博碩士論文 83321014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.188.110.150
姓名 賴仁杰(Jen-Chieh Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 封閉區間內多孔熱源陣列之數值模擬
(Simulation of porous thermal array in a enclosure)
相關論文
★ 溶膠-凝膠法製備奈米複合材料暨光子晶體之研究★ 薄膜氣體吸收系統的解析解與實驗之研究
★ 多孔質熱源於封閉區間兩側散熱之自然對流★ 封閉區間內柱狀多孔質熱源之自然對流系統
★ 多孔質中水平絕熱板結合線熱源熱傳與等質通量壁質傳之混合對流★ 噴流或吸流對共軛熱傳的影響
★ 多孔質中結合熱傳與質傳之非達西混合對流★ 傾斜板在多孔質中結合熱傳與質傳之自然對流
★ 多孔質中結合線熱源熱傳與等質通量質傳之非達西混合對流★ 偶氮系光敏感化合物合成及甲基丙烯酸酯系感光性高分子正、負型光阻製備與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文應用計算流體力學軟體FIDAP分析圓形封閉區間內,五個圓形多孔熱源排成十字陣列的物理系統。此系統的流場及溫度場之重要參數有:代表熱源發熱量與浮力大小的雷立數;描述多孔質疏密狀態的達西數;以及表示多孔熱源與流體熱傳導係數差異的有效熱傳導係數比。從本研究的結果顯示:系統內的對稱流場隨雷立數增大,於對稱區間內的右上區域均形成順時針流動之雙環流結構。從溫度場可以看出:在低雷立數係均勻向周邊等溫壁面散熱;然在高雷立數時,則熱源所引發浮力效應增強,轉變為經由封閉區間上方散熱。而達西數越大則表示多孔質可透度越大,對於流體區內之流動強度的影響越小。因此改變達西數,對於所有封閉區間的狀態皆有影響。當有效熱傳導係數比增為100時,溫度場結構呈現急遽且均勻的熱量散失狀態,同時促使流場內的雙環流結構更加明顯。
關鍵字(中) ★ 封閉區間
★ 多孔質
關鍵字(英) ★ porous media
★ enclosure
論文目次 目錄
目錄 I
圖目錄 III
表目錄 VI
符號說明 VII
第一章 緒論 1
1-1研究飽和多孔質內部流動的重要性 1
1-2飽和多孔質內部流體的流動形式 1
1-3封閉區間內嵌多孔質之文獻回顧與研究動機 5
1-4本論文的研究方向 6
第二章 系統描述與理論分析 8
2-1系統描述 8
2-2基本假設 8
2-3系統方程式 10
2-4無因次化 13
第三章 數值方法 16
3-1前言 16
3-2計算流體力學CFD的處理程序 17
3-2-1前處理程序 (Pre-processing) 17
3-2-2計算處理程序 (Processing) 18
3-2-3後處理程序(Post-processing) 19
3-3 FIDAP的限制條件 23
3-4 研究的硬體平台與相關設定 25
第四章 結果與討論 26
4-1 系統參數值 26
4-2 固定達西數Da為10-2,逐漸增強雷立數 28
4-2-1 固定多孔質與流體熱傳導係數比值λ= 1.0 28
4-2-2 固定多孔質與流體熱傳導係數比值λ= 10.0與100.0 29
4-3 固定達西數Da為10-6,逐漸增強雷立數 32
4-3-1 固定多孔質與流體熱傳導係數比值λ= 1.0 32
4-3-2 固定多孔質與流體熱傳導係數比值λ= 10.0與100.0 33
4-4 固定雷立數Ra = 10000,逐漸減小達西數 33
4-4-1 固定多孔質與流體熱傳導係數比值λ= 1.0 34
4-4-2 固定多孔質與流體熱傳導係數比值λ= 10.0與100.0 35
第五章 綜合結論與未來延續之工作 61
5-1 綜合結論 61
5-2 未來延續之工作 62
參考文獻 64
參考文獻 參考文獻
1. K. J. Scheidegger, The Physics of Flow through Porous Media, University of Toronto Press, Toronto, 1974.
2. A. Bejan and J. L. Lage, Convective Heat and Mass Transfer in Porous Media, Kluwer Academic, Dordrecht, 1991.
3. M. Kaviany, Principles of Heat Transfer in Porous Media, Springer, New York, 1995.
4. K. Vafai, H.A. Hadim, Handbook of Porous Media, Marcel Dekker, New York, 2000.
5. D. Nield, A. Bejan, Convection in Porous Media, Springer, New York, 1999.
6. H. J. Weinitschke, K. Nandakumar and S. Ravi Sanker, “A bifurcation study of convective heat transfer”, Phys. Fluid A , 2, 912-921 (1990).
7. H. Viljoen and V. Hlavacek, “Chemically driven convection in a porous medium”, A.I.Ch.E. J., 33, 1344-1350 (1987).
8. S. Subramanian and V. Balakotaiah, “Mode interactions in reaction-driven convection in a porous medium”, Chem. Engng. Sci., 50, 1851-1866 (1995).
9. D. Poulikakos, “Double-diffusive convection in a horizontally sparsely packed porous layer”, Int. Commun. Heat Mass Transfer, 13, 587-598 (1986).
10. F. Alavyoon, Y. Masuda and S. Kimura, “On natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls”, Int. J. Heat Mass Transfer, 37, 195-206 (1994).
11. M. Mamou, P. Vasseur and E. Bilgen, “Multiple solution for double-diffusive convection in a vertical porous enclosure”, Int. J. Heat Mass Transfer, 38, 1787-1798 (1995).
12. J. Pallares, I. Cuesta, F. X. Grau and F. Giralt, “Natural convection in a cubical cavity heated from below at low Rayleigh numbers”, Int. J. Heat Mass Transfer ,39, 3233-3247 (1996).
13. Y. F. Rao and B. X. Wang, “Natural convection in vertical porous enclosures with internal heat generation”, Int. J. Heat Mass Transfer, 34, 247-252 (1991).
14. J. J. Royer and L. Flores, “Two-dimensional natural convection in an anisotropic and heterogeneous porous medium with internal heat generation”, Int. J. Heat Mass Transfer, 34, 1387-1399 (1994).
15. K. Vafai and R. Thiyagaraja, “Analysis of flow and heat transfer at the interface region of a porous medium”, Int. J. Heat Mass Transfer, 30, 1391-1405 (1987).
16. C. Beckermann, R. Viskanta and S. Ramadhyani, “Natural convection in vertical enclosures containing simultaneously fluid and porous layers”, J. Fluid Mech., 186, 257-284 (1988).
17. F. Chen and C. F. Chen, “Convection in superposed fluid and porous layers”, J. Fluid Mech., 234, 97-119 (1992).
18. S. J. Kim and C. Y. Choi, “Convective heat transfer in porous and overlaying fluid layers heated from below”, Int. J. Heat Mass Transfer, 39, 319-329 (1996).
19. T. Nishimura, T. Takumi, M. Shiraishi, Y. Kawamura and H. Ozoe, “Numerical analysis of natural convection in a rectangular enclosure horizontally divided into fluid and porous regions”, Int. J. Heat Mass Transfer, 29, 889-898 (1986).
20. D. Poulikakos, “Thermal instability in a horizontal fluid layer superposed on a heat-generating porous bed”, Numer. Heat Transfer”, 12, 83-99 (1987).
21. G. Neale and W. Nader, “Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium”, Can. J. Chem. Engng., 52, 475-478 (1974).
22. 陳耀漢, 發熱多孔質在密閉區間中之多重穩態自然對流, 中央大學化學工程研究所博士論文 (1997).
23. K. Vafai and S. J. Kim, “On the limitations of the Brinkman-Forchheimer-extended Darcy equation”, Int. J. of Heat Fluid Flow, 16, 11-15 (1995).
24. T. D. Papathanasiou, B. Markicevic and E. D. Dendy, “A computational evaluation of Ergun and Forchheimer equations for fibrous porous media”, Physics Fluid, 13, 2795-2804 (2001).
25. R. M. Wu and D. J. Lee, “Hydrodynamic drag force extend on a moving floc and its implication to free-settling tests”, Wat. Res., 32, 760-768 (1998).
26. Pavel B. Nedanov and Suresh G. Advani, “Numerical computation of fiber perform permeability tensor by the homogenization method”, Polymer composites, 23, 758-770 (2002).
27. B. Markicevic and T. D. Papathanasiou, “A model for the transverse permeability of bi-material layered fibrous performs”, Polymer composites, 24, 68-82 (2003).
28. T. D. Blacker, M. B. Stephenson and S. Canann, “Analysis automation with paving: a new quadrilateral meshing technique,” Adv. Engng. Software, 13, 332-337 (1991).
29. T.D. Blacker and M.B. Stephenson, “Paving: a new approach to automated quadrilateral mesh generation,” Int J. Numer. Methods Engng., 32, 811-847 (1991).
30. M. Yao and H. de Groh III, “Three-dimensional finite element method simulation of Bridgman crystal growth and comparison with experiments,” Numer. Heat Transfer- Part A, 24, 393-412 (1993).
31. C. Beckermann, S. Ramadhyani, and R. Viskanta, "Natural convection flow and heat transfer between a fluid and a porous layer inside a rectangular enclosure," ASME J. Heat Transfer, 109, 363-370 (1987).
32. M. Song and R. Viskanta, "Natural Convection Flow and Heat Transfer within a Rectangular Enclosure Containing a Vertical Porous Layer", Int. J. Heat Mass Transfer, 37, 2425-2438 (1994).
33. G. R. Hadley, “Thermal Conductivity of Packed Metal Powders, ” Int. J. Heat Mass Transfer, 29, 909-919 (1986).
34. P. Cheng and C. T. Hsu, “Heat Conduction, ” D. B. Ingham and I. Pop, eds., Transport Phenomena in Porous Media, Pergamon, Elsevier Science Ltd. p. 57 (1998)
35. I. Nozad, R.G. Carbonell and S. Whitaker, “Heat conduction in multi-phase System I: theory and experiments for two-phase systems, ” Chem. Engng. Sci., 40, 843-855 (1985).
指導教授 林孝宗(Shaw-Chong Lin) 審核日期 2004-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明