博碩士論文 89326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.191.202.48
姓名 溫志雄(Jyh-Shyong Wen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣一般大氣氣膠化學成份之連續監測及含水量之量測
(Continuous monitoring of major chemical components of aerosols in Taiwan and Measurement of liquid water content.)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣膠對環境的衝擊及人體健康的效應,已經引起重視,並投入大量的經費與人力進行研究。但對於氣膠特性的解析仍然多憑藉人工採樣,使用濾紙採樣然後分析氣膠特性,僅可提供較粗略的時間與空間的解析度,而且對於採樣誤差不容易量化,因此提供精確且能避免採樣運送及儲存誤差的即時(Real-Time)自動連續量測是很重要的,台灣超級測站的建置即是希望能提供達到上述目的所需的監測結果。在台灣地區由於大氣溼度較高,考量大氣氣膠在高濕環境朝解其含水量對於質量濃度量測、酸性沉降、光學性質、全球氣候變遷與人體健康皆具有顯著的影響,因此估算大氣氣膠含水量有其必要性,目前含水量推估模式雖然已經發展出來,但都是以實驗室產生的氣膠為基礎,對於大氣氣膠含水量的估算仍然有待評估,而且目前對於大氣氣膠含水量直接量測得數據仍然相當有限,有鑑於此,本文使用一套能量測收集在濾紙上氣膠含水量量測系統 (Chang and Lee, 2002; Lee and Chang, 2002),進行量測與模式模擬的比較,期望能初步探窺大氣氣膠含水量的面貌。

研究結果顯示出台北地區2002年春季PM2.5的平均濃度為37.2mg/m3,PM10的平均濃度為54.9mg/m3。有機碳成份的平均濃度為7.6mg/m3,元素碳成份的平均濃度為2.6mg/m3,黑碳的平均濃度為3.7mg/m3。硫酸鹽的平均濃度為7.1mg/m3,硝酸鹽的平均濃度為3.6mg/m3,若不考量黃沙時期的影響,3到5月各月月平均濃度變化不大。

在量測期間氣膠特性的變動顯示:氣膠質量濃度及主要化學物種濃度的隨時間變化濃度受上下班(學)的影響大,工作日及假日型態有明顯差異。 風速影響污染物的稀釋與擴散,本文發現:除了PM2.5-10濃度與風速成正比外,其他監測項目皆成反比。在高相對濕度,PM10由粗細粒徑氣膠共存,轉變為以細粒徑氣膠為主。從二次有機碳估算結果顯示細粒徑氣膠碳成份主要為二次有機碳,約佔總碳的56%,其次為元素碳佔25%,一次有機碳佔19%。本文以「近污染源氣膠化學性質」推估PM2.5污染來源 (Lee and Hsu, 1996),結果顯示二次反應所佔百分比高於交通活動,二種來源加總可佔細粒徑氣膠約35%至95%不等。

對於氣膠含水量特性的探討,本文獲得具體成果如下:從含水量與各監測項目相關係數矩陣來看,含水量主要受相對濕度及氣膠成份的影響。從大氣氣膠含水量歷程分析來看,若將乾微粒直接增濕到當時大氣相對溼度,所量測到的含水量是低估的,因為沒有考慮到氣膠在大氣中的歷程。但若從最高溼度降濕到當時大氣相對溼度,所測得的微粒含水量,則有高估的可能。因此,必須考量微粒在增濕前的大氣相對溼度所保有的含水量,才能量測到正確的含水量。若氣膠已經增濕到比較屬於高濕度的階段,則三種方式量測到的水量彼此相當接近。 本文量測的氣膠含水量與模式推估值有良好的相關性,判定係數R2高達0.86,但模式值低估許多,造成差異的原因主要有:模式值未納入吸濕性有機物、使用水溶性離子未涵蓋大氣中易吸濕的所有無機性鹽類。當秤重溫度維持在22~27℃間,濕度控制在26~34%之間,乾氣膠成份中仍帶有3%至29%的水量。在回復採樣時大氣相對溼度氣膠含水量顯示,氣膠含水量佔細粒徑氣膠百分比平均為64%,最大為86%,最低也有30%。
摘要(英) The environmental impact and health effects of atmospheric aerosols have drawn much attention. From time to time, people invest a great deal of money and efforts to understand the role of aerosols. Until recently, filter based sampling and laboratory analysis is still the mainstream to resolve aerosol properties. This could only provide a rough temporal and spatial resolution of aerosol chemical contents and is hard for quantification of sampling artifacts. The real-time continuous measurement for aerosol properties could provide the solution of acquiring precise results without incurring transportation and storge errors like filter samples. The installation of Taiwan supersite is to achieve the aforementioned objectives. Owing to the high atmospheric RH, it is necessary to assess liquid water content (LWC) of aerosols for their effects on mass measurement, acid deposition, light attenuation, global change, and health effects. Although there are several thermal equilibrium models to estimate aerosol LWC, however, they are all built by the LWC of laboratory generated known aerosols. These models need more data from aerosols in real atmosphere to test. To date, the data of aerosol LWC are scarce; this study adopted a developed measurement system to detect LWC from collected filters (Chang and Lee, 2002; Lee and Chang, 2002). Measurement results and model estimates are compared in this study to understand more on aerosol LWC in the real atmosphere.

The results of aerosol properties from continuous monitoring in the springtime of urban Taipei show as follows. PM2.5 and PM10 is with an average of 37.2mg/m3 and 54.9mg/m3, respectively. The average of organic carbon is higher at 7.6mg/m3 compared with 2.6mg/m3 for elemental carbon and 3.7mg/m3 for black carbon. The measured average for sulfates is 7.1mg/m3 and that of 3.6mg/m3 is for nitrates. For all these aerosol properties, excluding the data during yellow sand periods, the monthly averages vary very little from March to May.

The time history of aerosol mass and major chemical species are influenced by the time shift of on and off duty. Concentration pattern in working days and holidays is deviated from each other significantly. Wind speed has been expected to influence the dilution and dispersion of pollutants. This study agrees with the above inference by showing a linear relationship between PM2.5-10 and wind speed and a reverse relationship between wind speed and other measurements. At high relative humidity (RH), the predominant size fraction changed from equal weight of fine and coarse particles into fine particles. An apportionment of carbonaceous materials shows secondary organic carbon is predominant in occupying 56%, followed by elemental carbon with 25%, and primary organic carbon with 19%. By applying a “near-source aerosol chemical properties” source apportionment to PM2.5, the contributions from secondary reaction is found higher than that from mobile vehicles. The contributions from the two sources could be summed up to 35-95% of fine mass.

For the assessment of LWC of aerosol, aerosol LWC is found mainly determined by atmospheric RH and its chemical compositions. From the humidographs of aerosol LWC, the results will tend to underestimate if the measurement system is operated from dry state of arosol to the reconstructed RH. However, starting from a very high RH to the reconstructed RH will induce an overestimate in measuring aerosol LWC. The right procedure is to include aerosol LWC retained in the previous RH cycle. Meanwhile, for aerosol in the high RH stage, the measurements of aerosol LWC are close to each other. The aerosol LWC measured in this study is agreed well with ISORROPIA model estimate with a R2 at 0.86. However, the model underestimates aerosol LWC, which is probably due to not incorporating hygroscopic organics and all hygroscopic inorganic salts into the model. It is noteworthy to reveal that for temperature controlled in the range of 22-270C and RH within 26-34%, the conditioned particles before weighing still carry 3-29% LWC. The measurement of aerosol LWC at the RH when it was collected shows an average of 64% in the range of 86-30% of the fine mass.
關鍵字(中) ★ 超級測站
★ 質量濃度
★ 有機碳
★ 元素碳
★ 黑碳
★ 硫酸鹽
★ 硝酸鹽
★ 氣膠含水量
★ ISORROPIA模式
關鍵字(英) ★ organic carbon
★ sulfate
★ nitrate
★ Supersite
★ mass concentration
★ ISORROPIA
★ liquid water content
★ elemental carbon
★ black carbon
論文目次 摘要

Abstract

第一章、前言…………………………………………1

1.1 研究動機…………………………………………………………1

1.2 研究目的…………………………………………………………….3

第二章、文獻回顧……………………………………5

2.1 氣膠量測目的及遭遇問題………………………………………….5

2.1.1氣膠量測目的……………………………………………………5

2.1.2氣膠量測的問題…………………………………………….…..6.

2.2 氣膠對環境的衝擊與健康上的危害………………………...……11

2.3 氣膠物理化學特性及質量濃度量測……………………………..13

2.4 氣膠碳成份來源及量測…………………………………………..18

2.4.1 元素碳的組成………………………………………………..18

2.4.2元素碳的來源…………………………………………………20

2.4.3 有機碳的組成…………………………………………………21

2.4.4 有機碳的來源…………………………………………………22

2.4.5 氣膠碳成份的量測……………………………………………23

2.5 氣膠硫╱硝酸鹽來源及量測……………………………………...34

2.5.1氣膠硫╱硝酸鹽來源……………………………..………….34

2.5.2 氣膠硫╱硝酸鹽來源的量測……………..…………………35

2.6 氣膠含水量量測………………………………………………….37

2.6.1氣膠含水量特性……………………………………………..37

2.6.2 氣膠含水量的量測方法…………………..…………………39

2.7 氣膠特性連續監測(超級測站)……………………………….53

2.7.1美國超級測站簡介……………………………………….…..53

2.7.2台灣超級測站簡介…………………………………………56

第三章、研究方法…………………………………70

3.1 採樣及監測地點環境說明………………………………………70

3.2 實驗方法及流程…………………………………………………70

3.3 連續自動監測設備…………………………………………..…..71

3.3.1氣膠質量濃度連續監測…………………………………….72

3.3.2 氣膠碳成份連續監測………………………………………76

3.2.3氣膠硫酸鹽連續監測………………………………………79

3.3.4 氣膠硝酸鹽連續監測………………………………………83

3.3.5氣膠黑碳濃度連續監測……………………………………87

3.4 採樣設備及含水量分析儀………………………………………91

3.4.1 濾紙重量分析……………………………………………….91

3.4.2 水溶性離子成份分析…..…………………………………..92

3.4.3 含水量分析儀……..…………………………………….….93

3.5 ISORROPIA模式………………………………………………104

第四章、結果與討論……………………………….116

4.1 大氣氣膠即時監測結果基本描述………………….……….….116

4.1.1 氣膠質量濃度………………………………………………117

4.1.2 氣膠碳成份濃度……………………………………………119

4.1.3 氣膠硫酸鹽濃度……………………………………………121

4.1.4氣膠硝酸鹽濃度…………………………………………….122

4.1.5 氣膠黑碳濃度……………………………………………….122

4.1.6 氣象因子……………………………………………………123

4.2 大氣氣膠變動特性及污染來源分析………………………..…..124

4.2.1 一日間24小時變化及假日╱工作日的差異………………124

4.2.2 氣象因子與氣膠質量濃度及化學成份的關係…………….128

4.2.3 二次有機氣膠的估算………………………………………132

4.2.4 近污染源氣膠化學性質推估PM2.5污染來源……………..134

4.3 大氣氣膠含水量特性探討………………………………………135

4.3.1 大氣氣膠濃度及成份…….…………………………………135

4.3.2 大氣氣膠含水量歷程分析………………………………….138

4.3.3 大氣氣膠含水量實測值與模式推估值差異比較………….140

4.3.4 大氣氣膠吸濕潮解影響因子探討…………………………142

4.3.5大氣氣膠含水量對質量濃度的影響………………………144

4.4 不同監測方法結果比較…………………………………………146

4.4.1 黑碳與元素碳的比較………………………………………146

4.4.2 不同去除水氣方法對PM2.5質量濃度的影響……………147

第五章、結論與建議……………………………….187

5.1 結論……………………………………………………………….187

5.2建議………………………………………………………………..189

參考文獻……………………………………………190

圖 目 錄

圖2.1、PM2.5氣膠中非揮發和半揮發性物質示意圖…………………64

圖2.2、氣膠的三種模態……………………………………………….64

圖2.3、理想大氣氣膠的粒徑分布…………………………………….65

圖2.4、DRI TOR碳分析儀區塊圖……………………………..……..66

圖2.5、DRI TOR 碳分析結果溫度記錄曲線(thermogram)範例….67.

圖2.6、次微米石墨中OC與EC經由MnO2氧化的時間與溫度關係……………………………………………………………..…..…….68

圖2.7、次微米石墨經由MnO2氧化的Arrhenius plot………………68

圖2.8、美國PM2.5細粒徑氣膠監測網絡示意圖…………………….69

圖2.9、美國超級測站分布位置………………………………..…….69

圖3.1、超級測站置放地點:新莊運動公園附近地圖………….….105

圖3.2、本研究的實驗方法及流程圖………………………………..106

圖3.3、R&P 1400a氣膠質量濃度監測系統……………………….107

圖3.4、漸縮元件示意圖…………………………………………….108

圖3.5、自動採樣盒收集單元……………………………………….108

圖3.6、R&P 5400碳成份連續監測儀(外觀;硬體設置盤)………109

圖3.7、收集器/燃燒器………………………………………………109

圖3.8、氣膠碳成份連續監測儀採樣階段氣流流程………………109

圖3.9、氣膠碳成份連續監測儀分析階段氣流流程……………….110

圖3.10、C3脈衝產生器…………………………………………….110

圖3.11、SO2脈衝分析儀……………………………………………110

圖3.12、大氣氣膠硫酸鹽成份監測儀採樣分析流程…………..…111

圖3.13、C3脈衝產生器…………………………………………….111

圖3.14、NOX脈衝分析儀…………………………………………..111

圖3.15、大氣氣膠硫酸鹽成份監測儀採樣分析流程……………..112

圖3.16、吸光儀外觀………………………………………………..112

圖3.17、吸光儀剖面圖………………………………………………113

圖3.18、吸光儀運轉示意圖…………………………………………113

圖3.19、在相對溼度為20%、50%與85%時,比較NaCl氣膠系統背景水量與總系統水量的量測訊號圖譜……………………………114

圖3.20、GC-TCD氣膠含水量量測系統設備……………………..115

圖4.1、各監測項目直方圖…………………………………………156

圖4.2、PM2.5及PM10質量濃度每日平均值變化趨勢……………158

圖4.3、PM2.5總碳及有機碳濃度每日平均值變化趨勢……………158

圖4.4、PM2.5元素碳及黑碳濃度每日平均值變化趨勢……………159

圖4.5、PM2.5硫酸鹽及硝酸鹽濃度每日平均值變化趨勢………….159

圖4.6、盒型圖圖例符號說明………………………………………160

圖4.7、工作日PM2.5質量濃度一日24小時變化趨勢……….…..161

圖4.8、例假日PM2.5質量濃度一日24小時變化趨勢……………161

圖4.9、工作日PM10質量濃度一日24小時變化趨勢……………162

圖4.10、例假日PM10質量濃度一日24小時變化趨勢……………162

圖4.11、工作日TC濃度一日24小時變化趨勢…………………..163

圖4.12、例假日TC濃度一日24小時變化趨勢………………….163

圖4.13、工作日OC濃度一日24小時變化趨勢…………………..164

圖4.14、例假日OC濃度一日24小時變化趨勢…………………..164

圖4.15、工作日EC濃度一日24小時變化趨勢…………………..165

圖4.16、例假日EC濃度一日24小時變化趨勢…………………..165

圖4.17、工作日Sulfate濃度一日24小時變化趨勢……………….166

圖4.18、例假日Sulfate濃度一日24小時變化趨勢……………….166

圖4.19、工作日Nitrate濃度一日24小時變化趨勢………………167

圖4.20、例假日Nitrate濃度一日24小時變化趨勢………………167

圖4.21、風速與氣膠質量濃度及化學成份的關係…………………168

圖4.22、降雨與氣膠質量濃度的變化………………………………169

圖4.23、相對濕度與氣膠質量濃度的關係………………………….170

圖4.24、相對濕度與PM2.5氣膠化學成份的關係…………………..171

圖4.25、不同濕度下PM2.5與PM10質量濃度的關係…………….172

圖4.26、台北地區春季一次及二次有機碳日平均變化…………..173

圖4.27、台北地區春季氣膠污染來源推估………………………..174

圖4.28、TEOM與短時程(6小時)濾紙採樣PM2.5質量濃度比較.175

圖4.29、大氣氣膠含水量與溫濕度變化趨勢………………………176

圖4.30、氣膠質量濃度及吸濕物種連續監測結果…………………177

圖4.31、大氣氣膠實際含水量比較…………………………….178

圖4.32、大氣氣膠實測含水量與ISORROPIA模式估算值關係….181

圖4.33、連續監測硫酸鹽平均值與IC分析量測值比較………….181

圖4.34、連續監測硝酸鹽平均值與IC分析量測值比較…………..182

圖4.35、實測含水量與ISORROPIA模式估算值(4月19日)….183

圖4.36、實測含水量與ISORROPIA模式估算值(4月20日)…..184

圖4.37、實測含水量與ISORROPIA模式估算值(4月21日)…..185

圖4.38、BC與EC的關係…………………………………………..186

圖4.39、不同去除水氣方法PM2.5質量濃度的關係……………….186

表 目 錄

表2.1、主要空氣污染物及污染來源…………………………………57

表2.2、空氣污染物質的影響.………………………………………...58

表2.3、細粒(包含成核態和累積態)及粗粒氣膠物理及化學性質.59

表2.4、燃料燃燒所產生氣膠碳排放率推估…………………………60

表2.5、不同來源元素碳與有機碳佔氣膠總質量比率……………...61

表2.6、部份都會區的大氣氣膠中經證實的二次有機化合物………62

表4.1、台北地區春季氣膠監測結果基本統計結果………………..150

表4.2、台北地區春季氣膠化學成份各月平均值…………………..151

表4.3、台北地區春季氣膠化學成份各月所佔比例……………….151

表4.4、台北地區春季不同時段OC與EC迴歸式………………..152

表4.5、短時程採樣IC分析水溶性離子濃度………………………153

表4.6、含水量與各監測項目相關係數矩陣……………………….154

表4.7、於後秤重時溫濕度狀態下的氣膠含水量佔PM2.5質量濃度百分比………………………………………………………………….….155
參考文獻
l 歐陽嶠暉 (2001) 都市環境學,詹氏書局

l 行政院環境保護署 (1990). 環境保護ㄅㄆㄇ.

l 胡漢升 (1998) 環境醫學,科技圖書股份有限公司

l 許文昌 (1997). 微粒含水量直接量測技術之研究. 國立中央大學土木工程研究所博士論文.

l 王弼正 (1997). 台灣地區大氣氣膠特性之研究-東北季風影響下台北地區細微粒及其氣體前驅物特性之研究. 國立中央大學環境工程研究所碩士論文.

l 謝佩憶 (1999). 台灣地區大氣氣膠特性之研究-墾丁氣膠組成及含水率對散光係數的影響及污染來源推估. 國立中央大學環境工程研究所碩士論文

l 王俊凱 (2000). 台灣地區大氣氣膠特性之研究-高雄、台北都會區氣膠特性與污染來源推估. 國立中央大學環境工程研究所碩士論文

l 王證權 (2001) 亞洲氣膠特性實驗—台灣北海岸春季氣膠化學特性 國立中央大學環境工程研究所碩士論文

l 黃瓊慧 (2001) 台灣地區大氣氣膠特性之研究-台北高雄地區單顆粒氣膠與混合相氣膠污染來源推估 國立中央大學環境工程研究所碩士論文

l 張士昱 (2002) 易潮解無機氣膠含水特性之研究 國立中央大學環境工程研究所博士論文

l 蔡瀛逸、彭文正、林易玄、高維廷、簡偉庭、劉邦躍 (2001)台南都會與沿海氣膠之化學特性變異,第十三屆空氣污染控制技術研討會論文摘要集,2-83。

l 詹長權、鄭尊仁、黃嵩立、黃景祥、李崇德、何國榮、陳隆紀 (1999)台灣空氣污染健康風險評估計畫先驅計畫,EPA-88-FA32-03-2108,行政院環保署。

l 詹長權、鄭尊仁、黃嵩立、黃景祥、李崇德、王家麟、王鵬堯、何國榮 (2000) 台灣空氣污染健康風險評估計畫,EPA-90-FA11-03-FD04,行政院環保署。

l 蔡德明、吳義林 (2000) 相對溼度對質量濃度之影響效應研究,第十七屆空氣污染控制技術研討會論文集,126-131。

l Allen, G.A., (1998). Invited comments on: “real time liquid water mass measurement for airborne particulates . Aerosol Sci. Technol 29, 563-565.

l Allen G., Sioutas, C., Koutrakis, P., Reiss, R., Lurmann, F. W., Roberts, P.T., (1997) Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas., J. Air& waste Manage. Assoc.. 47:682-689..

l Andréa D.A. Castanho and Paulo Artaxo (2001).Wintertime and summertime São Paulo aerosol source apportionment study. Atmos. Environ 35:4889-4902.

l Appel, B.R., Tokiwa, Y., Hsu, J., Kothny, E.L., and Hahn, E. (1985), Visibility as Related to Atmospheric Aerosol Constituents. Atmos. Environ. 19, pp1525-1534

l Appel, B. R. (1993) Atmospheric sample analysis and sampling artifacts. In: Willeke, K.; Baron, P. A.,eds. Aerosol measurement : principles, techniques, and applications . New York, NY . Van Nostrand Reinhold : pp233-259.

l Artaxo, P., Castanho, A. D., Yamasoe, M. A., Martins, J. V. (1999). Analysis of atmospheric aerosol by PIXE: the importance od real time and complementary measurements. Nuclear instruments and methods in physics research B. 150:312-321.

l Ayers, G. P., Keywood, M. D., Gras J.L. (1999). TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations. Atmos. Environ..33:3717-3721.

l Birch, M.E. (1998) Analysis of Carbonaceous Aerosols: Interlaboratory Comparison, Analyst 123: 851-587

l Boucher, O.,and Anderson, T.L., (1996). GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res, 100, pp26117-26134.

l Broday, D. M., and Georgopoulos, P. G. (2001) Growth and Deposition of Hygroscopic Particulate Matter in the Human Lungs Aerosol Sci. Technol. 34 : pp144-159. C

l Cadle, S. H., and Groblicki, P.J. (1982) An Evaluation of Methods for the Determination of Organic and Elemental Carbon in Particulate Samples. In Particulate Carbon: Atmospheric Life Cycle, G.T. Wolff and R.L. Klimmisch, ed., Plenum Pub. Corp. New York, NY, pp. 89-109

l Cadle, S. H., Groblicki, P.J., and Mulawa, P.A. (1983) Problems in Sampling and Analysis of Carbon Particulate. Atmos. Environ.17: 593-600

l Carson, P.G., Neubauer, K.P., Johnston, M.V., and Wexler, A.S., (1995). On-line chemical analysis of aerosols by rapid single-particle mass spectrometry. J. Aerosol. Sci 26, 535-545.

l Chang, S. Y. and Lee, C.T. (2002) Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols Atmos. Environ., 36, pp. 1521-1530

l Chang, S. G., Brodzinsky, R., Gundel, L. A., and Novakov, T. (1982) Chemical and catalytic propertied of elemental carbon , in Particulate Carbon : Atmospheric Life Cycle, edited by G. T. Wolf and R’. L. Klimsch . Plenum Press, New York , pp158-181.

l Chow,J.C.,Watson,J.G.,Pritchett,L.C.,Pierson,W.R.,Frazier,C.A.,Purcell,R.G., (1993) .The DRI thermal/optical reflectance carbon analysis system : description , evaluation and application in US. Air Quality Studies. Atmos. Environ, .27A,1185-1201.

l Chow, J. C.., Watson, J. G.,(1998). Guideline on Speciated Particulate Monitoring. In preparation for EPA, OAQPS, Research Triangle Park, NC, by Desert Research Institute, Reno, NV. August, 1998.

l Chow, J.C, Watson, J. G., Crow, D., Lowenthal, D. H. and Merrifield, T (2001). Comparison of IMPROVE and NIOSH Carbon Measurements Aerosol Sci. Technol. 34: 1-12

l Currie, L. A., Stafford, T. W., Sheffield, A. E., Klouda, G. A., Wise, S. A. and Fletcher R. A. (1989) Microchemical and molecular dating, Raiocarbon, 31, 448-463

l Currie, L. A., Sheffield, A. E. and Riederer, C. (1994) Improved atmospheric understanding through exploratory data analysis and complementary modeling of the urban K-Pb-C system, Atmos. Environ.,28, 1359-1369

l Cziczo, D.J., Nowak, J.B., Hu, J.H., Abbatt, J.P.D., (1997). Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: observation of deliquescence and crystallization. J. Geophys. Res 102, 18843-18850D

l Day,D. E. and Malm W.C. (2001) Aerosol light scattering measurements as a function of relative humidity:a comparison between measurements made at three different sites. Atmos. Environ., 35, pp. 5169-5179. E

l Fung, K. (1990). Particulate Carbon Speciation by MnO2 Oxidation. Aerosol Sci. Technol. 12 : 122-127

l Ge, Z., Wexler, A.S., Johnston, M.V., (1996). Multicomponent aerosol crystallization. J. Coll.& Interf. Sci. 183, 68-77.

l Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., and Rau, J.(1986) Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environ. Sci. Technol 20, 580-589.

l Green, D., Fuller, G., Barratt, B. (2001). Evaluation of TEOMTM ’correction factor’ for assessing the EU Stage 1 limit values for PM10. Atmos. Environ. 35:2589-2593.

l Hamilton, R. S., and Mansfield, T. A. (1991) Airborne particulate elemental carbon, its sources, transport, contribution to dark smoke and soiling. Atmos. Environ.,25, 715-723

l Han, J.H., Martin, S.T., (1999). Heterogeneous nucleation of the efflorescence of (NH4)2SO4 particles internally mixed with Al2O3, TiO2, and ZrO2. J. Geophys. Re 104, 3543-3553

l Hanninen, O.O., Koistinen, K. J., Kousa, A., Keiski-Karhu, J., and Jantunen, M. J. (2002) Quantitative Analysis of Environmental Factors in Differential Weighing of Blank Teflon Filters J. Air& waste Manage. Asso., ,52, pp134-139

l Hansen, A.D.A., Rosen H., Novakov. T.,(1984). The aethalometer-an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ.. 36:191-196

l Hansen, A.D.A, (2000). The Aethalometer , Magee Scientific Company Berkeley, California, USA.

l Harrison, R. M. and Yin, J. (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci. Total Environ. ,249, pp85-101

l Hinds, W. C. (1999) Aerosol Technology: properties, behavior and measurement of airborne particles. Second edition, John Wiley & Sons Inc.

l Hitzenberger, R., Berner, A., Dusek, U., Alabashi, R., (1997) Humidity-dependent growth of size-segregated aerosol samples. Aerosol Sci. Technol 27, 116-130.

l Hitzenberger, R., Jennings, s.G., Larson, s. M., Diller, A., Cachier, H., Galambos, Z., Rouc, A., and Spain, T. G. (1999) Intercomparison of Measurement Methods for Black Carbon Aerosols, Atmos. Environ.33:2823-2833

l Ho. W., Hidy, G. M.., and Govan, R. M. (1974) Microwaves Measurements of the Liquid Water Content of Atmospheric Aerosols. J. Applied Meteo. 13 : 871-879

l Horvath, H. (1993) Atmospheric Light Absorption — A Review Atmos. Environ. Vol 27A, pp293-317

l Huntzicker, J.J., Johnson, R.L., Shah, J.J., Cary, R.A., (1982). Analysis of organic and elemental carbon in ambient aerosols by a thermal-optical method. In: Wolf D.T., Klimisch,R.L. (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum Press, NY, pp. 79-88.

l Irwin, J. G.; Campbell, G., Vincent, K., (2002) Trends in sulphate and nitrate wet deposition over the United Kingdom: 1986–1999 Atmos. Environ., 35, pp. 2867-2879

l Keeler, G. J., Japar, S. M., Brackzek, W. W., Gorse, R. A., Norbeck, J. M., and Pierson, W. R. (1990) The source of aerosol elemental carbon at Allegheny Mountain. Atmos. Environ.,24, 2795-2805

l Kennedy, K. J. and Hinds, W. C. (2002) Inhalability of large solid particles J. Aerosol. Sci. Technol.,, 33 ,pp237 –255

l Klouda, G. A., Currie, L. A., Verkouteren, R. M., Eifeld, W., and Zak B. D. (1988) Advances in microradiocarbon dating and the direct tracing of environment carbon. J. Radional. Nucl. Chem., 123, 191-197

l Koloutsou-Vakakis, S., Carrico, C. M., Li, Z., Rood, M. J., and Ogren, J. A. (1999) , Characterisation of Aerosol Properties and Radiative Forcing at an Anthropogenically Perturbed Continental Site., Phys. Chem. Earth. Vol 24, pp541-546.

l Lavanchy, V. M. H., Gäggeler, H. W., Nyeki, S., Baltensperger, U.(1999). Elemental carbon (EC) and black carbon (BC) measurements with thermal method and aethalometer at the hight-alpine research station Jungfraujoch. Atmos. Enviro. 33:2759-2769

l Lawless P. A., Rodes C. E., Evans G., Sheldon L., and Creason J. (2001). Aerosol concentrations during the 1999 Fresno exposure studies as functions of size, season, and meteorology, Aerosol Sci. Technol. 34:66-74.

l Lee, C. T.; Hsu, W. C. (1996) The source apportionment of urban aerosols from chemical properties of aerosol spectra near atmospheric sources. J. Chinese Institute of Engineers., 19, 1-13.

l Lee, C. T. and Hsu, W. C. (1998), A Novel Method to Measure Aerosol Water Mass, J. Aerosol. Sci , 29, No. 7, pp. 827-837.

l Lee, C.T., and Chang, S. Y. (2002) A GC-TCD method for measuring the liquid water mass of collected aerosols Atmos. Environ., 36, pp.1883-1894

l Lee, C.T., and Hsu, W.C., (2000) . The measurement of liquid water mass associated with collected hygroscopic particles. J. Aerosol. Sci.,. 31, 189-197.

l Lee, W.M.G., Chen, C.Y., Huang, S.L., Lee, C.T., (1996). The deliquescent growth of inorganic-salt aerosols observed by a combined system of TDMA and intergrated nephelometer. J. Aerosol. Sci 27, S313-S314

l Lewis, C. W., Baumgardner, R. E., Steven , R. K., Claxton, L. D., and Lewtas, J. (1988) Contribution of woodsmoke and ,motor vehicle emissions to ambient aerosol. Environ. Sci. Technol., 22, 968-971

l Liu, D. Y., Prather, K. A., Hering, S. V. (2000). Variation in the Size and Chemical Composition of Nitrate-Containing Particles in Riverside,CA. Aerosol Sci. Technol. 33:71-86.

l Mamane, Y., Steven, R. K., and Dzubay, T. Y. (1990) On the sources of fine and coarse carbon particles in the Great Lakes. J. Aerosol. Sc,. 21, S353-S356.

l Marcazzan, G. M., Vaccaro, S., Valli, G., Vecchi, R.. (2001) Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ., 35, pp. 4639-4650.

l Marple, V.A., Rubow, K. L., Behm, S.M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Sci. Technol. 14:434-446.

l McInnes, L.M., Covert, D.S., Quinn, P.K., Germani, M.S., (1994). Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. J. Geophys. Re 99, 8257-8268

l McInnes, L. M., Quinn, P. K., Covert, D. S., and Anderson, T. L., (1996). Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmos. Environ.,30, 869-884

l McMurry, P.H., Zhang, X.Q., (1991). Optical properties of Los Angeles Aerosols: an analysis of data acquired during SCAQS. Final report to the Coordinating Research Council, 219 Perimeter Center Parkway, Atlanta, GA 30346.

l McMurry, P. H. (2000). A review of atmospheric aerosol measurements . Atmos. Environ. 34 : 1959-1999.

l Meyer, M., Lijek, J., Ono, D. (1992). Continuous PM10 measurements in a woodsmoke environment, PM10 Standards and Nontraditional Particulate Source Controls. J. Air& waste Manage. Assoc TR-22, vol 1,pp.24-38

l Meyer, R.A., Hidy, G.M., and Davis, J.H (1973) Determination of Water and Volatile Organics in Filter Collected Aerosols , .Environ. Let. : 4(1) p9-20.

l Molnar, A. and Meszaros, E. (2001) On the relation between the size and chemical composition of aerosol particles and their optical properties Atmos. Environ., 35, , pp. 5053-5058.

l Morawska L., Johnson G., Ristovski Z. D., Agranovski V. (1999). Relation between particle mass and number for submicrometer airbone particles. Atmos. Environ. 33:1983-1990

l Moya, M., Pandis, S. N., and Jacobson, M. Z. (2002) Is the size distribution of urban aerosols determined by thermodynamic equilibrium? An application to Southern California Atmos. Environ., 36, pp. 2349-2365

l Muhlbaier, J. L. and Williams, R. L. (1982) Fireplaces, furnaces and vehlicles as emission sources of particulate carbon, in Particulate Carbon : Atmospheric Life Cycle, edited by G. T. Wolf and R’. L. Klimsch . Plenum Press, New York , pp185-205

l Muhlbaier and Cadle (1989) Atmospheric carbon particles in Detroit urban area : wintertime sources and sinks. Aerosol. Sci. Technol.,, 10, pp237-248

l Muir, D., (2000) New Directions: The suitability of tapered element oscillating microbalances (TEOMs) for PM10 monitoring in Europe. The use of PM10 data as measured by TEOM for compliance with the European Air Quality Standard Atmos. Environ, .34 3209-3211.

l Nenes, A., Pandis, S.N., Pilinis, C., (1998). ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4, 123-152.

l Neubauer, K.R., Johnston, M.V., Wexler, A.S., (1998). Humidity effects on the mass spectra of single aerosols particles. Atmos. Environ 32, 2521-2529.

l . Ohta, S., Hori, M., Yamagata, S. and Murao, N. (1998), Chemical Characterization of Atmospheric Fine Particles in Sapporo with Determination of Water Content, Atmos. Environ., 32, pp. 1021-1025.

l Onasch, T.B., Siefert, R.L., Brooks, S.D., Prenni, A.J., Murray, B., Wilson, M.A., Tolbert, M.A., (1999). Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature. J. Geophys. Res 104, 21317-21326

l Orr, C.J., Hurd, F.K., Corbett, W.J., (1958). Aerosol size and relative humidity. J Coll. Sci. 13, 472-482

l Pakkanen, T.A., Kerminen, V.M., Hillamo, R.E., Makinen, M., Makela, T., Virkkula, A., (1996). Distribution of nitrate over sea-salt and soil derived particles-implication from a field study. J. Atmos. Chem 24, 189-205.

l Penner, J. E., Eddleman, H., and Norvakov, T., (1993) Towards the development of a global inventory for black carbon emission , Atmos. Environ.,27, 1277-1295

l Pitchford, M.L., Mumurry, P.H., (1994). Relationship between measured water vapor growth and chemistry of atmospheric aerosol for Grand Canyon, Arizona, in winter. Atmos. Environ 28, 827-839.

l Pless-Mulloli, T., King, A., Howel, D., Stone, I., and Merefield, J. (2000) PM10 levels in communities close to and away from opencast coal mining sites in Northeast England

l Pratsinis, S. E., Zeldin, M. D., and Ellis, E. C. (1988) Source resolution of fine carbonaceous aerosol by principle component – tepwise regression analysis, Environ. Sci. Technol., 22, 212-216

l Rader, D. J., McMurry, P. H., (1986). Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. J. Aerosol. Sci 17, 771-787.

l Rogers, C.F., Watson, J.G., Day, D., and Oraltay, R.G., (1998). Real-time liquid water mass measurement for airborne particulates. Aerosol Sci. Technol 29, 557-562.

l Rupprecht, G., Patashnick, H., Beeson, D. E., Green, R. N., Meyer M. B.(1995). A New Automated Monitor for the Measurement of Particulate Carbon In the Atmosphere. Particulate Matter: Health and Regulatory Issues, Pittsburgh, PA.

l Ruuskanen, J., Tuch., Th., Brink, H. T., Peters, A., Khlystov, A., Mirme, A., Kos, G. P. A., Brunekreef, B., Wichmann, H. E., Buzorius, G., Vallius, M., Kreyling, W. G. and Pekkanen, J. (2001) Concentrations of ultrafine, fine and PM2.5 particles in three European cities. Atmos. Environ., 35, pp. 3729-3738.

l Series 8400N Ambient Particulate Nitrate Monitor, (2001) R&P manual

l Series 8400S Ambient Particulate Nitrate Monitor, (2001) R&P manual

l Series 5400 Ambient Carbon Particulate Monitor, (1996) R&P manual

l Series:TEOM 1400a Ambient Particulate Monitor, (1996) R&P manual

l Saitoh, K., Sera, K., Hirano, K., and Shirai, T. (2002) Chemical characterization of particles in winter-night smog in Tokyo Atmos. Environ, 36, 435-440.

l Salma, I., Balashazy, I., Hofmann, W., and Zaray, G. (2002) Effect of physical exertion on the deposition of urban aerosols in the human respiratory system, J. Aerosol. Sci. 33,pp983 –997

l Savoie, D. L.; Propero, J. M.; Nees, R. T. (1987) Nitrate, non-sea-salt sulfate, and mineral aerosol over the northwestern Indian Ocean. J. Geophys. Res., , 92, 933-942.

l Savoie, D. L.; Propero, J. M.; Merrill, J. T.; Uematsu, M. (1989) Nitrate in the atmospheric boundary layer of the tropical South Pacific: implications regarding sources and transport. J. Atmos. Chem., , 8, 391-415.

l Schroeter,J. D., Musante,C. J., Hwang, D., Burton, R., Guilmette,R. and Martonen, T. B. (2001) Hygroscopic Growth and Deposition of Inhaled Secondary Cigarette Smoke in Human Nasal Pathways Aerosol Sci. Technol. 34 : pp137-143.

l Schwartz, J., Dockery, D. W. and Neas, L. M. (1996), Is Daily Mortaility Associated Specifically with Fine Particles?, J. Air& waste Manage. Assoc, 46, pp. 927-939.

l Seinfeld, J. H., and Pandis, S. N., (1998). Atmospheric chemistry and physics : From air pollution to climate change. Wiley-Interscience, New York pp700-765.

l Speer, R.E., Barnes, H.M., Brown, R., (1997). An instrument for measuring the liquid water content of aerosols. Aerosol Sci. Technol 27, 50-61.

l Stolzenburg, M. R. and Hering, S. V, (1999). Automated Measurement of PM2.5 Nitrate and Sulfate. , 93rd Annual Conference of the Air & Waste Management Association

l Stolzenburg, M. R. and Hering, S. V, (2000) Method for the Automated Measurement of Fine Particle Nitrate in the Atmosphere. Environ. Sci. Technol. 34:907-914..

l Stolzenburg, M. R. and Hering, S. V. (2000). Method for the Automated Measurement of Fine Particle Nitrate in the Atmosphere. Environ. Sci. Technol. 34:907-914.

l Tang, I.N., Munkelwitz, H.R.,(1977). Aerosol growth studies-Ⅲ. Ammonium bisulfate aerosols in a moist atmosphere. J. Aerosol. Sci 8, 321-330.

l Tang, I.N., (1980). Deliquescence properties and particle size change of hygroscopic aerosols. In generation of aerosols and facilities for exposure experiments(edited by Willeke, K.), 153-167. Ann Arbor Science, Ann Arbor, MI.

l Tang, I.N., Fung, K.H., Imre, D.G., Munkelwitz, H.R., (1995). Phase transformation and metastability of hygroscopic microparticles. Aerosol Sci. Technol 23, 443-453

l Trakumas, S., Juozaitis, A., Buzorius, G., Girgzdys, A., Vidmantas, U., (1995). Investigations of hygroscopical properties of atmosphere aerosol particle. J. Aerosol. Sci 26, S371-S372

l Tuch, Th., Mirme, A., Tamm, E., Heinrich, J., Heyder, J., Brand, P., Roth, Ch., Wichmann, H. E., Pekkanen, J., Kreyling, W. G. (2000). Comparison of two particle-size spectrometers for ambient aerosol measurements. Atmos. Environ. 34:139-149.

l Turpin, B.J., Hunyzicker, J.J., Adams, K.M.(1990a). Intercomparison of photoacoustic and thermal-optical methods for the measurement of atmospheric elemental carbon. Atmos. Environ. 24A:1831-1835.

l Turpin, B.J., Cary, R.A., Huntzicker, J.J.(1900b). An in-situ, time-resolved analyzer for aerosol organic and elemental carbon. Aerosol Sci. Technol 12:161-171.

l Turpin, B.J., Saxena, P., Andrews, E. (2000). Measuring and simulating particulate organics in the atmosphere : problems and prospects. Atmos. Environ. 34 : 2983-3013.

l Twomey, S., (1954). The composition of hygroscopic particles in the atmosphere. Journal of Met. 11, 334-346

l U.S. Environment Protection Agency (1988). Superfund Exposure Manual , EPA/540/1-88/001. Office of Remedial Response, Washington, DC .

l U.S. Environmental Protection Agency (1998). Guidance For Using Continuous Monitors In PM2.5 Monitoring Networks. EPA-454/R-98-012. U.S. EPA, OAQPS, Research Triangle Park, NC 27711.

l U.S. Environmental Protection Agency (1998). Draft Supersites Conceptual Plan. Prepared for the Technical Subcommittee on Fine Particle Monitoring of the Clean Air Scientific Advisory Committee. EPA, OAQPS, EPA, ORD, Research Triangle Park, NC 27711.

l U.S. Environmental Protection Agency (1998). Quality Assurance Guidance Document, Model Quality Assurance Project Plan for the PM2.5 Ambient Air Monitoring Program at State and Local Air Monitoring Statins(SLAMS). EPA-454/R-98-005. U.S. EPA, OAQPS, Research Triangle Park, NC 27711.

l U.S. Environmental Protection Agency (1998). Field Program Plan For The PM2.5 Chemical Speciation Sampler Evaluation Study-Draft. U.S. EPA, NERL, U.S. EPA, OAQPS, Research Triangle Park, NC 27711.

l U.S. Environment Protection Agency (1999 ). Air Quality Criteria for Particulate Matter Volume 1. EPA/600/P-99/002a, Office of Research and Development , Washington, DC

l Wall, S.M., John, W., Ondo, J.L., (1988). Measurement of aerosol size distributions for nitrate and major ionic species. Atmos. Environ 22, 1649-1656.

l Watson, J. G. and Chow, J. C. (2002) A wintertime PM2.5 episode at the Fresno, CA, supersite Atmos. Environ., 36, pp.465-475

l Weingartner, E., Baltensperger, U., Burtscher, H., (1995). Growth and structural changes of combustion aerosols at high relative humidity. J. Aerosol. Sci

l Weingartner, E., Burtscher, H., Baltensperger, U., (1996). Hydration properties of diesel soot particles. J. Aerosol. Sci 27, S695-S696.

l Wolff, G. T., and Korsog, P. E. (1985) Estimates of the contribution of sources to inhalable particulate concentration in Detroit, Atmos. Environ.,19, 1399-1409

l Woo, K. S., Chen, D. R., Pui, D.Y. H., McMurry, P. H.(2001). Measurement of Atlanta aerosol size distributions:Observations of ultrafine particle events. Aerosol Sci. Technol. 34:75-87.

l Wu, P.M., Okada,K., (1994). Nature of coarse nitrate particles in the atmosphere-a single particle approach. Atmos. Environ 28, 2053-2060.

l Zhung, H., Chan, C.K., Fang, M., Wexler, A.S., (1999). Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmos. Environ 33, 4223-4233..
指導教授 李崇德(Chung-Te Lee) 審核日期 2002-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明