博碩士論文 89326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.15.147.225
姓名 林姵吟(Pei-Yin Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台北都會區黃沙時期氣膠特性
(Characterization of aerosol in metropolitan Taipei during yellow-sand periods)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 黃沙現象是東亞地區春季相當活躍的現象,每年春季在中國西北沙漠地區產生的沙塵暴,經由天氣系統的傳送而影響到台灣。台灣地區在受到大陸沙塵的影響期間,大氣中的微粒濃度值明顯增加,不僅影響台灣的空氣品質,造成能見度衰竭,並影響人類的健康。為了瞭解大陸沙塵對於都會區氣膠特性的影響,本研究選擇經常會受到大陸沙塵影響的三月~五月間,在台北都會區進行PM10及PM2.5氣膠的監測。除利用環保署超級測站多種自動監測儀器量測氣膠的物化特性外,並配合人工採樣進行氣膠採樣及分析,以期獲得北部地區在黃沙時期較完整的PM10及PM2.5氣膠的物化特性。
今年襲台的沙塵暴共有八波,從PM10即時監測質量濃度值來看,影響最為嚴重的黃沙事件為第二波(3月6日~9日)及第三波(3月18日~20日),PM10最大小時濃度值可高達160μg/m3以上,而這八波黃沙事件時期,PM2.5及PM10氣膠的平均濃度為28.7及66.3μg/m3,比起平常日PM2.5的37.4及PM10的濃度值55.4μg/m3濃度值,發現PM10的濃度值有增加,並且是粗粒徑氣膠(PM10-2.5)部分增加最多。將PM10-2.5的逐時濃度變化配合風向風速變化看來,發現當PM10-2.5濃度大於PM2.5濃度時,此時的風向明顯從原來的東北風轉成北風,且風速漸漸上升從平常日約為0.4m/sec上升最大可達1.4m/sec,所以利用PM10-2.5的逐時濃度與風向風速的配合可以推斷當地受到大陸沙塵影響的起迄時間。而從PM2.5氣膠的主要化學成份來看,硫酸鹽、硝酸鹽、碳成份濃度在黃沙時期的平均值低於平常日的濃度,顯示由沙塵暴帶來的PM2.5氣膠污染屬於少量,都會區細粒徑氣膠的貢獻還是以當地產生居多。而PM10氣膠體積濃度粒徑分佈在非黃沙時期以細粒徑氣膠居多,在黃沙時期轉變成以粗粒徑氣膠居多。
在黃沙時期進行人工的採樣,採樣分析結果在PM10及PM2.5質量濃度及碳成份的變化趨勢均與自動即時監測結果一致,顯示即時監測值的可性度。將人工採樣樣本依據逆溯氣流軌跡線可分成六類,屬於黃沙時期的逆溯氣流軌跡,其樣本在質量濃度的表現上也是以PM10-2.5居多,而非黃沙時期的逆溯氣流軌跡樣本中,以PM2.5居多,但隨著氣流經過不同的區域,其粗細粒徑氣膠化學性質也會有所不同。以碳成份來看,無論樣本是屬於黃沙時期與非黃沙時期的逆溯氣流軌跡,其濃度值變化不大。在黃沙時期,明顯從大陸沙塵源區直接傳輸過來的氣流,粗粒徑氣膠的元素組成以Si、Ca、Al、Fe居多,並且利用加強因子法發現這些元素由塵土所貢獻。同樣的在黃沙時期的逆溯氣流軌跡中,Ca2+、Mg2+所佔的比例明顯增高。利用海水加強因子法配合逆溯氣流軌跡顯示,Cl-、Mg2+等離子來自海水飛沫,而Ca2+、SO42-、K+來自非海水飛沫。
摘要(英) Yellow sand (YS) phenomenon is very active in springtime of East Asia. For the right atmospheric condition, the dust storm from northwestern region of China, the desert area, will transport dusts to Taiwan. During the period effected by the dust storm, the aerosol concentration in Taiwan increases significantly. Not only the air quality, but also the human health is threatened. Therefore, it is important to understand the effects of YS to our atmosphere. In this study, the concentrations of PM10 and PM2.5 in metropolitan Taipei from March to May in 2002 were monitored. In addition to automatic instruments installed in EPA aerosol supersite, manual sampling equipments are employed to get more detailed information of both chemical and physical characteristics of aerosols.
This year, the YS invaded Taiwan eight times. From the real-time monitoring concentrations of PM10, the worst two batches were the second (March 6-9) and the third (March 18- 20) ones. The maximum hourly PM10 concentration was higher than 160 mg/m3. Among the eight batches of YS, the average of PM2.5 and PM10 was 28.7 and 66.3 mg/m3, respectively. In contrast to 37.4 and 55.4 mg/m3, the average of PM2.5 and PM10 during non-yellow-sand (NYS) periods, the concentration of the coarse particles (PM10-2.5) increased a great amount during the YS periods. It is found that on the arrival of a YS batch, the wind direction shifted from northeast to from north and the wind speed was lifted. Meanwhile, the PM10-2.5 level was increased during this time period, which is different from the level in the NYS periods. This demonstrates that one may use the change of WD and WS to infer the arrival of a YS event. Certainly, this inference is better verified by the change of the trend of PM10-2.5 level.
From the chemical compositions of the aerosols, it could be found that the average mass fractions of sulfate, nitrate and carbon are lower in YS periods than that in NYS periods. It demonstrates that the dust storm brings little PM2.5, most PM2.5 of is contributed from local activities. In addition, the PM10 volume size distributions show that fine fraction is predominant in NYS periods, while coarse mode is more significant in NY periods.
During NY periods, PM2.5 and PM10 were also collected manually, the results showed a consistency in variations of mass and carbonaceous content with automatic continuous measurements. This demonstrates the reliability of the manual collection as well as the automatic continuous measurement. From the HYSPLIT model (Draxel, 1999), one can categorize the 72-hour backward air trajectory into 6 types. For the periods associated with the YS backward air trajectory, the PM10-2.5 level is higher than PM2.5 level. The trend is reversed for the NYS periods. For aerosol carbonaceous contents, the variation between YS and NYS is very little. As to the elemental contents, the air trajectory associated with source regions carry predominant Si, Ca, Al, and Fe in the coarse particles; the enhancement factor calculation shows these elements were contributed from crustal materials. For water-soluble ions, the air trajectories from source regions transport predominant Ca2+ and Mg2+. From the application of enhancement factor to the water-soluble ions, Cl-and Mg2+were originated from the sea, while Ca2+, SO42-, and K+ were from non-sea-salt sources.
關鍵字(中) ★ 都會區氣膠特性
★ 即時監測值
★ 黃沙時期
★ 逆溯氣流軌跡
★ 加強因子法
關鍵字(英) ★ Yellow sand
★ enhancement factor
★ backward air trajectory
★ continuous monitoring
★ urban aerosol
論文目次 目 錄
目錄 Ⅰ
圖目錄 Ⅳ
表目錄 Ⅵ
1 前言 1
1.1 研究動機 1
1.2 研究目的 3
2 文獻回顧 4
2.1 氣膠的來源及特性 4
2.1.1 氣膠主要化學組成及其來源 4
2.1.2 氣膠的化學成份與粒徑分佈 5
2.1.3 氣膠的化學組成 7
2.1.3.1 氣膠的碳成份 7
2.1.3.2 氣膠水溶性離子成份 8
2.2 氣膠特性的即時監測 10
2.2.1 氣膠質量濃度 10
2.2.2 氣膠粒徑分佈 12
2.2.3 氣膠化學組成成份 14
2.2.3.1 含碳量分析 14
2.2.3.2 硝酸鹽成份分析 16
2.2.3.3 硫酸鹽成份分析 17
2.3 台灣黃沙時期氣膠特徵 18
2.3.1 大陸沙塵暴的發生與影響 18
2.3.2 沙塵暴發生時期的氣膠特徵 19
2.4 氣膠對人體健康影響研究 21
3 研究方法 23
3.1 採樣時程及觀測地點描述 23
3.2 氣膠特性的監測及採集方法 26
3.2.1 自動監測儀器 27
3.2.1.1 氣膠質量濃度監測儀R&P 1400a 27
3.2.1.2 氣膠碳成份監測儀R&P 5400 29
3.2.1.3 氣膠硝酸鹽成份監測儀R&P 8400N 31
3.2.1.4 氣膠硫酸鹽成份監測儀R&P 8400S 33
3.2.1.5 氣膠數目粒徑分佈監測儀PMS Model PCASP-X 35
3.2.1.6 次微米氣膠粒徑分佈監測儀SMPS 38
3.2.2 人工採樣器 42
3.2.2.1 R&P Partisol Model 2300 Speciation Sampler 42
3.2.2.2 Andersen RAAS 2.5-400 46
3.2.2.3 自動採樣和收集單元(Automatic Cartridge Collection Unite,ACCU) 49
3.2.3 採樣方法 50
3.2.4 濾紙的前處理 52
3.2.5 樣品的運送及保存 52
3.3 樣品分析方法 53
3.3.1 氣膠質量秤重分析 53
3.3.2 氣膠元素分析 53
3.3.3 水溶性離子分析 54
3.3.4 氣膠碳元素分析 56
4 結果與討論 58
4.1 黃沙時期即時氣膠特性及氣象條件 60
4.1.1 第一波黃沙時期(2月11~12日) 61
4.1.2 第二波黃沙時期(3月6~9日) 63
4.1.3 第三波黃沙事件日(3月18~20日) 67
4.1.4 第四波黃沙事件日(3月23~24日) 71
4.1.5 第五波黃沙事件日(3月31~4月1日) 74
4.1.6 第六波黃沙事件日(4月8~10日) 77
4.1.7 第七波黃沙事件日(4月11~15日) 80
4.1.8 第八波黃沙事件日(4月17~19日) 83
4.1.9 黃沙時期即時監測值特性總結 86
4.2 人工採樣與即時監測結果比較 88
4.2.1 氣膠質量濃度 88
4.2.2 氣膠碳成份濃度 92
4.3 黃沙時期氣膠化學特性與來源探討 96
4.3.1 黃沙時期72小時逆軌跡分類 96
4.3.2 黃沙時期氣膠質量濃度的變化 102
4.3.3 黃沙時期氣膠碳成份的變化 104
4.3.4 黃沙時期的氣膠特徵元素成份 107
4.3.5 黃沙時期的氣膠特徵離子成份 118
4.3.6 重建質量濃度與秤重質量濃度相關性 129
5 結論 134
6 參考文獻 137
參考文獻 Ackermann-Librich, U., Leuenberger, Ph., Schwartz, J., Schindler, Ch., SAPALDIA-term, (1997). Lung function and long term exposure to air pollutants in Switzerland. Journal of Respiratory and Critical Care Medicine. 155:122-129.
Allen G., Sioutas, C., Koutrakis, P., Reiss, R., Lurmann, F. W., Roberts, P.T. (1997). Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas. Journal of Air and Waste Management Association. 47:682-689.
Andréa D.A. Castanho and Paulo Artaxo (2001).Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment. 35:4889-4902.
Andrews, E., Saxena, P., Musarra, S., Hildemann, L.M., Koutrakis, P., McMurry, P.H., Olmez, I. and White, W.H.(2000). Concentration and Composition of Atmospheric Aerosols from the 1995 SEAVS Experiment and a Review of the Closure between Chemical and Gravimetric Measurements. Journal of Air and Waste Management Association. 50:648-664.
Artaxo, P., Castanho, A. D., Yamasoe, M. A., Martins, J. V. (1999). Analysis of atmospheric aerosol by PIXE: the importance od real time and complementary measurements. Nuclear instruments and methods in physics research B. 150:312-321.
Ayers, G. P., Keywood, M. D., Gras J.L. (1999). TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations. Atmospheric Environment.33:3717-3721.
Ball, J., Willie, C., Young, C.(1992). Evidence of a new class of mutagenes in diesel particulate extracts. Environmental Science and Technology 26, 2181-2186.
Barbara, J. T. and Ho-Jin Lin.(2001).Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology. 35:602-610
Bennett, R. L., Stockburger (1994). Sampling carbonaceous aerosol: Review of methods and previous measurements. U.S. Environmental Protection Agency. Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC, November 1994; EPA/600/SR-94/192.
Chang, S.G., Brodzinsky, R., Gundel, L.A., Novakov, T., (1982). Chemical and catalytic properties of elemental carbon. In: Wolff, G.T., Klimisch, R.L. (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum Press, New York, pp. 158-181.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W.(1993). PM10 and PM2.5 compositions in California’’s San Joaquin Valley. Aerosol Science and Technology 18:105-128.
Chung, Y.S. and Yoon, M.B.(1996). On the occurrence of yellow sand and atmospheric loadings. Atmospheric Environment. 30:2387-2397.
Dockery, D.W., Pope Ⅲ, D.C.A., Xu, X., Sprengler, J.D.(1993). An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine. 329:1573-1579.
Draxler, R.R.(1999). Hybrid single-particle lagrangian integrated trajectories (HYSPLIT): Version 4.0- User’’s Guide. NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Silver Spring, MD, USA.
Fung, K.(1990). Particulate carbon speciation by MnO2 oxidation. Aerosol science and technology. 12:122-127.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A.(1986). Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20:580-589.
Green, D., Fuller, G., Barratt, B. (2001). Evaluation of TEOMTM ’correction factor’ for assessing the EU Stage 1 limit values for PM10. Atmospheric Environment. 35:2589-2593.
Hansen, A.D.A., Rosen H., Novakov. T.,(1984). The aethalometer-an instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment. 36:191-196
Heinrich, U., Dungworth, L.(1991). The carcinogenic effects of carbon black particles and tar/pitch condensation aerosols after inhalation exposure of rates. Seventh International Symposium on Inhaled Particles, Edinburgh.
Horvath, H., Kasahara, M. and Pesava, P. (1996). The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. Journal of Aerosol Science. 27:417-435
Lavanchy, V. M. H., Gäggeler, H. W., Nyeki, S., Baltensperger, U.(1999). Elemental carbon (EC) and black carbon (BC) measurements with thermal method and aethalometer at the hight-alpine research station Jungfraujoch. Atmospheric Environment. 33:2759-2769.
Lawless P. A., Rodes C. E., Evans G., Sheldon L., and Creason J. (2001). Aerosol concentrations during the 1999 Fresno exposure studies as functions of size, season, and meteorology, Aerosol science and technology. 34:66-74.
Liu, D. Y., Prather, K. A., Hering, S. V. (2000). Variation in the Size and Chemical Composition of Nitrate-Containing Particles in Riverside,CA. Aerosol Science and Technology. 33:71-86.
Marple, V.A., Rubow, K. L., Behm, S.M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol science and technology. 14:434-446.
McMurry P.H.(2000). A review of atmospheric aerosol measurements, Atmospheric Environment. 34:1959-1999.
McMurry, P. H., Zhang, X.Q.(1989). Size distributions of ambient organic and elemental carbon. Aerosol Science and Technology. 10:430-437.
Meyer, M., Lijek, J., Ono, D. (1992). Continuous PM10 measurements in a woodsmoke environment, PM10 Standards and Nontraditional Particulate Source Controls. In: Chow, J.C., Ono, D.M. (EDS.), Air and Waste Management Association, TR-22, vol 1,pp.24-38
Morawska L., Johnson G., Ristovski Z. D., Agranovski V. (1999). Relation between particle mass and number for submicrometer airbone particles. Atmospheric Environment. 33:1983-1990.
Novakov, T. (1982). Soot in the atmosphere. In: Wolff, G.T., Klimisch, R.L., (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum, New York, pp. 19-41.
Park, S.S., Kim, Y.J., Fung, K.(2001). Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea. Atmospheric Environment. 35:657-665.
Patashnick, H. (1987). On-line, real-time instrumentation for diesel particulate testing. Diesel Prog.N.Amer. 53:43-4.
Patashnick, H. and Hemenway, C.L. (1969). Oscillating fiber microbalance. Rev.Sci.Instrum. 40:1008-11.
Patashnick, H. and Rupprecht, E.G. (1991). Continuous PM10 measurements using the tapered element oscillating microbalance. JAWMA 41:1079-83.
Robert, A. M. and Michael T. K. (2000). Incidence and apparent health significance of brief airborne particle excursions. Aerosol science and technology. 32:93-105.
Robert, H., Susumu, T., Mikio, K., Regina, H.(2002). Long-term characterization of carbonaceous aerosol in Uji, Japan. Atmospheric Environment. 36:1267-1275.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T.(1993). Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment .27A, 1309-1330.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T.(1993). Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment . 27A:1309-1330.
Rupprecht, E.G., Meyer, M., Patashnick, H. (1992). The Tapered Element Oscillating Microbalance as a tool for measuring ambient particulate concentrations in real time. Oxford, UK.
Rupprecht, G., Patashnick, H., Beeson, D. E., Green, R. N., Meyer M. B.(1995). A New Automated Monitor for the Measurement of Particulate Carbon In the Atmosphere. Particulate Matter: Health and Regulatory Issues, Pittsburgh, PA.
Schwartz, J.(1994). Particulate air pollution and chronnic respiratory disease. Environmental Research. 62:7-13.
Seaton, A., MacNee, W., Donaldson, K., Godden, D.(1995). Particulate air pollution and acute health effects. Lancet. 345:176-178.
Stolzenburg, M. R. and Hering, S. V. (1999). Automated Measurement of PM2.5 Nitrate and Sulfate. 93rd Annual Conference of the Air & Waste Management Association.
Stolzenburg, M. R. and Hering, S. V. (2000). Method for the Automated Measurement of Fine Particle Nitrate in the Atmosphere. Environment Sciences Technology. 34:907-914.
Tuch, A. M., Tamm E. J., Heyder, H. P., Brand, C. H., Roth, H. E., Wichmann, J. P., Kreyling W.G.(2000). Comparison of two partical-size spectrometers for ambient aerosol measurements. Atmospheric Environment. 34:139-149.
Tuch, Th., Mirme, A., Tamm, E., Heinrich, J., Heyder, J., Brand, P., Roth, Ch., Wichmann, H. E., Pekkanen, J., Kreyling, W. G. (2000). Comparison of two particle-size spectrometers for ambient aerosol measurements. Atmospheric Environment. 34:139-149.
Turpin B. J. and Huntzicker J. J. (1991). Secondary formation of organic aerosol in the Los Angeles Basin: adescriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment. 25A:207-215.
Turpin, B.J. and Huntzicker, J.J.(1995). Idnetification of secondary organic aerosol concentration during SCAQS. Atmospheric Environment. 29:3527-3544.
Turpin, B.J., Cary, R.A., Huntzicker, J.J.(1900b). An in-situ, time-resolved analyzer for aerosol organic and elemental carbon. Aerosol Science and Technology. 12:161-171.
Turpin, B.J., Hunyzicker, J.J., Adams, K.M.(1990a). Intercomparison of photoacoustic and thermal-optical methods for the measurement of atmospheric elemental carbon. Atmospheric Environment. 24A:1831-1835.
Woo, K. S., Chen, D. R., Pui, D.Y. H., McMurry, P. H.(2001). Measurement of Atlanta aerosol size distributions:Observations of ultrafine particle events. Aerosol science and technology. 34:75-87.
Zhung, H., Chan, C.K., Fang, M., Wexler, A.S.(1999). Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33:4223-4233.
王政權(2001)『亞洲氣膠特性實驗—台灣北海岸春季氣膠化學特性』,國立中央大學環境工程研究所碩士論文。
張順欽、吳權芳(2001)『大陸沙塵暴對台灣地區空氣品質之影響』,大陸沙塵暴對台灣地區空氣品質之影響與預測研討會。
張順欽、李崇德(2001)『大陸沙塵暴對台灣空氣品質影響特徵之研究』,第十八屆空氣污染控制技術研討會。
黃瓊慧(2001)『台灣地區大氣氣膠特性之研究—台北高雄地區單顆粒氣膠與混合相氣膠污染來源推估』,國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2002-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明