博碩士論文 93326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.129.211.116
姓名 劉原良(Yuan-Liang Liu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 生質燃燒與非生質燃燒期間台灣中部高山氣膠及其前驅氣體特性變化
(The characteristic variation of alpine aerosol and trace gas in middle Taiwan during biomass and non-biomass burning period)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 每年3~5月是東南亞生質燃燒最活躍的季節,在這個地區會有大規模的農廢和森林燃燒,產生大量的氣體與氣膠。這些生質燃燒產生的氣膠經由氣團傳輸會影響到下風地區的空氣品質。台灣位於氣團傳輸的下風地區,是觀測東南亞生質燃燒的適當地點,為了避免周遭環境污染物的干擾,本文從2005年8月至2006年4月在海拔2,862公尺鹿林山進行大氣氣膠觀測,研究期間涵括生質燃燒事件日與平常日,足以比較長程傳輸生質燃燒與背景氣膠氣膠特性的差異。
結果顯示:在非生質燃燒期間,鹿林山的PM2.5質量濃度有明顯的四季變化,夏季濃度最高,平均濃度達7.9 µg m-3,秋季濃度最低,平均濃度為4.1µg m-3。氣膠水溶性離子成分,四季均以硫酸鹽和銨根離子為主;氣膠碳成分則以有機碳為優勢物種;各溫度下有機碳成分是以較低溫度揮發的OC1~OC3為主;元素碳則是以較低溫度揮發的EC2所佔比例較大。氣膠的氣體前驅物,四季均以氨氣為優勢物種;氨氣和銨根離子所佔比例接近。
在生質燃燒期間,鹿林山氣流軌跡源自生質燃燒源區時,氣膠質量濃度明顯較非生質燃燒期間為高。氣膠離子成分以硫酸鹽、硝酸鹽、銨根離子和鉀離子為優勢物種;氣膠碳成分明顯較高,有機碳平均濃度為2.1μg m-3,且以OC3為主,元素碳平均濃度為0.8 μg m-3,且以EC1-OP為優勢物種。氣膠的氣體前驅物同樣以氨氣為優勢物種,二次污染物以硫酸鹽較多,生質燃燒指標物種左旋葡萄糖(levoglucosan)和二元酸平均濃度分別為10.4 ng m-3和244.8 ng m-3均較背景觀測時為高。
為了比較新鮮和傳輸一些距離生質燃燒氣膠成分的差異,本文收集稻草在農田進行焚燒並收集分析氣膠特性。結果發現近污染源以細氣膠為主,氣膠碳成分濃度佔質量濃度超過50%,且有較高濃度的鉀離子和氯離子;污染源下風處的短程傳輸氣膠也是以細氣膠為主,有較高的鉀離子和有機碳成分。新生氣膠離子結合型態為氯化鉀,短程傳輸氣膠結合型態則以硫酸鉀或硝酸鉀為主。
在夏季觀測期間鹿林山常在中午過後,雲霧由山腰逐漸飄上來籠罩在整個地區。本文收集分析雲霧間隙氣膠,發現質量濃度較背景觀測時高,PM2.5平均濃度為15 μg m-3,氣膠水溶性離子成分以硫酸鹽和銨根離子為優勢物種;碳成分則是以元素碳增加較多。
摘要(英) Biomass burning in South East Asia is active from March to May every year. Massive burning of agricultural wastes and deforestation generate a great amount of gaseous and aerosol species. The generated pollutants from biomass burning can influence the air quality in the downwind areas through long-range transport. Taiwan is located in the downwind side of air masses transported from the burning area and is an appropriate place for transported pollutants. To avoid the interference from local pollution sources, this study collects atmospheric aerosol at Lu-Lin mountain (2,862 m a.s.l) site from August 2005 to April 2006. The study period includes biomass burning events and background observations. This will provide an in-depth contrast for transported biomass burning aerosol and background aerosol.
The results show that a distinctive variation of PM2.5 in different seasons is observed for non-biomass burning period. An average of PM2.5 at 7.9 µg m-3 in summer is the highest and a value of 4.1µg m-3 in autumn is the lowest. In all seasons, PM2.5 sulfate, PM2.5 ammonium ion, and PM2.5 organic carbon (OC) are the dominant species. For aerosol carbon fractions evolved from different temperatures, OC1, OC2 and OC3 are the predominant OCs; while EC2 is the major component among elemental carbons (ECs). Ammonia is found the dominant precursor gas with mixing ratio closes to ammonium ion.
Aerosol mass concentration transported from biomass burning area is observed significantly higher in the burning events than in the non-burning background. Sulfate, nitrate, ammonium ion, and potassium ion are major species in the resolved water-soluble ions. Aerosol carbon is higher in the event with an average OC value of 2.1μg m-3 dominated by OC3. In addition, the average of EC is at 0.8 μg m-3 with EC-OP as the dominant fraction. Ammonia again is the dominant species in aerosol precursor gases and sulfate is the most abundant aerosol species in the biomass burning event. The averages from aerosol levoglucosan and dicarboxylic acids, the known biomass burning tracers, are 10.4 ng m-3 and 244.8 ng m-3, respectively. They both are higher in biomass burning period than background time.
For the comparison of aerosol properties from freshly burnt and that transported from the source for some distance, this study conducts rice straw burning in the field and collects aerosol for analysis. The aerosol collected near the source is dominated by PM2.5 with more than 50% of carbon in aerosol mass and is abundant of potassium and chlorine ions. Moreover, the fresh burnt aerosol is rich in the compound form of potassium chloride. In contrast, this compound is converted into potassium sulfate and potassium nitrate after a short distance of transport.
Cloud and fog are frequently moved up from lower elevation to cover the site in the summer afternoon. The interstitial aerosol is collected without the mix of fog or cloud droplets. The PM2.5 average from this collection is at 15 μg m-3, which is higher than the value in the background observation. Sulfate and ammonium ions are the dominant water-soluble ions and EC is more enhanced than OC in aerosol carbons.
關鍵字(中) ★ 雲霧間隙氣膠
★ 高山測站
★ 生質燃燒
★ 高山氣膠
關鍵字(英) ★ Elevated observation site
★ Biomass burning
★ Mountain aerosol
★ Cloud interstitial aerosol
論文目次 目錄
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 5
2.1 氣膠的特性與來源 3
2.1.1 氣膠的類型、來源及粒徑大小 3
2.1.2 氣膠化學特性 5
2.1.3 氣體特性 13
2.2 高山氣膠和氣體特性 14
2.2.1 高山氣膠特性 14
2.2.2 高山氣體特性 19
2.3 雲霧氣膠特性 21
2.4 生質燃燒 22
2.4.1 生質燃燒的來源 22
2.4.2 生質燃燒過程 23
2.4.3生質燃燒氣體特性 24
2.4.4生質燃燒氣膠物理特性 25
2.4.5生質燃燒氣膠化學特性 25
2.4.6亞洲污染物與生質燃燒傳輸機制 28
2.4.7燃燒煙霧氣膠長程傳輸特性 29
第三章 研究方法 31
3.1 採樣地點描述 34
3.2採樣時段與採樣儀器 36
3.2.1 人工採樣儀器 36
3.2.2 自動監測儀器 39
3.3 農廢燃燒事件現地採樣 41
3.4 樣本分析方法 41
3.4.1氣膠質量秤重分析 41
3.4.2 氣膠水溶性離子分析 42
3.4.3 氣膠碳成分分析 43
3.4.4 氣膠有機成分分析 44
3.5 氣膠污染來源及貢獻量推估 47
3.5.1 加強因子法 47
3.5.2 氯離子損失法 48
3.6 判別生質燃燒發生與其影響台灣程度的方法 52
第四章 結果與討論 55
4.1 鹿林山氣膠特性 57
4.1.1鹿林山四季測站環境與逆軌跡線描述 57
4.1.2 鹿林山四季質量濃度變化 61
4.1.3 鹿林山四季水溶性離子濃度變化 64
4.1.4 鹿林山四季氣膠碳成分變化 72
4.1.5 鹿林山四季氣體前驅物特性 77
4.1.6 鹿林山四季有機成分特性 79
4.1.7 鹿林山四季物種指標 82
4.1.8 相關研究探討 85
4.1.9 特殊事件日 89
4.2 生質燃燒氣膠特性 95
4.2.1 生質燃燒期間測站環境與逆軌跡線描述 96
4.2.2生質燃燒期間氣膠質量濃度變化 98
4.2.3生質燃燒期間氣膠水溶性離子特性 99
4.2.4生質燃燒期間氣膠碳成分分析 102
4.2.5 生質燃燒期間氣體特性 105
4.2.6生質燃燒期間有機成分特性 106
4.2.7 生質燃燒期間高山物種指標 109
4.3 生質燃燒與非生質燃燒期間氣膠特性比較 111
4.3.1 氣膠質量濃度差異 111
4.3.2 氣膠水溶性離子濃度差異 114
4.3.3 氣膠碳成分濃度差異 117
4.3.4 氣膠有機成分差異 120
4.3.5 氣體成分差異 122
4.3.6 氣膠污染來源推估 126
4.4 大氣雲霧氣膠特性 128
4.4.1雲霧間隙氣膠質量濃度特性 128
4.4.2雲霧氣膠水溶性離子濃度特性 129
4.4.3雲霧氣膠碳成分濃度特性 131
4.5 各軌跡類型氣膠特性 134
4.5.1 軌跡類型分類 135
4.5.2 不同軌跡類型氣膠質量濃度 137
4.5.3 不同軌跡類型氣膠水溶性離子特性 139
4.5.4 不同軌跡類型氣膠碳成分 142
4.5.5 不同軌跡類型氣體特性 148
4.5.6 不同軌跡類型有機成分特性 149
4.6 農廢物現地燃燒氣膠特性 151
4.6.1 採樣地點描述及天氣情況 152
4.6.2 新生氣膠 154
4.6.3 老化氣膠 159
4.6.4 新生氣膠與老化氣膠特性比較 164
第五章 結論與建議 175
5.1 結論 175
5.2 建議 179
參考文獻 181
參考文獻 姜善鑫,1991。 燃燒對氣候的影響. 科學月刊,第253期
張維嘉,2000。 台灣中部大氣氣膠特性與粒徑分布-阿里山測站案例分析。國立中興大學環境工程研究所碩士論文。
黃希爾,2004。 東亞生質燃燒對台灣高山氣膠特性的影響。國立
中央大學環境工程研究所碩士論文。
秦若鈺,2004。 大氣常見有機物分析及有機/無機混合氣膠含水特性之研究。國立中央大學環境工程研究所碩士論文。
陳鴻文,2006。生質燃燒長程傳輸對台灣中部高山氣膠特性及其指標影響。國立中央大學環境工程研究所碩士論文。
Abas, M. R., Oros, D. R., Simoneit, B. R. T., 2004. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089-1095.
Abbatt, J. P. D., Broekhuizen, K., Kumar, P. P., 2005. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmosphere Evironment, 39, 4767-4778.
Akselsson et al., 1995. “Aerosoler”. Dept. of Nuclear Physics, Lund Univerity.
Andreae, M.,1983. Soot Carbon and Excess Fine Potassium:Long-Range Transport Combustion-Derived Aerosol. Science. Vol 220, 1148-1150.
Andreae, M. O., and Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955-966.
Aneja, V. P., Roelle, P. A., Murray, G. C., Southerland, J., Erisman, J. W., Fowler, D., Asman, W. A. H., Patni, N., 2001. Atmosphere nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmosphere Evironment 35, 1903-1911.
Badar, M. G., M. Ishaq Mirza., Robert Richter., Vincent A.Dutkiewicz., Ali Rusheed., Adil R. Khan., Liaquat Husain., 2000. . Chemosphere – Global Change Science 3(2001) 51-63.
Ball, S. M., Hanson, D. R., Eisele, F. L., McMurry, P. H., 1999. Laboratory studies of particle nucleation:initial results for H2SO4, H2O, and NH3 vapors. Journal of Geophysical Research 104(D19), 23,709-23,718.
Bari, A., Ferraro, V., Lloyd R. W., Dan L., Liaquat Husain., 2003. Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Evironment 37(2003)2825-2835.
Barthelmie, R. J., Pryor, S. C., 1998. Ammonia emissions:implications for fine aerosol formation and visibility impairment. Atmospheric Evironment 32, 345-353.
Bey, I., Jacob, D. J., Logan, J. A., and Yantosca, R. M., 2001b. Asian chemical outflow to the Pacific: Origins, pathways, and budgets. Journal of Geophysical Research, 106, 23097-23114.
Bizja, M., Tursic, J., Lesnjak, M., Cegnar, T., 1998. Aerosol black carbon and ozone measurements at Mt. Krvavec EMEP/GAW station Slovenia. Atmospheric Environment 33, 2783-2787.
Boian C., Kirchhoff V. W. J. H., 2004. Measurement of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America. Atmospheric Environment 38, 6337-6347 .
Bouwman, A. F., Lec, D. S., Asman, W. A. H., Dentener, F. J., van der Hoek, K. W., Olivier, J. G. J., 1997. A Global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles 11, 561-587.
Brunke E. G., Labuschagne C., Scheel H. E., 2001 Trace gas variations at Cape Point, South Africa, during May 1997 following a regional biomass burning episode. Atmospheric Environment 35, 777-786.
Cachier, H., Liousse, C., Buat-Menard, P., and Gaudichet, A., 1995. Particulate content of savanna fire emission. Journal of Atmospheric Chemistry, 22, 123-148.
Cadle, S. H., Dash, J. M., 1998. Wintertime concentrations and sinks of Atmospheric particulate carbon at a rural location in Northern Michigan. Atmospheric Environment 22, 1373-1381.
Chang, S. G., Brodzinsky, R., Gundel, L. A., Novakov, T., 1982.Chemical and catalytic properties of elemental carbon. In: Wolff, G.T.,Klimisch, R.L. (Eds.), Particulate Carbon: Atmospheric Life Cycle.Plenum Press, New York, pp. 158-181.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, JR. J. A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science, 255, 423-430.
Chow, J. C., Watson, J. G., Lowenthal, D. H., Solomon, P. A., Maglino,K. L., Ziman, S. D., Richards, L. W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18,105-128.
Chung, S. H., Seinfeld, J. H., 2002. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res, 107,4407.
Cooke, W. F., Wilson, J.J.N., 1996. Black carbon and measurements at Mace head, 1989-1996. Journal of Geophysical Research-Atmospheres 102, 25339-25346.
Countess, R. J., Wolff, G. T., Cadle, S. H., 1980. The Denver winteraerosol: a comprehensive chemical characterization, Journal of the Air Pollution Control Association 30, 1194-1200.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282
Draxler, R. R., 1999. Hybrid single-particle lagrangian integrated trajectories: Version 0-User’s Guide. NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Sliver Spring, MD, USA.
Eldering, A., Solomon, P.A., Salmon, L.G., Fall, T., Cass, G.R., 1991. Hydrochloric Acid: a regional perspective on concentrations ad formation in the atmosphere of Southern California. Atmospheric Environment 25A, 2091-2102.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W.,and Artaxo, P., 2004. Low molecular weight organic acids in aerosol particles from Rond?nia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics Discussions, 4, 6867-6907.
Ferek, R. J., Reid, J. S., Hobbs, P. V. Blake, D. R., and Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research, 103, 32107-32118.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., and Andreae, M. O., 2003. Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative(SAFARI2000)experiment: Chemical characteristics, physical properties, and emission date for smoke from African biomass burning. Journal of Geophysical Research, 108, D13, doi:1029/2002JD002408.
Fuzzi, S., et al., 1996. The Nevalpa project: a regional network for fog chemical climatology over the Po Valley basin. Atmospheric Environment 30, 201-213
Gatari, M. J., Boman, J., Maina, D. M., 2001. Inorganic element concentrations in near surface aerosols sampled on the northwest slopes of Mount Kenya. Atmospheric Environment 35, 6015-6019.
Ghauri, B. M., Mirza, M. I., Richter, R., Dutkiewicz, V. A., Rusheed, A., Khan, A. R., Husain, L., 2000. Composition of aerosols and cloud water at a remote mountain site(2.8 km) in Pakistan. Chemosphere-Global Change Science 1, 51-63.
Gibel, H., Bernet, A., Reischl, G., Puxbaum, H., Kasper-Giebl, A., Hitzenberger, R., 2002. CCN activation of oxalic and malonic acid test aerosols with the University of Vienna cloud condensation nuclei counter. Journal of Aerosol Science 33, 1623-1634.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari. S., Facchini, M. C., Artaxo, P., Maenhaut, W., K?ll, D., and Andreae, M. O., 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS. Journal of Geophysical Research, 107(D20), 8047, doi:10.1029/2001JD000336, LBA 14, 1-16.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., Rau, J. A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Grosjean, D., 1984. Particulate carbon in the Los Angeles air. Science of
The Total Environment 32, 133-145.
Gupta, A., Kumar, R., Kumari, K. M., Srivastava, S. S., 2003. Measurement of NO2,HNO3,NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmospheric Evironment 37, 4837-4846.
Hegg, D. A., Hobbs, P. V., 1982. Measurement of sulphate production in natural clouds. Atmospheric Environment 2663-2668.
Henning, S., Weingartner, E., Schwikowski, M., G?ggeler, H. W., Gehrig, R., Hinz, K.-P., Trimborn, A., Spengler, B., and Baltensperger, U., 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch(3580m asl). J. Geophys. Res., 108, D1, 4030, doi:10.1029/2002JD002439.
Hitzenberger, R., Berner, A., Giebl H., Drobesch K., Kasper-Giebl A., Loeflund M., Urban H., Puxbaum H., 2001. Black carbon(BC) in Alpine aerosols and cloud water-concentrations and scavenging efficiencies. Atmospheric Environment 35, 5135-5141.
Hudson, J. G., 1993. Cloud condensation nuclei. Journal of Applied Meteorology 32, 596-607.
Japar, S. M., Brachaczek, W. W., Gorse, R. A., Norbeck, J. M., Pierson, W. R., 1986. The contribution of elemental carbon to the optical properties of rural atmospheric aerosols. Atmospheric Environment 20, 1281-1289.
Jeffrey, L., Collett, Jr., Aaron, B. D., Eli, S., Katharine, F., Moore, K. J., Hoag, B. B., Demoz, X. R., Jill, E. R., 2002. The chemical composition of fogs and intercepted clouds in the United States. Atmospheric Research 64, 29-40.
Kang, C. M., Lee, H. S., Kang, B. W., Lee, S. K., Sunwoo, Y., Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmospheric Environment 38 (2004) 4749-4760.
Kaneyasu, N., Yoshikado, H., Mizuno, T., Sakamoto, K., Soufuku, M., 1999. Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto plain of Japan. Atmospheric Environment 33, 1745-1756.
Kasper, A., Puxbaum, H., 1998. Seasonal variation of SO2, HNO3, NH3 and selected aerosol components at Sonnblick(3106 m a.s.l.) Atmospheric Environment 32, 3925-3939.
Kido, M., Osada, K., Matsunaga, K., Iwasaka, Y., 2001a. Diurnal variation of ionin aerosol species and water soluble gas concentration at a high elevation site in the Japan. Journal of Geophysical Research 106, 17335-17345.
Kido, M., Osada, K., Matsunaga, K., Iwasaka, Y., 2001b. Temporal change in ammonium/sulfate ratios for free tropospheric aerosols from early winter to spring at a high elevation site in the Japanese Alps. Journal of Environmental Chemistry 11, 33-41.
Kim, E., Hopke, P.K., Edgerton, E.S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349-3362.
Krivacsy, Z., Hoffer, A., Sarvari, Zs., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and black carbon in the chemical composition of atmospheric ,aerosol at European background sites. Atmospheric Environment 35, 6231-6244.
Larson, T., Koenig, J., 1993. A summary of the emissions characterization and noncancer respiratory effects of wood smoke. EPA-453/R-93-046-US EPA.
Lammel, G., Novakov, T., 1995. Water nucleation properties of carbon black and diesel soot particles. Atmospheric Environment 29, 812-821.
Lee, H. S., Kang, C. M., Kang, B. W., Kim, H. K., 1999. Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmospheric Environment 33, 3143-3152.
Levine, J. S., Bobbe, T., Ray, N., Witt, R. G., Singh, A., 1999. Wildland Fires and the Environment: A Global Synthesis. Environment Information and Assessment Technical Report, pp 46.
Li, J., Posfai, M., Hobbs, P. V., and Buseck, P. R., 2003. Individual aerosol particles from biomass burning in southern Africa:2. Composition and aging of inorganic particles. Journal Geophysical Research, 34, 9-22.
Li, S.-M., Anlauf, K. G., Wiebe, H. A., 1993. Heterogeneous night-time production and deposition of particle nitrate at a rural site in North America during summer 1998. Journal of Geophysical Research 98 (D3), 5193.
Lightowlers, P. J., Cape, J. N., 1998. Source and fate of atmospheric HCl in the UK and Western Europe. Atmospheric Environment 22, 7-15.
Liu, X. D., Van Espen, P., Adams, F., Cafmeyer, J., and Maenhaut, W., 2000. Biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry, 36, 135-155.
Loflund, M., Kasper-Giebl, A., Schuster, B., Giebl, H., Hitzenberger, R., & Puxbaum, H., 2002. Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water. Atmospheric Environment, 36, 1553-1558.
Ma, Y., Weber, R. J., Lee, Y.-N., Orsini, D. A., Maxwell-Meier, K., Thornton, D. C., Bandy, A. R., Clarke, A. D., Blake, D. R., Sachse, G. W., Fuelberg, H. E., Kiley, C. M., Woo, J.-H., Street, D. G., Carmichael, G. R., 2003. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific(TRACE-P) experiment. Journal of Geophysical Research. 108, D21, 8816.
Mazurek, M. A., Cass, G. R., Simoneit, B.R.T., 1991. Biological input to visibility-reducing aerosol particles in the remote arid southwestern United States. Environmental Science and Technology, 25, 684-694.
Mayer, H., 1999. Air pollution in cities. Atmospheric Environment, 4029-4037.
Michael J. Gatari., Johan Boman., Black carbon and total carbon measurements at urban and rural sites in Kenya, East Africa. Atmospheric Environment 37, 1149-1154.
Morawska, L., Zhang, J., 2002. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere, 49, 1045-1058.
Novakov, T., 1982. Soot in the atmosphere. In: Wolff, G.T., Klimisch, R.L., (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum, New York, pp. 19-41.
Nyeki, S., Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine state(3454m), Switzerland. Journal of Aerosol Science, 27, 105-106.
Nyeki, S., Baltensperger, U., Colbeck, I., Jost, D. T., Weingartner, E., Gaeggeler, H. W., 1998. The Jungfraujoch highalpine research station (3454 m) as background clean continental site for the measurement of aerosol parameters. Journal of Geophysical Research 103 (D6), 97–6107.
O,Dowd, C. D., Lowe, J. A., Clegg, N., Smith, M. H., 1998. Modeling heterogeneous sulphate production in maritime stratiform clouds. J. Geophys. Res. 98, 10411-10427.
Ohta, S. and Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
Olszyna, K. J., Bairai, S. T., Tanner, R. L., 2005. Effect of ambient NH3 levels on PM2.5 composition in the Great Smoky Mountain National Park. Atmospheric Environment, 39, 4593-4606.
Osada, K., Kido, M., Nishita, C., Matsunaga, K., Iwasaka, Y., Nagatani, M., Nakada, H., 2002. Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura(2770 m a.s.l.), central Japan, during the Shurin period in 2000. Atmospheric Environment, 36, 5469-5477.
Pathak, R. K., Louie, P. K. K., Chan, C. K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment, 38, 2965-2974.
Plessow, K., Spindler, G., Zimmermann, F., Matschullat, J., 2005. Seasonal variations and interactions of N-containing gases and particles over a coniferous forest, Saxony, Germany. Atmospheric Environment 39 (2005) 6995-7004.
Puxbaum, H., Wopenka, B., 1984. Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria. Atmospheric Environment 18, 573-580.
Rattray, G., Sievering, H., 2001. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado. Atmospheric Environment, 35, 1105-1109.
Reid, J. S., Hobbs, P.V., Ferek, R. J., Blake, D.R., Martins, J. V., Dunlap, M. R., and Liousse, C., 1998b. Physical, chemical and optical properties of regional hazes dominated by smoke in Brazil. Journal of Geophysical Research, 103, 32059-32080.
Rastogi, N., and Sarin, M. M., 2005. Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: Role of mineral dust and anthropogenic sources. Atmospheric Environment, 39, 5541-5554.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.
Ryu, S. Y., Kim, J. E., Zhuanshi, H., and Kim, Y. J., 2004. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of Air & Waste Manage. Assoc., 54, 1124-1137.
Salam, A., Bauer, H., Kassin, K., Ullah, S. M., Puxbaum, H., 2003. Aerosol chemical characteristics of an island site in the Bay of Nengal(Bhola-Bangladesh). J. Envrion. Monit, 5, 483-490.
Sandberg , D. and Martin, R., 1975. Particle sizes in slash fire smoke, Portland, OR, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Saxena, V. K., Lin, N. H.,1995. Cloud chemistry measurements and estimates of acidic deposition on an above cloudbase coniferous forest. Atmospheric Environment 35 5717-5728.
Schwikowski, M., A. Doscher, H. W. Gaggeler, and U. Schotterer, 1999. Anthropogenic versus natural sources of atmospheric sulfate from an Alpine ice core, Tellus, 51B, 938-951.
Seinfeld, J. H., Pandis, S. N., 1986. Atmospheric chemistry and physics. John Wiley and Sons, Inc., New York, N.Y., U.S.A.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric chemistry and physics. From Air Pollution to Climate Change. Wiley, New York.
Shah, J. J., Johnson, R. L., Heyerdahl, E. K., Huntzicker, J. J., 1986. Carbonaceous aerosol at urban and rural sites in the United States. Journal of the Air Pollution Control Association 36, 254-257.
Shaocai Yu., Role of organic acid(formic, acetic, pyruvic and oxalic ) in the formation of cloud condensation nuclei(CCN):a review. Atmospheric Research 53(2000)185-217
Shrestha, A. B., Wake, C. P., Dibb, J. E., Mayewski, P. A., Whitlow,S. I., Carmichael, G. R., Ferm, M., 2000. Seasonal variation in aerosol concentrations and compositions in the Nepal Himalaya, atmospheric Environment, 34, 3349-3363.
Simoneit, B. R. T., 2002. Biomass burning – a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., Cass, G. R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particle. Atmospheric Envrionment, 33, 173-182.
Stelson, A. W., Seinfeld, J. H., 1982. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment 16, 983-992.
Streets, D. G., Yarber, K. F., Woo, J. H., Carmichael, G. R., 2003. Biomass burning in Aia: annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles.
Valaoras, G., Huntzicker, J. J., White, W. H., 1988. On the contribution of motor vehicles to the Athenian“Nephos” ; an application of factor aignitres. Atmospheric Environment 22, 965-971.
Venkataraman, C., and Friedlander, S. K., 1994a. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods and source characterization. Environmental Science and Technology, 28, 555-562.
Ward, D.E., Setzer, A.W., Kaufman, Y.J., Rasmussen, R.A., 1991. Characteristics of smoke emission from biomass fires of the Amazon region-Base-A experiment. Global Biomass burning:Atmospheric, Climatic, and Biospheric Implications.
Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H. and Lawson, D. R., 1994. Chemical Mass Balance Source Apportionment of PM10 during the Southern California Air Quality Study. Aerosol Sci. Technol 21, 1-36.
Weber, R. J., McMurry III, R. L., Tanner, D. J., Eisele, F. L., Clark, A. D., Kapustin, V. N., 1999. New particle formation in the remote troposphere : a comparison at various sites. Geophysical Research Letters 26, 307-310.
Whitby, K. T., and Cantrell, B., 1976. Fine particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers.
Yamasoe, M. A., Artaxo, P., Antonio H. M., Andrew, G. A., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment 34 1641-1653.
Yu, X. Y., Lee, T., Ayres, B., Kreidenweis, S. M., Malm, W., Jr, L. C., 2006. Loss of fine particle ammonium from denuded nylon filters. Atmospheric Environment 40 4797-4808.
Zdr?hal, Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improved Method for Quantifying Levoglucosan and Related Monosaccharide Anhydrides in Atmospheric Aerosols and Application to Samples from Urban and Tropical Locations, Environmental Science and Technology 36, 747-753.
Zhao, W., Hopke, P. K., 2004. Source Apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38, 5901-5910.
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明