistry, 3rd ed., Marcel Dekker, New York., U.S.A.
Hillel, D. (1998), Environmental soil physics, , Academic Press, New York, U.S.A.
Hofrichter, M., Ziegenhagen, D., Sorge, S., Ullrich, R., Bublitz, F. and Fritsche, W. (1999), Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system. Appl. Microbiol. Biotechnol., 52, 78-84.
Hogardt, M., Trebesius, K., Geiger, A. M., Hornef, M., Rosenecker, J. and Heesemann, J. (2000), Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients., J. Clin. Microbiol. 38, 818-825.
Holman, H.Y. K., Nieman, N., Sorensen, D.L., Miller, C.D., Martin, M.C., Borch, T., McKinney, R. and Sims, R.C. (2002), Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies, Environ. Sci. Technol., 36, 1276-1280.
Hu, H., Fujie, K., Tanaka, H., Makabe, T. and Urano, K. (1997), Respiratory quinone profile as a tool for refractory chemical biodegradation study, Water Sci. Technol., 35, 103-110.
Hughes, J.B., Beckles, D.M., Chandar, S.B. and Ward, C.H. (1997), Utilization of bioremediation process for the treatment of PAH-contaminated sediments, J. Ind. Microbiol. Biot., 18, 152-162.
Hwang, S. and Cutright, T.J. (2003), Preliminary exploration of the relationships between soil characteristics and PAH desorption and biodegradation, Environ. Int., 29, 887-894.
Iain, F.; Babur, Z. and Stephen, A. (1999), Polycyclic aromatic hydrocarbon extraction from a coal tar-contaminated soil using aqueous solutions of nonionic surfactants, Chemophere, 38, 3095-3107.
Ick, T.Y., Mariganka, M.G. and Chris, D.C. (1996), Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons, Environ. Sci. Technol. 1996, 30, 1589-1595.
Joner, E.J., Hirmann, D., Szolar, O.H., Todorovic, D., Leyval, C. and Loibner, A.P. (2004), Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment, Environ. Pollut., 128, 429-435.
Jones, K.C., Stratford, J.A., Waterhouse, K.S., Furlong, E.T., Giger, W., Hites, R.A., Schaffner, C., Johnston,A.E. (1989), Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century, Environ. Sci. Technol., 23, 95-101.
Kaiser, S.K., Guckert, J.B. and Gledhill, D.W. (1998), Comparison of activated sludge microbial community using Biolog microplates, Wat. Sci. Tech. 37, 57-63.
Karickhoff, S.W. (1981), Semi-Empirical Estimation of sorption of hydrophobic pollutants on natural sediments and soils, Chemosphere, 10, 833-846.
Kibbey, T.C.G. and Hayes, K.F. (1998), A predictive numerical thermodynamic model of mixed nonionic surfactant sorption in natural systems, Journal of Colloid and Interface Science, 197, 210-220.
Kim, I.S., Park, J.-S., Kim, K.-W. (2001), Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry, Applied Geochemistry, 16, 1419-1428,
Klingler, J.M., Stowe, R.P., Obenhuber, D.C., Groves, T.O. Mishra S.K. and Pierson D.L. (1992), Evaluation of the Biolog automated microbial identification system, Appl. Environ. Micro., 2089-2092.
Kovalich, W. (1991), Perspectives on risks of soil pollution and experience with innovative remediation technologies, 4th world Congress of Chemical Engineering, Karlsruhe, German, June 16-21, 281-195.
Laha, S. and Luthy, R.G. (1991), Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems", Environ. Sci. Technol., 25, 1920-1930,
Lahlou, M., Harms, H., Springael, D. and Ortega-Calvo, J.-J. (2000), Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media, Environ. Sci. Technol., 34, 3649-3656.
Langwaldt, J.H. and Puhakka, J.A. (2000), On-site biological remediation of contaminated groundwater: a review, Environmental pollution, 107, 187-197.
Lee C., Russell N.J. and White G.F. (1995), Rapid screening for bacterial phenotypes capable of biodegrading anionic surfactants: development and validation of a microtitre plate method. Microbiology, 141, 2801-2810.
Lee, L.F., Liao, P.M., Kuo, C.C., Yang, C.T. and Chiou, C.T. (2000), Influence of a nonionic surfactant (Triton X-100) on contaminant distribution between water an several soil solids, J. Colloid Interf. Sci., 229, 445-452.
Lehman, R.M. and O’Connell, S.P. (2002), Comparsion of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium columns, Appl. Environ. Microbiol., 68, 1569-1575.
Lehman, R.M., Colwell, F.S. and Bala, G.A. (2001), Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions, Appl. Environ. Microbiol., 67, 2799 -2809.
Leonowicz, A., Sarkar, J.M. and Bollag, J.-M. (1988), Improvement in stability of an immobilized fungal laccase, Appl. Micobiol. Biotechnol., 29, 129-135.
Lewis, M.A. (1990), Chronic toxicities of surfactants and detergent builders to algae; a review and risk assessment, Ecotox. Environ. Saf., 20, 123-140.
Li, K., Christensen, E.R., van Camp, R.P., and Imamoglu, I. (2001), PAHs in dated sediments of Ashtabula River, Ohio, U.S.A.., Environ. Sci. Technol., 35, 2896-2902.
Lide, D.R. (2006), CRC Handbook of Chemistry and Physics, Internet Version 2006 edition (http://www.hbcpnetbase.com), Taylor and Franics, Boca Raton, FL, U.S.A.
Linz, D.G., and Nakles, D.V. (ed.) (1997), Environmentally acceptable endpoints in soil, Am. Academy of Environ. Eng., New York.
Liu, Z., Jacobson, A.M. and Luthy, R.G. (1995), Biodegradation of naphthalene in aqueous nonionic surfactant systems, Appl. Environ. Microbiol., 67, 1428-1430.
Loong, E.R. and Morgan, L.G. (1990), The Potential for biological effects of sediment-sorbed contaminants tested in the national status and trends program, NOAA technical memorandum NOS OMA 52, Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Rockville, MD, U.S.A.
Loy A., Horn M. and Wagner M. (2003), ProbeBase-an online resource for rRNA-targeted oligonucleotide probes, Nucleic Acids Res., 31 514 -516.
Luthy, R. G., G. R. Aiken, M. L. Brusseau, S. D. Cunningham, P. M. Gshwend, J. J. Pignatello, M. Reinhard, S. J. Traina, Jr. W. J. Weber, and J. C. Westall (1997), Sequestration of Hydrophobic Organic Contaminations by Geosorbents, Environ. Sci. Technol., 31, 3341-3347.
Lyklema, J. (1994), Adsorption of ionic surfactants on clay minerals and new insights in hydrophobic interactions, Progress. Colloid. Polym. Sci., 95, 91-97.
Macdonald, D.D., Carr, R.S., Calder, F.D., Long, E.R. and Ingersoll,C.G. (1996), Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Waters, Ecotoxicology, 5, 253-278.
MacGreor, B.J., Moser, D.P., Alm, E.W., Nelson, K.H. and Stahl, D.A. (1997),
Macle, C. J. and Semple, K. T. (2000), Influence of contact time on extractability and degradation of pyrene in soils, Environ. Sci. Technol, 34, 4952-4957.
MacLeod, C.T. and Daugulis A.J. (2003), Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent, Appl. Microbiol. Biotechnol., 62, 291-296.
Madigan, M.T. and Martinko J.M. (2006), Brock Biology of Microbiology, 11th edition, Pearson Education LTD., London, U.K.
Magdaliniuk, S., Block, J.C., Leyval, C., Bottero, J.Y., Villemin, G. and Babut, M. (1995), Biodegradation of naphthalene in montmorillonite/polyacryamide suspensions, Wat. Sci. Tech., 33, 85-94.
Maier R.M., Pepper I.L. and Gerba C.P. (2000), Environmental microbiology, Academic Press, U.S.A.
Majcherczyk, A., Johannes, C. and Hüttermann, A. (1998), Oxidation of PAH by laccase of Trametes versicolor., Enzyme Micro Technol., 22, 335-341.
Maki, H. Masuda, N., Fujiwara, Y., Ike, M., Fujita, M. (1994), Degradation of alkylphenol ethoxylates by Pseudomonas sp. Strain TR01, Appl. Environ. Microbiol., 60, 2265-2271.
Manz, W., Amann, R., Ludwig, W., Wagner, M. and Schleifer, K.-H. (1992), Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol.,15, 593 - 600.
Manz, W., Szewzyk, U., Ericsson, P., Amann, R., Schlerifer, K.-H. and Stenstrom, T.A. (1993), In situ identification of bacteria in drinking water and adjoining biofilims by hybridization with 16S and 23S rRNA-direct fluorescent oilgonucleotide probes, Appl. Environ. Micro., 2293-2298.
Marchesi, J.R., House, W.A., White, G.F., Russell, N.J., and Farr, I.S. (1991), A comparative study of the adsorption of linear alkyl sulphates alkylbenzene sulphonates on river sediments, Coll. Surf., 53, 63-78.
Marchesi, J.R., Owen, S.A., White, G.F., House, W.A. and Russell, N.J. (1994), SDS-degrading bacteria attach to riverine sediment in response to the surfactant or its primary biodegradation product dodecanol, Microbiology 140, 2999-3006
Marchesi, J.R., White, G.F., Russell, N.J and House, W.A. (1997), Effect of river sediment on the biodegradation kinetics of surfactant and non-surfactant compounds, FEMS Microbiology Ecology, 23, 55-63.
Maruyama, K., Yuan, M. and Otsuki, A. (2000), Seasonal changes in ethylene oxides chain length of poly(oxyethylene)alkylphenyl ether nonionic surfactants in three main rivers in Tokyo, Environ. Sci. Technol., 34, 343-348.
Mayer, D. (1991), Surfaces, interfaces, and colloids, VCH Publishers, Inc., U.S.A.
McCready, S., Slee, D.J., Brich G.F. and Taylor S.E. (2000), The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydeney Harbour, Australia.
McNally, D.L., Mihelcic, J. R. and Lueking, D.R. (1999), Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions, Chemosphere, 38, 1313-1321.
McNally, D.L., Mihelcic, J.R. and Lueking, D.R. (1998), Biodegradation of three- and four-Ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol., 32, 2633-2639.
Meier, H., Amann, R., Ludwig, W. and Schleifer, K.-H. (1999), Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol., 22, 186-196.
Michiel, J. Kotterman, J., Rietberg, H.-J., Hage, A. and Jim A. F. (1998), Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. Strain BOS55 in the presence of nonionic surfactants, Biotechnology and Bioengineering, 57, pp.220-227.
Mihelcic, J.R. and Luthy, R.G. (1988), Microbial degradation of acenaphthene and naphthalene under denification conditions in soil-water systems, Appl. Environ. Microbiol., 54, 1188-1198.
Mihelcic, J.R., Lueking, D.R., Mitzel, R. and Stapleton, J. M. (1993), Bioavailability of sorbed and Separate phase organic chemicals, Biodegradation, 4, 141-153.
Mihelcic, J.R., McNally, D.L. and Lueking, D.R. (1995), Surfactant-enhanced remediation of subsurface contaminants: emerging technologies, Sabatini D.A., Knox, R.C. and Harwell, J.H. (eds.), ACS Symposium Series 594; American Chemical Society: Washington, DC, 112.
Moody, J.D., Freeman, J.P., Doerge, D.R. and Cerniglia, C.E. (2001), Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol., 67, 1476-1483.
Mortland, M.M. (1986), Mechanisms of adsorption of nonhumic organic species by clays., Interactions of soil mineral with natural organics and microbes, Huang P.M. and Schnitzer, M. Eds. SSSA special publication 17, Soil Sci. Soc. Am. Inc. Madison, Wisconsin, U.S.A., 61-66.
Mulligan, C.N., Yong R.N. & Gibbs B.F. (2001), Surfactant-enhanced remediation of contaminated soil: a review, Engineering Geology, 60, 371-380.
Naes, K., Knutzen, J. and Berglind, L. (1995), Occurrence of PAH in marine organisms and sediments from smelter discharge in Norway, the Science of the Total Environment, 163, 93-106.
Nevskaia, Sepulveda-Escribano and Guerrero-Ruiz. (2001), Surface properties of activated carbons in relation to their ability to adsorb nonylphenol aqueous contaminant, Physical Chemistry Chemical Physics, 3, 463 – 468.
Nguyen, M.H. and Sigoillot, J-C. (1997), Isolation from costal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation, Biodegradation, 7, 369-375.
Nogales, B., Moore, E.R.B., Llobet-Brossa, E., Rossello-Mora, R., Amann, R. and Timmis, K.N. (2001), Combined use of 16S ribosomal DNA and 16S r RNA to study the bacterial community of polychlorinated biphenyl-polluted soil, Appl. Environ. Microbiol., 67, 1874-1884.
Noordman, W.H., Ji, W., Brusseau, M.L. and Janssen, D.B. (1998), Effects of rhamnolipid biosurfactants on the removal of phenanthrene from soil, Environ. Sci. Technol., 32, 1806-1812,
Nunno, T.J. and Hyman J.A. (1988), Assessment of international technologies for superfund applications-technology review and trip report results, EPA/540/2-88/003, U.S. EPA. Cincinnati, Ohio, 41.
Oerther, E.B., Pernthaler, J., Schramm, A., Amann, R. and Raskin, L. (2000), Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems, Appl. Environ. Micro., 2154-2165.
Ogram A.V., Jessup, R.E., Ou, L.T., Rao, P.S.C. (1985), Effects of sorption on biological degradation rates of 2, 4-dichlorophenoxy acetic acid in soils, Appl Environ Microbiol., 49, 582–587.
Okabe, S., Itoh, T., Satoh, H. and Watanabe, Y. (1999), Analysis of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms, Appl. Environ. Micro., 5107-5116.
Ortega-Calvo, J.-J. and Saiz-Jimenez, C. (1998), Effect of humic fractions and clays on biodegradartion of Phenanthrene by a Pseudomonas fluorescens strain isolated from soil, Appl. Environ. Microbiol., 64, 3123-3126.
Ortega-Calvo, J.-J., Lahlou, M. and Saiz-Jimenez, C. (1997), Effect of organic matter and clays on the biodegradation of phenanthrene in soils, Int. Biodeter. Biodeg., 40 101-106.
Owen, S.A., Russel, N.J., House, W.A. and White, G.F. (1997), Re-evaluation of the hypothesis that biodegradable surfactants simulate surface attachment of competent bacteria, Microbilogy, 143, 3469-3659.
Pace, N.R. (1996), New perspectives on the natural microbial world: molecular microbial ecology, ASM news, 62, 463-470.
Patnaik, P. (1997), Handbook of environmental analysis, Patnaik, P. (Ed.), CRC Press: Boca Raton, FL, U.S.A.
Patrick, J.C., Michiel, J.k., Jim, A. F. and Alan, D. W. (1996), Oxidation of Anthracene and benzo[a]pyrene by laccase from Trametes versicolor, Appl. Environ. Micro., 4563-4567.
Poh, C.L. and Loh G.K. (1988), Enzymatic characterization of Pseudomonas cepacia by API ZYM profile. J. Clin. Microbiol., 26, 607-608.
Pointing, S.B. (2001), Feasibility of bioremediation by white-rot fungi, Appl. Microbiol .Biotechnol., 57, 20-33.
Precott, L.M., Harley, J.M. and Klein, D.A. (2005), Microbiology, McGraw-Hill Inc., U.S.A.
Rajput, U.S., Higgins A.J., and Singley, M.E. (1994), Cleaning of excavated soil contaminated with hazardous organic compounds by washing, Water Environment Research, 66, 819-827.
Ramsay, M.A., Swannell, R.P.J., Shipton, W.A., Duke, N.C. and Hill, R.T. (2000), Effect of bioremediation on the microbial community in oiled mangrove sediments, Marine Pollution Bulletin, 41, 413-419.
Remde, A., and Debus, R. (1996), Biodegradability of fluorinated surfactants under aerobic and anaerobic conditions, Chemosphere, 52, 1563–1574.
Rijnaarts, H.H.M., Bachmann, A., Jumelet, J.C. and Zehnder, A.J.B., (1990), Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of -hexachlorocyclohexane in a contaminated calcareous soil. Environ. Sci. Technol. 24, 1349–1354.
Rogalski J., Dawidowicz A., Józwik E. and Leonowicz A. (1999), Immobilization of laccase from Cerrena unicolor on controlled porosity glass, Journal of Molecular catalysis B: enzymatic 6, pp.29-39.
Röling, W.F.M., Milner, M.G., Jones, D.M., Lee, K., Daniel, F., Swannell, R.J.P. and Head, I.M. (2002), Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation., Appl. Environ. Microbiol., 68, 5537-5548.
Roller, C., Wagner, M., Amann, R., Ludwig, W. and Schleifer, K.-H. (1994), In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA- targeted oligonucleotides. Microbiology 140, 2849-2858.
Rosen, M.J. (1978), Surfactants and interfacial phenomena, 1st Ed., John Wiley & Sons Inc., New York, U.S.A.
Sarkar, J. M. and Bollag, J. -M. (1987), Inhibitory effect of humic and fulvic acids on oxidoreductases as measured by the coupling of 2, 4-dichlorophenol to humic substances, Sci. Total Environ., 62, 367-377.
Saumyen, G., Peter, R. and Catherine, A. (1998), Solubilization of PAH mixtures by a nonionic surfactant, Environ. Sci. Technol., 32, 930-935.
Schär, H.-P., Holzmann, W., Ramos Tombo, G.M. and Ghisalba, O. (1986), Purification and characterization of N,N-dimethylformamidase from Pseudomonas DMF 3/3. Eur. J. Biochem., 158, 469-475.
Schleifer, K.-H., Amann, R., Ludwig, W., Rothemund, C., Springer, N. and Dorn, S. (1992), Nucleic acid probes for the identification and in situ detection of pseudomonads., 127-134. In: Pseudomonas: Molecular Biology and Biotechnology. Edited by Galli, E., Silver, S. and Witholt, B. Washington. American Society for Microbiology.
Schönduve, P., Sara, M. and Friedl, A. (1996), Influence of physiologically relevant parameters on biomass formation in a trickle-bed bioreactor used for waste gas cleaning., Appl. Microbiol. Biotechnol. 45, 286–292.
Scott, J. B. and Clarence, A. M. (1993), Effect of micellar solubilization on Biodegradation Rates of Hydrocarbons, Environ. Sci. Technol., 27, pp.104-110.
Shaw, D. J. (1992), Introduction to colloid and surface chemistry, 4th Ed., Butterworth Inc.
Shen, J. and Bartha, R. (1996), The priming effect of substrate addition in soil-based biodegradation tests, Appl. Environ. Microbiol., 67, 1428-1430.
Shi, Y., Zwolinski, M.D., Schreiber, M.E., Bahr, J.M., Sewell, G.W. and Hickey, W.J. (1999), Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments, Appl. Environ. Microbiol., 65, 2143-2150.
Shuttleworth K. l. and Bollag J.-M (1983) Soluble and immobilized laccase as catalysts for the transformation of substituted phenols”, Enzyme Micro. Technol., 8, 171-177.
Shuttleworth, K.L. and Cerniglia, C.E. (1997), Practical methods for the isolation of polycyclic aromatic hydrocarbon (PAH) microorganisms and determination of PAH mineralization and biodegradation intermediates, Manual of Environmental Microbiology, Hurst, C.J., G.R. Knudsen, M.J. McInerney, L.D. Stetzenbach, and M.V. Walter (Ed.), ASM Press, Washington D.C., U.S.A.
Singleton, D.R., Powell, S.N., Sangaiah, R., Gold, A. and Aitken, M.D. (27-JUL-2004), Stable-isotope probing of bacteria degrading salicylate, naphthalene and phenanthrene in a bioreactor treating contaminated soil, submitted to the EMBL/GenBank/DDBJ databases., Environmental Sciences & Engineering, University of North Carolina, CB#7431, Room 144, Rosenau Hall, Chapel Hill, NC 27599, U.S.A.
Smith, M.R. (1994), The physiology of aromatic hydrocarbon degrading bacteria, biochemistry of microbial degradation, In: Biochemistry of Microbial degradation, Ratledge, C. (ed.), Kluwer Academic Publishers, The Netherlands.
Sparks, D.L. (1995), Environmental soil chemistry, Academic Press, Singapore.
Stanier, R.Y., Palleroni, N.J. and Douderoff, M. (1996), The aerobic pseudomonades: a taxonomic study, J. Gen. Microbiol., 53, 1010-1019.
Steinberg, S.M., Pignatello, J.J. and Sawhney, B.L. (1987), Persistence of 1, 2-dibromoethane in soils: Entrapment in intraparticle micropores, Environ. Sci. Technol., 21, 1201-1208.
Stoffels, M., Amann, R., Ludwig, W., Hekmat, D. and Schleifer, K.-H. (1998), Bacterial community dymanics during start-up of a trickle-bed bioreactor degrading aromatic compounds, Appl. Environ. Microbiol., 64, 930-939.
Strbak, L. (2000), In-situ flushing with surfactant and cosolvents, Office of solid waste and emergency response technology innovation, U.S. EPA., Washington, DC.
Struijs, J. and Stoltenkamp, J. (1994), Testing surfactants for ultimate biodegradability, Chemosphere, 28, 1503-1523.
Takamatsu, Y., Nishimura, O., Inamori, Y., Sudo, R., and Matsumura, M. (1996), Effect of temperature on biodegradability of surfactants in aquatic microcosm system, Wat. Sci. Tech., 34, 61-68.
Tiehm, A., Stieber, M., Werner, P. and Frimmel, F. H. (1994), Degradation of PAHs in the presence of synthetic surfactants, Appl. Environ. Micro., 60, 258-263.
Tiehm, A., Stieber, M., Werner, P. and Frimmel, F.H. (1997), Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil, Environ. Sci. Technol., 34, 3649-3656.
Urakami, T., Kobayashi, H. and Araki, H. (1990), Isolation and identification of N, N-dimethylformmide-biodegrading bacteria, J. Ferment. Bioeng., 70, 45-47.
van Ginkel, C.G. (1996), Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms, Biodegradation, 7, 151-164.
Vandertol-Vanier, H. A., Vazquez-Duhalt, R., Tinoco, R. and Pickard, M. A. (2002), Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase, Industrial Microbiology And Biotechnology, 29, 214-220.
Verschuere L., Fievez V., Vooren L.V. and Verstraete W. (1997), The contribution of individual populations to the Biolog pattern of model microbial community. FEMS Microbiol. Ecol., 24, 353-362.
Vinas, M., Sabate, J. and Solanas, A.M. (22-SEP-2004), Changes of soil microbial community structure in a bioremediation of a creosote-contaminated soil, submitted to the EMBL/GenBank/DDBJ databases., Microbiology, University of Barcelona, Diagonal, 645, Barcelona 08028, Spain.
Wang, S.-Y. and Vipulanandan, C. (2001), Biodegradation of naphthalene- contaminated soils in slurry bioreactors, J. Environ. Eng.-ASCE, 127, 748-754.
West, C., Harwell, J. H., Knox, R.C., Sabatini, D. A., Brown, R. E., Blaha, F. and Griffin, C. (1997), Surfactant remediation field demonstration using a vertical circulation well, Ground Water, 35, 948-953.
White, G. F. and N. J. Russell. (1994), Biodegradation of anionic surfactants and related molecules, Biochemistry of microbial degradation, Kluwer Academic Publishers, The Netherlands.
White, G..F. (1995), Multiple interactions in riverine biofilms-surfactant adsorption, bacterial attachment and biodegradation, Wat. Sci. Tech. 31, 61-70.
Whiteley, A. and Bailey, M. (2000), Bacterial community structure and physiological state within an industrial phenol bioremediation system, Appl. Environ. Microbiol., 66, 2400-2407.
Whose, C.R. (1987), Bacterial evolution, Microbiol. Rev., 51, 221-271.
Wild, S. R. and Jones, K. C. (1995), Polynuclear aromatic-hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget, Environ. Pollut., 88(1), 91-108.
Willetts, A.J. (1973), Fungal metabolism of 1-phenylundecane-p-sulfonate and 1- phenyldodecane-p-sulfonate, J. Microbiol. Serol., 39, 585-597.
Willetts, A.J. and Cain, R.B. (1972), Bacterial metabolism of undecylbenzene-p- sulphonate and dodecylbenzene-p-sulphonate, Biochem. J. 129, 389-402.
Xu, S. and Boyd, S.A. (1995), Cationic surfactant sorption to a vermiculitic subsoil via hydrophobic bonding, Environ. Sci. Technol., 29, 312-320.
Yeom, I.T. and Ghost, M.M., (1998), Mass transfer limitation in PAH-contaminated soil remediation, Wat. Sci. Tech., 37, 111-118.
Young, L.Y. and Cerniglia, C. E. (1995), Microbial transformations and degradation of toxic organic chemicals, Wiley-Liss, New York., U.S.A..
Zang, W. X. and Bouwer, E. J. (1997), Biodegradation of benzene, toluene and naphthalene in soil-water slurry microcosms, Biodegradation, 8, 167-175.
Zhang, C., Valsaraj K.T., Constant W.D. and Roy, D. (1999), Aerobic biodegradation kinetics of four nonionic surfactants at sub- and supra-critical micelle concentrations (CMC), Wat. Res., 33, 115-124.
Zhang, W. and Bouwer, E.J. (1997), Biodegradation of benzene, toluene and naphthalene in soil-water slurry microcosms, Biodegradation, 8, 167-175.
Zhang, W. and Bouwer, E.J. and Ball, W.P. (1998), Bioavailability of hydrophobic organic contaminants: effects and implications of sorption-related mass transfer on bioremediation, Ground Water Monit. R., Winter, 126-138.
Zhang, X. and Young, L.Y. (1997), Carboxylation as an initial reaction in anaerobic metabolism of naphthalene and phenanthrene by Sulfidogenic consortia., Appl. Environ. Microbiol. 63, 4759-4764.
Zheng, Z. and Obbard, J.P. (2002), Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system, Wat. Res., 36, 2667-2672.
Zuby, G.L., Parson, W.W. and Vance, D.E. (1995), Principle of Biochemistry, McGraw-Hill Inc, New York.
王一雄、陳尊賢與李達源 (1995),土壤污染學,國立空中大學,初版。
王明光 (2000),土壤環境礦物學,藝軒圖書出版社,臺北。
王鳳英 (1993),界面活性劑的原理與應用,再版,高立圖書公司,臺北。
李欣隆 (1998),芳香族碳氫化合物之微生物分解,國立臺灣大學,農業化學研究所,碩士論文。
沈克鵬 (2001),二甲基甲醯胺溶劑排放減量與回收再利用,工安環保報導,第6期,經濟部工業局。
官常慶 (1994),界面活性劑與皮膚之作用,界面科學會誌,第17卷第2期,第35-41頁。
林奕成 (2001),陰離子界面活性劑Sodium Dodecylbenzene Surfonate分解菌篩選與脫磺酸酵素研究,國立中央大學,生命科學系,碩士論文。
邱明良 (1999),受多環芳香族碳氫化合物-naphthalene萘污染土壤之生物復育研究,國立中興大學,環境工程學系,碩士論文。
邱舜稜 (2002),Microtox檢測方法評估實際廢水生物毒性之研究,國立中央大學,環境工程研究所,碩士論文。
柳家瑞、王世冠、盧永濱、吳國傑 (2000),淡水河底泥有機物污染篩選研究,行政院環保署,環檢所期刊,第30期。
洪正中、杜政榮與吳天基 (2003),環境生態學,國立空中大學,臺北。
唐麗英與王春和 (2003),STATISTICA 6.0 版與基礎統計分析,儒林圖書出版社,臺北。
徐明宏 (2004),界面活性劑對土壤/水系統中有機污染物傳輸特性之影響及其土壤污染整治應用評估,國立中央大學,環境工程研究所,博士論文。
張有義與郭蘭生 (1999),膠體及界面化學入門,修訂版,高立出版社。
張志誠 (1994),PAHs分解菌之分離及其對PAHs之分解,國立臺灣大學,環境工程學研究所,碩士論文。
張怡塘 (2005),環境微生物實驗,修訂四版,高立圖書出版社,臺北。
張怡塘、林瑩峰、章裕民、方鴻源、邱應志與袁又罡 (1997),環境微生物,中華民國環境工程學會,臺北。
陳百合 (1997),不同土壤組成對界面活性劑吸附機制之研究,國立中央大學,環境工程研究所,碩士論文。
陳健民 (2002),環境毒物學,新文京出版社,臺北。
陳國誠 (2000),生物固定化技術與產業應用,茂昌圖書有限公司。
陳順宇 (1998),多變量分析,華泰書局,臺北。
陳瑞玲 (1996),不同界面活性劑對土壤及底泥吸附非離子性有機化合物之影響,國立中央大學,環境工程研究所,碩士論文。
曾怡禎與張權英 (2001),利用分子生物方法分析微生物社會的結構,環境保護分子生物科技策略論壇 (Ⅲ),行政院環境保護署,科技顧問室。
楊琇婷 (1997),土壤吸附界面活性劑對土壤/水系統中有機污染物傳輸行為之影響,國立中央大學,環境工程研究所,碩士論文。
楊嘉蓁 (2001),TX-100分解菌之分離與分解酵素之特性研究,國立中央大學,生命科學系,碩士論文。
葉佩雯 (2002),分子間作用力影響土壤中非離子有機物傳輸行為之研究,國立中央大學,環境工程研究所,碩士論文。
廖明隆 (1994),界面化學與界面活性劑,再版,文源書局,臺北。
廖萬里 (1996),固定化白腐真菌分解水中多環芳香族碳氫化合物之研究,國立中央大學,環境工程研究所,博士論文。
趙承琛 (2000),界面基礎科學,第十九版,復文書局。
劉芹君 (2000),淡水沙崙海岸耐寒細菌的分離與鑑定,國立陽明大學,微生物暨免疫學研究所,碩士論文。
蔡幸真與陳啟祥 (1994),Biolog 菌種自動化鑑定系統對環境中革蘭氏陰性菌之使用評估,中國環境工程學刊,第4卷,第3期。
蘇慧慈 (1996),原位分子生物學技術,徐氏基金會,台北。
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2006-5-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明