博碩士論文 93326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:13.59.95.170
姓名 方彥仁(Yan-Ren Fang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 長程傳輸對台灣北端氣膠酸鹼度與污染物演化生成程序的影響
(The influence of long-range transport on aerosol acidity and pollutant evolution at northern tip of Taiwan)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來大陸沿岸工業污染排放及沙塵的傳輸日漸受到重視,這些污染物會隨著大陸性冷高壓及盛行東北季風傳輸至台灣。本文在台灣最北端的台北縣石門鄉進行空氣污染物觀測,採樣時間為2005年6月~ 2006年4月。夏季石門地區污染物的濃度值較低,秋、冬、春三季則是受到大陸長程傳輸的影響污染物的濃度值較高。採樣地點二氧化硫(SO2(g))大多是來自台北盆地,雖然SO2(g)濃度在冷高壓和黃沙時期時明顯較高,但發生時間只佔採樣時間的5%,SO2(g)從台北盆地傳輸而來的時間則約佔整個採樣時間的70%左右。氨氣(NH3(g)) 也是以本地污染來源為主,但如果沙塵前緣氣團有通過大陸沿岸,則往往在沙塵前緣先帶來大量的NH3(g)。硝酸氣(HNO3(g))及亞硝酸氣(HNO2(g))在各種氣流傳輸類型下並無明顯變化。在氣膠及其前驅氣體濃度分布上,石門的氣膠濃度較前驅氣體濃度為高。
非受沙塵影響時,四種逆溯氣流軌跡類型以大陸沿岸傳輸所帶來的二次氣膠含量較高,本地污染來源、海洋傳輸和高壓迴流則以一次氣膠的含量較高。當受沙塵影響時nss-Ca2+和二次氣膠有很高的相關性。此外,受大陸沿岸傳輸影響時nss-SO42-和SO(2)有很高的相關性,且nss-SO42- / SO(2)的濃度比也較低。
氣膠碳成分在夏季濃度較高,受大陸性冷高壓及東北季風影響時,濃度卻有降低的情形,顯示石門氣膠碳成分濃度主要是來自於台灣本島。從估算的石門二次有機碳濃度變化與低溫揮發的碳成分(OC2)有一致的變化,顯示OC2的來源可能與二次有機碳有關。
由氣膠酸鹼度(pH)可發現,石門氣膠多呈現酸性,主要是受到非海鹽硫酸鹽(nss-SO42- )的影響。比較不同氣團軌跡來源,由海洋傳輸而來的氣膠酸度較小;由大陸傳輸而來的氣膠,微粒酸度較高。由NH4+ / nss-SO42- 莫耳比的計算顯示,本地污染來源、海洋傳輸、高壓迴流及受沙塵影響期間,大氣環境多屬於ammonium-rich 的狀態。相對地,大陸沿岸傳輸則為ammonium –poor 的狀態。
在非黃沙時期及受黃沙影響時,succinic acid的含量明顯較低,且C3/C4的比多在1以上,此時二元有機酸以二次轉化形成為主。當受黃沙後高壓迴流影響時,氣流帶來較多的succinic acid,且C3/C4的比多介於0.4 ~ 0.6之間,顯示二元有機酸的形成也轉為以一次排放為主。
摘要(英) Recently, the industrial outflow and yellow-dust transported from China gained a lot of attentions. These pollutions may be transported to Taiwan by cold continental high-pressure system and northeast monsoon. In this study, filter-based aerosol was collected at Shi-Men site, the northern tip of Taiwan, from June 2005 to April 2006. The concentrations of air pollutants are lower in summer, while that in the other three seasons are higher.
The SO2 at Shi-Men site is found transported mostly from Taipei Basin. Although the concentration of SO2 tends to increase during yellow-dust and cold high-pressure affecting periods, the occurrence time shares only 5% of the sampling time. In contrast, the time when SO2 transported from Taipei Basin is around 70% of the aerosol observation time in this study. Similarly, NH3 is also produced locally most of the time, however, a great amount of NH3 is observed if the front of dust flow passes through the industrialized China’s coastline. Meanwhile, the distributions of HNO3 and HNO2 make no difference among different air masses. For the abundance compared between aerosol and precursor gases, aerosol concentration is found higher than its precursor gases.
The secondary aerosol is higher for China’s coastline transport, while primary aerosol is more contributed from local sources, oceanic transport, and anticyclonic outflow for the four types of back trajectory during non-dust period. A high correlation is found between nss-Ca2+ and secondary aerosol when under the influence of yellow-dust. Moreover, a consistent relationship is observed between nss-SO42- and SO2 for air masses transported from China’s coastline.
Aerosol carbon is mainly contributed from Taiwan as it shows high concentration in summer and low value in winter when under the influence of continental cold high and northeast monsoon. The variations of estimated secondary organic carbon are consistent with low-temperature volatilized carbon fraction OC2, it suggests that the sources of OC2 are related to secondary organic carbon.
The measured aerosol pH values are acidic which might be affected by the abundance of nss-SO42-. The lowest aerosol acidity is observed when the air masses are transported from the ocean, while aerosol acidity is the highest for China’s coastline transport among the four back trajectory types. The calculation of NH4+ / nss-SO42- molar ratios shows that the atmosphere is in the state of ammonium-rich when the air masses are from local area, the ocean, anticyclonic outflow, and yellow-dust transport. In contrast, the state of ammonium poor is found when the air masses pass through China’s coastline.
For most of the time, the amount of succinic acid is obvious the lowest among the analyzed dicarboxylic acids. It indicates that dicarboxylic acids are converted from secondary photochemical reactions as C3/C4 ratios are mostly above 1. However, the C3/C4 ratios are turned to vary from 0.4 to 0.6 when under the influence of anticyclonic outflow after the passage of yellow-dust. This then suggests that the formation of dicarboxylic acids is shifted to originate from primary emissions.
關鍵字(中) ★ 亞洲沙塵
★ 氣膠化學成分
★ 氣團軌跡來源
★ 氣膠前驅氣體
關鍵字(英) ★ Asian dust
★ Aerosol chemical properties
★ Air trajectory
★ Aerosol precursor gases
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氣膠來源與特性 3
2.1.1 氣膠分類與來源 3
2.1.2 氣膠特性與粒徑分布 4
2.2 氣膠水溶性離子化學特性 7
2.2.1 氣膠水溶性離子來源與特性 8
2.2.2 水溶性離子對氣膠中和程度和酸度的影響及結合型態 12
2.3 氣膠碳成分化學特性 17
2.3.1 碳成分主要來源 17
2.3.2 二次有機碳估算 19
2.3.4 二次有機碳來源及特性 19
2.3.5 碳成分與有機氣膠之關連性 20
2.4 氣相污染物特性 21
2.4.1 氣狀污染物指標 21
2.4.2 黃沙時期氣狀污染物特性 22
2.5 大氣中二元酸特性 24
2.5.1 大氣中二元酸的優勢物種與來源 24
2.5.2 大氣中二元酸的粒徑分布 28
第三章 研究方法 31
3.1 採樣方法與採樣儀器 34
3.1.1 採樣時間 34
3.1.2 採樣地點四週環境描述 35
3.1.3 採樣儀器 40
3.1.4 採樣濾紙的選擇及前處理程序 48
3.2 樣本分析方法 51
3.2.1 氣膠質量濃度分析 51
3.2.2 氣膠水溶性離子分析 51
3.2.3 氣膠碳成分分析 52
3.2.4 二元有機酸分析方法 54
3.3 氣膠污染來源與貢獻量推估 55
3.3.1 氯離子損失法 55
3.3.2 氣流軌跡分類法—Hysplit(Hybrid Single-Particle Lagrangian Integrated Trajectory)模式 60
第四章 結果與討論 63
4.1 氣膠質量濃度特性 63
4.1.1 氣膠質量濃度特性與氣象因子 64
4.1.2 氣流軌跡線對質量濃度的影響 70
4.2 氣固相污染物轉換與來源推估 73
4.2.1 氣固相污染物特性 75
4.2.2 前驅酸鹼性氣體與二次污染物的關係及污染傳輸指標 97
4.2.3 黃沙與非黃沙時期前驅酸鹼性氣體與氣膠污染物特性 102
4.2.4 一次與二次氣膠估算 111
4.2.5 氣膠污染物與一次及二次氣膠的關聯及長程傳輸對石門氣膠的增
量程度………………………………..................................................123
4.3 氣膠酸鹼性與結合型態………………………………………………...138
4.3.1 氣膠酸鹼度與中和程度 138
4.3.2 氣膠酸度 151
4.4 氣膠碳成分 157
4.4.1 碳成分來源及特性 161
4.4.2 SOC貢獻與傳輸來源指標 166
4.5 有機氣膠特性與來源 176
4.5.1 有機氣膠優勢物種與來源 176
4.5.2 有機氣膠污染特性與來源 177
第五章 結論與建議 186
5.1 結論 186
5.2 建議 189
第六章 參考文獻 190
附錄一 口試委員意見與答覆 203
附錄二 2005年06月~2006年04月採樣期間逐時氣象資料 207
附錄三 本文實際採樣SO2(g) 與萬里空品站趨勢變化 211
附錄四 臭氧篩選法 215
附錄五 225
附錄六 230
參考文獻 Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., Van Grieken, R., Maenhaut,W., 1986. Internal mixtures of sea salt, silicates and excess sulfate in marine aerosols, Science. 232, 1620-1623.
Aniket A. Sawant, Kwangsam Na, Xiaona Zhu, David R. Cocker III., 2004. Chemical characterization of outdoor PM2.5 and gas-phase compounds in Mira Loma, California. Atmospheric Environment 38, 5517–5528.
Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., Ray, B.J., 1996. Relationships among aerosol constituents from Asia and the North Paci.c during Pem-West A. Journal of Geophysical Research 101, 2011–2023.
Blando, J.D., Turpin, B.J., 2000. Secondary organic aerosol formation in
cloud and fog droplets: a literature evaluation of plausibility.
Atmospheric Environment 34, 1623–1632.
Boucher, O., Anderson, T.L., 1995. General circulation model assessment ofthe sensitivity ofdirect climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal ofGeophysical Research 100, 26117–26134.
Brook, J. R., Dann, T. F. and Rurnett, R. T., 1997. The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Lacations. Journal of the Air and Waste Management Association 47, 2-19.
Chou, C.K., Lin C. Y., Chen , T. K., Hsu, S. C., Lung, S. C., Liu, S. C., Young, C. Y., 2004. Influence of Long-Range Transport Dust Particles on Local Air Quality: A Case Study on Asian Dust Episodes in Taipei during the Spring of 2002. Terrestrial, Atmospheric and Oceanic Sciences. Vol. 15. NO. 5, 881-899.
Chow, J.C., 1992. A neighborhood-scale Study of PM10 source contribution in rubidoux California. Atmospheric Environment 26A, 693-72006.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18, 12005-128.
Chow, J. C., Watson, J. G., Fujuta, E. M., Lu, Z. and Lawson, D. R., 1994. Temporal and Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study. Atmospheric Environment 28, 220061-2080.
Chow, J.C., 1995. Measurement Methods to Determine Compliance with
Ambient Air Quality Standards for Suspended Particles. J. Air & Waste
Manage. Assoc 45, 320-382.
Bower JS, Broughton GFJ, Dando MT, Lees AJ, Stevenson KJ, Lampert
JE, Sweeney BP, Parker VJ, Driver GS, Waddon CJ, Wood AJ.Urban
NO concentrations in the 2 UK in 1987.Atmos Environ, Part B
1991;25:267 –283.
Cadle, S.H., Countess, R.J., Kelly, N.A., 1982. Nitric acid and ammonia in urban and rural locations. Atmospheric Environment 16 (10), 2501–252006.
Cao, J.J., Lee, S.C., Ho, K.F., Zou, S.C., Fung, K., Li, Y., John, G.W., Chow, C., 2004. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Rigion, China. Atmospheric Enbironment 38, 4447-4456.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere,
occurrence, sources, and sinks: a review. Atmospheric Environment
30, 4233–4249.
Chow, J.C., Watson, J.G., Kuhns, H.D., Etyemezianm V., Lowenthal, D.H., Crow, D.J., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2003a. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) Study. Chemosphere 54 (2), 185-208.
Chow, J.C., Watson, J.G., Ashbaugh, L.L., Magliano, K.L., 2003b. Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmosheric Environment 37, 1317-1340.
Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang Y., 2004. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmospheric Environment 38, 3443-3452.
Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo
enhancement by surface-active organic solutes in growing droplets.
Nature 410, 257–259.
Galloway, J.N., Cowling, E.B., 2002. Reactive nitrogen and the world:
200 years ofchange. Ambio 31, 64–71.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Gundel, L.A., Guyot-Sionnest, N.S., Novakov, T., 1989. A study of the
interaction of NO2 with carbon particles. Aerosol Science and
Technology 10, 343–351.
Hayami, H., 2005. Behabior of secondary inorganic species in gaseous and aerosol phases measured in Fukue Island, Japan, in dust season. Atmospheric Environment 39, 2243-2248.
Hering, S.V., Friedlander, S.K., 1982. Origins of aerosol sulfur size distributions in the Los Angeles Basin. Atmospheric Environment 16, 2647–2656.
Hering, S., Eldering, A., Seinfeld, J.H., 1997. Bimodal character of accumulation mode aerosol mass distributions in Southern California. Atmospheric Environment 31, 1–11.
Hikdeman, L.M., Russel, A.G., Gass, G.R., 1994. Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: experiment vs. theory. Atmospheric Environment 18, 1737-1750.
Ho, K.F., Lee, S.C., Yu, J.C., Fung, K., 2002. Carbonaceous
characteristics of atmospheric particulate matter in Hong Kong.
Science of the Total Environment 300, 59–67.
Ho, K.F., Cao, J.J., Lee, S.C., Chow, J.C., Watson, John, G., Fung, K.,
2004. Spatial and seasonal distributions of atmospheric carbonaceous
aerosol over Hong Kong. Environmental Science and Total
Environment, in review.
Huang, X.F., Hu. M., He, L.Y., Tang, X.Y., 2005. Chemical
Characterization of water-soluble organic acids in PM2.5 in Beijing,
China. Atmospheric Environment 39, 2819-2827.
Huebert, B.J., Wang, M.X., Lu, W.X., 1988. Atmospheric nitrate, sulfate,
ammonium and calcium concentrations in China. Tellus 40 (B),
260–269.
Jaffe Dan., Tamura Shihoko., Harris Joyce., 2005. Seasonal cycle and composition of background fine particles along the west coast of the US. Atmospheric Environment 39, 297-32006.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of
black carbon in atmospheric aerosols. Nature 409, 695–697.
Jiang D, Wang S, Lang X, Shang K, Yang D.The characteristics. of
stratification of lower-layer atmospheric temperature and their
relations with air pollution in Lanzhou proper.J Lanzhou Univ (Nat
Sci) 2001;37(4):134 –139 (In Chinese).
John, W., Wall, S. M., Ondo, J. L. and Winklmayr, W., 1990. Modes in the Size Distribution of Atmospheric Inorganic Aerosol. Atmospheric Environment 24A, 2349-2359.
Katsumi Satioh, Koichiro Sera, Koichiro Hirano, Tadashi Shirai,. 2002. Chemical characterization of particles in winter-night smog in Tokyo. Atmospheric Environment 36, 435-440.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary
source for dicarboxylic acids in Los Angeles ambient air.
Environmental Science and Technology 21, 12005–110.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution
of dicarboxylic acids in the urban atmosphere. Environmental Science
and Technology 27, 2227–2235.
Kawamura, K., Kasukabe, H., Barrie, L.A., 1996. Source and reaction
pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic
aerosols: one year of observations. Atmospheric Environment 30,
1709–1722.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water
soluble dicarboxylic acids in marine aerosols over the Paci.c Ocean
including tropics. Journal of Geophysical Research 104, 3501–3509.
Kerminen, V.-M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M.,
Merilaien, J., 2000. Low-molecular-weight dicarboxylic acids in an
urban and rural atmosphere. Journal Aerosol Science 31, 349–362.
Kerminen, V.M., Pakkanen, T.A., Hillamo, R.E., 1997. Interactions
between inorganic trace gases and supermicrometer particles at a
coastal site. Atmospheric Environment 31, 2753-2765.
Kim, B.M., Teffera, S., Zeldin, M.D., 2000. Characterization of PM2.5 and PM10 in the South Coast Air Basin of Southern California: Part 1—Spatial variations. Journal Air and Waste Management Association 50, 2034–2044.
Koutrakls, P., Sloulas, C., Ferguson, S.T., Wolfson, J.M. 1993. Development and Evaluation of a Glass Honeycomb Denuder/Filter Pack System To Collect Atmospheric Gases and Particles. Envlron Sci. Technol. 27, 2497-2501.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T. and Korhonen, P. 1995. The Effect of HCl on Cloud Droplet Formation. J. Aerosol Sci. 26, 413-414.
Langford, A.O., Fehsenfeld, F.C., Zachariassen, J., Schimel, D.S., 1992. Gaseous ammonia fluxes and background concentrations in terrestrial exosystems of the United States. Global Biogeochemical Cycles 6, 459-483.
Lee, H.S., Wadden, R.A., Sche., P.A., 1993. Measurement and evaluation
of acid air pollutants in Chicago using an annular denuder system.
Atmospheric Environment 27A (4), 553–554.
Li, F. and Okada, K., 1999. Diffusion and modification of marine aerosol particles over the coastal areas in china: A case study using a single particle analysis. Journal of Atmospheric. Science 56, 241-248.
Mamane, Y., and J. Gottlieb, 1989: Heterogeneous tractions of minerals with sulptur and nitrogen oxises. J. Aerosol Sci., 20, 303-311.
Mangelson, N. F., Lewis, L., Joseph,J. M., Cui, W., Machir, J., Williams, N. W., Eatough, D. J., Rees, L. B., Wilkerson, T. and Jensen, D. T., 1997.The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in cache valley, utah. AWMA 47, 167-175.
McCurdy, T., Zelenka, M.P., Lawremce, P.M.., Houston, .M., Burton, R., 1999. Acid aerosols in the Pittsburgh metropolitan area. Atmospheric Environment 33, 5133-5145.
McMurry, P.H., Takano, H., Anderson, G.R., 1983. Study of the ammonia(gas)-sulphuric acid(aerosol) reaction rate. Environmental Science and Technology 17, 347–352.
Meng, Z., Seinfeld, J.H., 1994. On the source of the submicrometer droplet mode of urban and regional aerosols. Aerosol Science and Technology 20, 253–265.
Meng, Z., Seinfeld, J.H., 1996. Time scales to achieve atmospheric gas–aerosol equilibrium for volatile species. Atmospheric Environment 30, 2889–2900.
Mozurkewich, M., 1993. The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmospheric Environment 27A, 261-270.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999.
Distribution of dicarboxylic acids and carbon isotopic compositions in
aerosols from 1997 Indonesian forest .res. Geophysical Research
Letters 26, 3101–3104.
Nihlgard, B., 1985. The ammonium hypothesis—an additional
explanation to the forest dieback in Europe. Ambio 14, 2–8.
Nunes, T.V., Pio, C.A., 1993. Carbonaceous aerosols in industrial and
coastal atmospheres. Atmospheric Environment 27, 1339–1346.
Ondov, J.M., Wexler, A.S., 1998. Where do particulate toxins reside? An improved paradigm for the structure and dynamics of the urban mid-Atlantic aerosol. Environmental Science and Technology 32, 2547–2555.
Padgett, P., Allen, E., Bytnerowicz, A., Minisch, R., 1999. Changes in
soil inorganic nitrogen as related to atmospheric nitrogenous
pollutants in southern California. Atmospheric Environment 33,
769–781.
Pakkanen, T.A., Kerminen, V.M., Hillamo, R.E., Makinen, M., Makela, T., Virkkula, A., 1996. Distribution of nitrate over sea-salt and soil derived particles-implication from a field study. Journal of Atmospheric Chemistry 24, 189-22005.
Pathak, R.K., Yao, X.H., Alexsis, K.H.L., Chan, C.K., 2003. Acidityand concentration of ionic speices of PM2.5 in Hong Kong. Atmospheric Environment 37, 1113–1124.
Pathak, R.K., Louie, P.K.K., Chan, C.K., 2004. Characteristics of aerosol acidityin Hong Kong. Atmospheric Environment 38, 2965-2974.
Paerl, H.W., 1995. Coastal eutrophication in relation to atmospheric
nitrogen deposition: current perspectives. Ophelia 41, 237–259.
Paerl, H.W., Whitall, D.R., 1999. Anthropogenically derived atmospheric
nitrogen deposition, marine eutrophication and harmful algal bloom
expansion: is there a link? Ambio 28, 307–311.
Plessow, K., Spindler, G., Zimmermann, F., Matschullat, S., 2005.
Seasonal variations and interactions of N-containing gases and
particles over a coniferous forest, Saxony, Germany. Atmospheric
Environment 39, 6995-7007.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.
Roelofs, J.G.M., Kempers, A.J., Houdijk, A.L.F.M., Jansen, J., 1985. The
effect of airborne ammonium sulphate on Pinus nigra var. maritima in
the The Netherlands. Plant and Soil 84, 45–56.
R. ohrl, A., Lammel, G., 2001. Low-molecular weight dicarboxylic acids
and glyoxylic acid: seasonal and air mass characteristics.
Environmental Science and Technology 35, 95–101.
Saxena, P., Hildemann, L.M., Mcmurry, P.H., Seinfeld, J.H., 1995.
Organic alter hygroscopic behavior of atmospheric particles. Journal
of Geophysical Research 100, 18755–18770.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric Chemistry and Physics From Air Pollution to Climate Change. Wiley, New York.
Sickles II, J.E., Hodson, L.L., Vorburger, L.M., 1999. Evaluation of.lter pack for long-duration sampling in ambient air. Atmospheric Environment 33, 2187–2202.
Sievering, H., 1999. Nitrogen deposition and carbon sequestration.
Nature 400, 629–630.
Sievering, H., Fernandez, I., Lee, J., Hom, J., Rustad, L., 2000. Forest
canopy uptake ofatmosphe ric nitrogen deposition at eastern US
conifer sites: carbon storage implications? Global Biogeochemical
Cycles 14, 1153–1160.
Song, C.H., Carmichael, G.R., 1999. The aging process of naturally emitted aerosol during long range transport. Atmospheric Environment 33, 2203–2218.
Song, C.H., Carmichael, G., 2001. A model study of the evolution processes of dust and sea salt particles during long range transport. Journal of Geophysical Research 12006, 18131-18154.
Speizer, F.E., 1989. Studies of acid aerosols in six cities and in new multi-city investigations: design issues. Environmental Health Perspentives 79, 61-67.
Turpin B. J.and Huntzicker J. J. (1991). Secondary formation of organic aerosol in the Los Angeles Basin: adescriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment. 25A:207-215.
Vitousek, P.M., Howarth, R.W., 1991. Nitrogen limitation on land and in
the sea: how can it occur? Biogeochemistry 13, 87–115.
Xavier Querol, Andrés Alastuey, Sergio Rodriguez, Felicià Plana, Carmen R. Ruiz, Nuria Cots, Guillem Massagué and Oriol Puig., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35, 6407-6419.
Xie, S., Yu, T., Zhang, Y., Zeng, L., Qi, L., Tang, X., 2004. Characteristics of PM10,NOx andO3 in ambient air during the dust storm period in Beijing. Science of the Total Environment 345, 153-164.
Xu, J., Bergin, M.H., Yu, X., Liu, G., Zhao, T., Carrico, C.M., Baumann, K., 2002. Measurements of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmospheric Environment 36, 161–173.
Yang, H., Tu, J.Z., 2002. Uncertainties in charring correction in the analysis of elementaland organic carbon in atnopheric particles by thermak/optical methods. Environmental Science and Technology 36 (23), 5199-5201.
Walker, J.T., Whitall, D.R., Wayne, D.R., Robarge, W., Paerl., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment 38, 1235-1246.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649-1656.
Wang, G., Huang, L., Gao, S., Gao., S., Wang, L., 2002 Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China. Atmospheric Environment, in press.
Wang, Y., Zhuang, G., Sun, Y., Zhung, A., 2005. Water-soluble part of the aerosol in the dust storm season-evidence of the mixing between mineral and polluton aerosols. Atmospheric Environment 39, 7020-7029.
Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., Zhung, A., 2005. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment 39, 3771-3784.
Watson, J.G., 1998. The science of fine particlate matter, workshop on sampling, regulation, and light scattering effects of PM2.5. Atmospheric Environment 25A, 1-14.
Warneck, P., 1999. Chenistry and photochemistry in atmospheric water drops. Ber. Bunsenges. Physical Chemistry 96, 454-460.
Warneck, P., 2000. Chemistry of the Natural Atmosphere, second ed. Academic Press, Inc, New York.
Warneck, P., 2003. In-cloud chemistry opens pathway to the formation of
oxalic acid in the marine atmosphere. Atmospheric Environment 37,
2423–2427.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C., Neuroth, G.R., Robbins, R., 1994. Differences in the carbon composition of source profiles for diesel and gasoline-poweres vehicles. Atmospheric Environment 28, 2493-252005.
Wexler, A.S., Seinfeld, J.H., 1990. The distribution of ammonium salts among a size and composition dispersed aerosol. Atmospheric Environment 24A, 1231–1246.
Whitby, K. T.., and Cantrell, B., 1976. Fine particles, in International Conferene on Environment Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers.
Whitby, K.T., 1978. The physical characteristics of sulfur aerosols. Atmospheric Environment 12, 135–159.
Wu, P.M., Okada,K., 1994. Nature of coarse nitrate particles in the atmosphere-a single particle approach. Atmospheric Environment 28, 220053-220060.
Yang, H., Yu, J.Z., 2002. Uncertainties in charring correction in the
analysis of elemental and organic carbon in atmospheric particles by
thermal/optical methods. Environmental Science and Technology 36
(23), 5199–5204.
Yao, X.H., Fang, M., Chan, C.K., 2001. Experimental study of the
sampling artifact of chloride depletion from collected sea salt
aerosols. Environmental Science and Technology 35, 600–62005.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002a. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yao, X., Fang, M., Chan, C.K., 2002b. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099–2107.
Zhang, F., J. Zang, G. Shi, Y. Iwasaka, A. Matsuki, and D. Trochkine,
2003: Mixture state of individual Asian dust particles at a coastal site
of Qingdao, China. Atmospheric Environment 37, 3895-3901.
Zhou, F., Sun, Q., Wang, M., Shao, K., 1998. Measurement of aerosol strong acidity in Zhouguancun, Beijing. Environment Science (in Chinese) 19, 6–11.
Zhuang H., Chan C. K., Fang M., Wexler A. S., 1999. Formation of
nitrate and Non-sea-salt Sulfate on Coarse Particles. Atmospheric
Environment 33, 4223-4233.
Zhyng, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of
nitrate and non-sea-salt sulfate on coarse particles. Atmospheric
Environment33, 4223-4233.
王弼正 (1997) 台灣大氣氣膠特性之研究-東北季風影響下台北
地區細氣膠及其氣體前驅物特性分析。
朱宏勳 (2004) 長程傳輸對北台灣大氣氣膠特性的影響,國立中央大
學環境工程研究所碩士論文。
沈士翔 (2005) 綜觀天氣及不同氣流軌跡影響下的北台灣氣膠特性,
國立中央大學環境工程研究所碩士論文。
梁永志 (2003) 北台灣長程傳輸氣膠化學特性,國立中央大學環境工程研究所碩士論文。
94年度「環保署 / 國科會空污防治科研合作計畫」期末報告,NSC-94-EPA-Z-008-003。
行政院環境保護署 (2003) 高污染區域大氣邊界層密集觀測及對污染物擴散之研究 期末報告,EPA-92-U1L1-02-103。
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明