博碩士論文 89326014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.218.38.67
姓名 鄭欽仁(Chin-Jen Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 下水污泥灰發泡混凝土之輕質化與隔熱特性研究
(Investigating the lightweight characterization and heat-insulating efficiency of foaming concrete made of sewage sludge ash)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
台灣地區因衛生下水道平均普及率僅6.5%,政府乃積極提出「污水下水道發展方案」,預計2003年將日產180,000m3污泥,如此龐大污泥的處理與處置,將形成環保上棘手且迫切的問題。本研究基於廢棄物資源化之目的,以八里初級污水處理廠與台北市民生二級污水處理廠之下水污泥焚化灰渣為主體材料,添加水泥及金屬發泡劑產生發泡反應,以拌製污泥灰發泡混凝土。針對材料之物理性質及化學組成,探討污泥灰料源對於發泡混凝土之產製配比、輕質化與熱傳等工程性能,以及微觀組織之影響;並以鋁粉與廢五金粉做為金屬發泡劑,比較二者對發泡特性之影響。最後,綜合評估污泥灰發泡混凝土之反應機制、輕質化與隔熱性能受配比變數之影響程度與關聯性,並提出使用策略與建議。
由研究結果顯示,就高分子系污泥而言,初級廠污泥之灰份高於二級廠污泥,而其含水率則呈相反,故初級廠污泥的灰渣製備較具經濟性;而初級廠及二級廠之污泥灰比表面積分別為4,657 m2/kg及10,193 m2/kg,污泥灰細度對漿體之工作性產生顯著影響;就污泥灰之化學組成而言,初級廠污泥灰之SiO2含量高於二級廠約19.82%,而P2O5含量前者低於後者約11.78%,其餘化學成分相近;初級廠污泥灰之卜作嵐活性高於二級廠污泥灰;污泥灰發泡混凝土之體比重低於1.2以下,符合輕質化之要求;而污泥灰發泡混凝土藉金屬發泡劑之發泡產氫反應,形成以大於1μm為主之多孔結構體,初級廠與二級廠之孔隙率分別為51.28 ~71.17%及53.62 ~72.54%,高孔隙率造成低熱傳導率,其熱傳導率分別為0.0880 ~0.2507 W/m-oK及0.0763 ~0.1510 W/m-oK。因此,就輕質化與隔熱性能而言,初級廠污泥灰劣於二級廠;但就經濟性而言,初級廠污泥灰優於二級廠。
摘要(英) Abstract
As the current percentage of the national population served by a sewer system in Taiwan is as low as 6.5%, a "National Development Sewer System Plan" has been launched, aimed at pushing forward sewer system development on the island. Pursuant to this development plan, it is estimated that by the years 2003 and 2009, the national average served by sewer systems should reach 15% and 33%, respectively, generating an estimated 180,000 m3/day and 400,000 m3/day of sewage sludge to be disposed of, which is expected to have significant impact on the environment. From the viewpoint of substantial waste management, zero-discharge for MSW incinerators, and the add value of the recovery of waste for green products, the resource and recovery of sewage sludge ash, for producing lightweight foaming concrete,should be a feasible and novel alternative.
This study investigates the feasibility of producing foaming concrete as an insulator, using sewage sludge ash as a main component, and evaluates its heat-insulating efficiency. The work focuses on the characterization of the sewage sludge ash, the mix design, the bloating mechanism, and the heat-transfer properties of the sludge-ash-based insulator. Sewage sludge cakes were collected from the Bali and Minsheng sewage treatment plants (STPs) respectively, representing a typical primary and a secondary STP. The sludge cake was first incinerated at 900℃ to produce ash. Aluminum powder was used as a foaming agent, combined with pulverized scrap ( more than 90% Aluminum) small amount of OPC was used as a binder.
The characterization of the main components of the sludge ash indicate that, for sludge cakes with polymers, the ash content of the primary sludge ash(PSA) was higher than that of the secondary sludge ash(SSA), whereas the relationship was reversed for the water content. The specific surface areas of the PSA and SSA were 4,657 m2/kg and 10,193 m2/kg respectively, showing the greater fineness of the effect of sludge ash on the workability of the pastes. In general, the PSA has higher SiO2 content but lower P2O5 content than the SSA, whereas the other components were about equal to each other. Furthermore, the PSA had higher pozzolanic activity than did the SSA. These results suggest the greater economic feasibility of recycling PSA rather than SSA.
Various mix designs were tested showing that the sludge-ash-based foaming concrete had a specific gravity of less than 1.2, meeting the ASTM for lightweight concrete(LC). The foaming mechanism was mainly due to hydrogen gas being by the reaction of aluminum with hydroxyl radicals, generated by the hydration of the cement. The cellular structure was solely composed of micro pores about 1μm in diameter.
LC samples prepared according to the mix design adopted in this study showed a porosity distribution ranging from 51% to 71% for PSA-based LC, and 54% to 63% for SSA-based LC. The higher porosity of the latter resulted in a lower heat transfer(0.0880-0.2507 W/m-oK) compared to that of the former(0.0763-0.1510 W/m-oK). Therefore it is suggested that the SSA-based LC should outperform PSA-based LC in heat-insulating efficiency.
It can be concluded, from the results of this study, that PSA is more economically feasible than SSA, whereas the SSA based LC showed better heat-insulating performance than did PSA- based LC.
關鍵字(中) ★ 下水污泥灰
★ 金屬發泡劑
★ 發泡混凝土
★ 熱傳導率
關鍵字(英) ★ lightweight concrete
★ metallic foaming agent
★ sewage sludge ash
★ heat transfer
論文目次 目錄
第一章 前言 1
1-1 研究緣起 1
1-2 研究內容 3
第二章 文獻回顧 5
2-1 下水污泥之處理與處置 5
2-1-1 下水污泥之產量推估 6
2-1-2 下水污泥之種類與特性 7
2-1-3 下水污泥之處理與處置方法 13
2-2 下水污泥資源化之潛力與方法 17
2-2-1 污泥資源化之潛力 17
2-2-2 下水污泥資源化方式 18
2-2-3 下水污泥灰之組成與特性 23
2-2-4 下水污泥灰之資源化方式 25
2-3 污泥灰發泡混凝土之反應行為 39
2-3-1 水化作用 39
2-3-2 卜作嵐特性 45
2-3-3 發泡反應 49
2-4 輕質混凝土之膨化機制與工程特性 51
2-4-1 輕質混凝土之發展與應用 51
2-4-2 輕質混凝土之膨化反應機制 57
2-4-3 輕質混凝土之工程性質與微觀結構 58
2-5 隔熱混凝土之熱傳機制與熱傳性質 64
2-5-1 熱對流與熱輻射 64
2-5-2 熱傳導之理論與機制 66
2-5-3 熱傳導之量測方法 69
2-5-4 隔熱材料之特性與選用 72
2-5-5 隔熱材料之熱傳影響因子 76
第三章 實驗材料與方法 79
3-1 實驗流程 79
3-2 實驗材料與設備 81
3-2-1 污泥來源 81
3-2-2 污泥灰製備 84
3-2-3 其他摻料 84
3-2-4 實驗設備 85
3-3 實驗配置 90
3-3-1 污泥灰發泡混凝土之配比與試體編號 90
3-3-2 發泡產氣收集與分析 92
3-3-3 熱傳導試驗 93
3-4 實驗操作與分析方法 93
3-4-1 實驗操作 93
3-4-2 分析方法 94
第四章 結果與討論 102
4-1組成材料之基本特性 102
4-1-1 下水污泥之基本特性 102
4-1-2 下水污泥灰之物理特性分析 104
4-1-3 下水污泥灰之重金屬總量與溶出特性分析 107
4-1-4 下水污泥灰之化學組成與物種型態 108
4-1-5 水泥與金屬發泡劑之基本性質分析 112
4-2 污泥灰發泡混凝土之發泡特性與反應行為 114
4-2-1 污泥灰成份與發泡特性 114
4-2-2 發泡反應與產氣分析 118
4-2-3 發泡均勻性分析 121
4-2-4 孔隙結構分析 124
4-3 污泥灰發泡混凝土之工程特性與微觀結構 131
4-3-1 吸水率 132
4-3-2 密度與體比重 137
4-3-3 抗壓強度 143
4-3-4 晶相物種與微觀結構 149
4-4 污泥灰發泡混凝土之熱傳特性 155
4-4-1 污泥灰成份與熱傳導特性 155
4-4-2 材料配比與熱傳導特性 156
4-4-3 工程性質與熱傳導特性 161
4-4-4 孔隙結構與熱傳導特性 163
第五章 結論與建議 165
5-1 結論 165
5-2 建議 169
參考文獻 171
附錄 177
參考文獻 參考文獻
1.歐陽嶠暉,「下水道工程學」,長松出版社,1995。
2.曾昭衡、曾廣銓,「環境工程概論」,高立圖書有限公司,1995。
3.歐陽嶠暉,「台灣下水道發展策略」,台灣下水道協會,2001。
4.李公哲,「水質管理之原理」,大學圖書,1984。
5.日本下水污泥資源利用協議會,「下水污泥之建設資材利用」,建設省都市局下水道部監修,1991。
6.日本下水道協會,「下水道維持管理指針」,抽水機場、處理場設施編,1991。
7.Remigius Egwuonwu Okoli, George Balafoutas, “Landfill Sealing Potentials of Bottom Ashes of Sludge Cakes”, Soil and Tillage Research Volume 46, p.307~341, 1998.
8.依日光,「污泥處理工學」,復漢出版社,1999。
9.日本下水道實務研究會,「新下水道事業」,第6卷,1999。
10.大嵨吉雄、增田隆司、白石隆,「下水污泥的建設資材利用及實用化相關調查」,pp.195-206,1989。
11.Galandak, J. , and Racstain, M. , “Design Consideration for Pyrolysis of Municipal Sludge.” , J. Water Pollut. Control Fed. 1979 , 51(2) , pp.370-377.
12.Butner, R. S., Sealock, L. J., and Elliott, D. C. , “Development of Water Slurry Gasification System for High-Moisture Biomass.” , Biotechnol. Bioengr. Symp. 1985 , 15 , pp.3-16.
13.Bridle , T.R. , “Sludge Derived Oil:Wastewater Treatment Implication.” , Environ. Technol. Lett. 1982 , 3 , pp.151-156.
14.歐陽嶠暉,「都市污水處理場之污泥處理與資源化再利用之研究」,內政部營建署委託研究計劃,1998。
15.M. A. Aziz and Lawrence C. C. Koe , “Potential Utilzation of Sewage Sludge.” , Water Science and Technology 1990 , vol.22 , ISS.12 , pp.277-285.
16.胡光復,「下水污泥焚化灰渣資源化再利用計畫」,復興學報,pp.67~72,1999。
17.Chesener, W.H. , “Ash Utilization : An Overview of Engineering, Environmental, Economic and Institutional Issues” in Proceedings of the First International Conference on Municipal Solid Waste Combustor Ash Utilization 1998 , UAS, pp.1~14.
18.Anlysis of Sludge Ash for Use in Asphalt Concrete ,Fertilizer and Other Products.” Publication No.12-82-103, Enviroscience Inc. Minneapolis, Oct. 1982, p.Ⅲ.
19.Kato, H. and Takesue, M. , “Manufacture of Artificial Fine Lightweight Aggregate from Sewage Sludge by Multi-Stage Stream kiln.” , Int. Conf. of Recycling 1984 , Berlin , Germany , pp.459.
20.Elins, B.V., Wilson, G.E. and Gersberg, R.M., “Complete Reclamation of Wastewater and Sludge.” , Water Sci. Tech. 1985 , 17 , pp.1453-1454.
21.St. George, M. , “Concrete Aggregate from Wastewater Sludge.” , J. Concrete Int. 1986 , 8 , pp.27-30.
22.Javed I. Bhatty and Kenneth J.Reid ,”Compressive Strength of Municipal Sludge Ash Mortars.” , ACI Materials Journal 1989 , July-August , no. 86-M34.
23.Joo-Hwa Tay and Woon-Kwong Yip ,”Sludge Ash As Lightweight Concrete Material” ,ASCE J. of Environmental Engineering 1989, Vol. 115, No. 1, pp. 56-64.
24.Bhatty, J.I., and Reid, K.J , “Moderate Strength Concrete from Lightweight Sludge Ash Aggregates.” , Cement Composites and Lightewight Concrete 1989 , 11 , pp.179-187.
25.Bhatty, J.I., Malisci, A., Iwasaki, I. And Reid, K.J. , “Sludge Ash Pellets as Course Aggregates in Concrete.” , Cement,Concrete and Aggregates 1992, CCAGDP , 14(1) , pp.55-61.
26.Yip, W.K. and Tay, J.H. , “Aggregate Made from Incinerated Sludge Residue.” , J. Materials in Civ. Eng. 1990 , Div. , ASCE , 2(2) , pp.84-93.
27.Tay, J.H. and Show, K.Y. , “Properites of Cement Made from Sludge.” , J. Env. Eng. Iv. 1991 , ASCE , 117(2) , pp.236-246.
28.Khanbilvardi, R. and Afshari, S. , “Sludge ash as fine aggregate for concrete mix.” , J. Env Eng. Div. 1995 , ASCE , 121(9), pp.633-638.
29.P.J. Wainwriht and D.J.F. Cresswell , “Synthetic Aggreates from Combustion Ashes Using an Innovative Rotary Kiln.” , Waste Management 2001 , 21 , pp.241-246.
30.Joo-Hwa Tay , “Properties of Pulverized Sludge Ash Blended Cement.” , ACI Material Journal 1987 , September-October , pp.358-364.
31.Joo-Hwa Tay , “Sludge Ash as Filler for Portland Cement Concrete.” , Journal of Environmental Engineering 1987 , Vol.113 , No.2 , April ,pp.345-351.
32.Donald J. Lisk , “Compressive Strength of Cement Containing Ash from Municipal Refuse or Sewage Sludge Incinerators.” , Environmental Contamination and Toxicology 1989 , 42 , pp.540-543.
33.Pinarli V. & Emre N.k., “Constructive Sludge Management-Reutilization of Municipal Sewage Sludge in Portland Cement Mortars.” , Environ. Tech. 1994 , 14 , pp.833-841.
34.J. Monzo, J. Paya, M.V. Borrachero and A. Corcoles , “Use of Sewage Sludge Ash(SSA)-Cement Admixtures in Motars.”, Cement and Concrete Research 1996 , Vol. 26 , No.9, pp. 1389-1398.
35.Tay, J.H. and Show, K.Y. , “Resource Recovery of Sludge as a Building and Construction Material-A Future Trend in Sludge Management.” , Wat. Sci. Tech. 1997 , Vol.36 , No.11 , pp.259-266.
36.J. Monzo, J. Paya, M.V. Borrachero , E.Peris-Mora , “Mechanical Behavior of Mortars Containing Sewage Sludge Ash (SSA) and Portland Cement with Different Tricalcium Aluminate Content.” , Cement and Concrete Research 1999 , vol.29 , pp.87-94.
37.S.P. Pandey , R.L. Sharma , “The Influence of Mineral Additives on The Strength and Porosity of OPC Mortar.” , Cement and Concrete Research 2000 , 30 , pp.19-23.
38.Shaw, T. , “Improvement in Utilizing The Waste Produced From Sewage Words for The Manufacture of Bricks , Tiles , Quarries , Building Blocks , Slabs , and The Like.” , United Kingdom Patent 1889 , No.12 , p.623.
39.Tay, J.H , “Sludge and Incimerator Residue as Building and Comstruction Materials.” , Proc. Interclean’84 Conf. 1984 , Singapore , pp.252-261.
40.Tay, J.H , “Sludge as Brick Making Material.” , Proc.on New Directions and Research in Waste Treatment and Residual Management 1985 , Vancouver , Canada , 2 , pp.661-688.
41.Tay, J.H. , “Bricks Manufactured from Sludge.” , J. Env. Eng. Div. 1987 , ASCE , 113(2) , pp.278-283.
42.Alleman. J.E. and Berman, N.A. , “Construcrtive Sludge Management: Biobrick” , J. Env. Eng. Div. 1984 , ASCE , 110(2) , pp.301-311.
43.Slim, J.A. and Wakefield, R.W. , “The Utilization of Sewage Sludge in The Manufacture of Clay Bricks” , Water Sci. Tech. 1991 , 17 , pp.197-202.
44.Trauner, E.J. , “Sludge Ash Bricks Fired to Above and Below Ash-Vitrifying Temperature” , J. Env Eng. Div. 1991 , ASCE , 119(3) , pp.506-519.
45.Michael Anderson , R. Glynn Skerratt , Julian P. Thomas and Stephen D. Clay , “Case Study Involving Using Fluidised Bed Incinerator Sludge Ash as a Partial Clay Substitute in Brick Manufacture” , Wat. Sci. Tech. 1996 , Vol.34 , pp.507-515.
46.Bernd Wiebusch and Carl Franz Seyfired , “Utilization of Sewage Sludge Ashes in The Brick and Tile Industry” , Water Science Technology 1997, Vol.36 , No.11 , pp.251-258.
47.余岳峰,「下水污泥焚化灰渣燒成輕質骨材特性之研究」,國立中央大學環境工程研究所碩士論文,2000。
48.Remigius Egwuonwu Okoli, George Balafoutas, “Landfill Sealing Potentials of Bottom Ashes of Sludge Cakes”, Soil and Tillage Research , 1998,Volume 46, p.307~341.
49.Woon-Kwong Yip , “Aggregate Made from Incinerated Sludge Residue”, Journal of Materials in Civil Engineering 1990 , Vol.2, No. 2 , pp.84~93.
50.J. Hsrtlen , “Utilization of Incinerator Bottom Ash-Legal, Environmental and Engineering Aspects”, Waste Materials in Construction, Elsevier Science Publichers 1991.
51.廖錦聰、張蕙蘭、徐文慶、黃契儒,「垃圾焚化底渣的資源化利用」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集1996,pp.131-146。
52.J. Francis Young, Sidney Mindess, Robert J. Gray, Arnon Bentur,”The Science and Technology of Civil Engineering Materials”, Prentice Hall, 1999.
53.沈永年,「高性能混凝土水化作用機理之研究」,國立台灣科技大學營建工程所博士論文,1997年7月。
54.黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,國立中央大學環境工程研究所碩士論文,2000。
55.Metha. P.K., “Concrete-Structure, Material, and Properties”, Prentice Hall, Englishwood Cliffs, N.2, 1986.
56.Diamond, S., D. Ravina and J. Lovell, “The Occurrence of Duplex Vol.10, No.2, PP.297~301.
57.Chatterji, S., “Pozzolanic Property of Natrual and Synthtic Pozzolans: A Compartive Study”, 1983, ACI SP-79, pp.221~226.
58.Dent Glasser, L.S., “A Multi-Method Study if C3S Hydration”, Cement and Concrete Resrearch , 1978, No.6, pp.733~740.
59.林銅柱、沈得縣,「高性能混凝土耐火性能之探討」,內政部建築研究所籌備處專題研究計畫,1995年6月。
60.黃兆龍,「混凝土品質保證、檢驗與制度」,薝式書局,1997。
61.J. Pera, L. Coutaz, J. Ambroise, and M. Chababbet, “Use of Incinerator Bottom Ash in Concrete”, Cement and Concrete Research. , 1997, Vol.27. No.1, pp.1-5.
62.王弟文,「下水污泥焚化灰製造發泡輕質混凝土之研究」,國立中央大學環境工程研究所碩士論文,2001。
63.潘存真、顏聰,「輕質骨材之級配條件對輕質混凝土強度及隔熱性之影響」,國立中興大學土木工程研究所碩士論文,1993。
64.許讚全、劉昌民、吳天化、郭淑德,「飛灰與廢電石渣混合做發泡輕質磚之可行性研究」,台灣電力公司研究報告,1990。
65.高健章、沈進發、陳式毅、陳朝和、黃兆龍 等,「輕質混凝土在國內發展之研究」,內政部建築研究所籌備處專題研究計畫,1993,6月。
66.嚴定萍、雷明遠、陳俊勳,「建築材料熱傳導測試基準」,內政部建築研究所專題研究計畫,1997,6月。
67.郭廣德,「酚醛樹脂發泡材料之隔熱性能研究」,國立中央大學機械工程研究所碩士論文,2000。
68.Incropera.DeWitt,”Fundamentals of Heat and Mass Transfer 4/e”,Wiley,1996。
69.宋佩瑄、黃馨,「土木工程材料學」,大中國圖書公司,1997。
70.日本熱物性學會,”Thermophysical Properties Handbook”,養賢堂,1990。
71.黃忠良編著,「多孔材料學—結構與性質、理論與應用」,復漢出版社,1990。
72.林銅柱,「鋼筋混凝土結構物耐火設計研習會演講稿」,國立台灣工業技術學院,1987。
73.Harmathy, T.Z. and Allen, L.W. , “Thermal Properties of Selected Masonry Unit Concrete” , Journal of the American Concrete Institute , 1973 , vol,.70。
74.錢之榮、范應舉,「耐火材料實用手冊」,冶金工業出版社,北京,1996。
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2002-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明