博碩士論文 93326020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.188.119.67
姓名 廖仲洲(Jhong-Jhou Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討
(Electrosorption of CuCl2 by Carbon Aerogel Composite)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 非接觸式光學監測混凝系統技術之發展★ 以光學影像連續監測銅廢水化學沉降之技術發展
★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例
★ 石門水庫分層取水對於前加氯與混凝成效之影響★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析
★ 地表水中氨氮之生物急毒性研究★ 水足跡盤查分析與節水策略-以某印刷電路板軟板廠為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來奈米科技的進步,帶動材料科學的發展,種種優異性質材料被相繼被開發出來,其中也發展出嶄新的電吸附材料-碳氣凝膠紙。碳氣凝膠因具備有奈米尺度的細微孔洞、良好的極化能力、高的導電度性和高表面積等,其種種優異的性質適合作為電吸附材,因此有鑑於此,本研究利用碳氣膠電極電吸附水中二氯化銅,控制電壓和濃度,監測溫度、導電度、電流、總銅離子濃度、一價銅離子濃度、氯離子濃度和pH的變化,以瞭解其電吸附重金屬的行為。
研究結果發現,電吸附初期,陽極含氧官能基的氧化反應會釋出氫根離子,而到電吸附後期,陰極上的銅離子和氫根離子可能作為電子失去者,以上所述氧化還原反應的發生均會造成水體中氫根離子持續不斷的累積而導致水體pH值下降和導電度上升。電吸附結果顯示,銅離子初始濃度,對銅之去除效率影響有限,在外加電壓分別為1.2 V與1.0 V時,銅離子的去除效率分別可達99 %和95 %以上,唯達平衡之時間,隨銅離子濃度升高而所縮短。
再生實驗中以pH為3的鹽酸來清洗碳氣凝膠紙的效果最佳,且經酸洗流程後再進行pH調整為10的氫氧化鈉來進行鹼洗,以去除不利於電吸附的氫根離子,碳氣凝膠紙經以上所述再生流程後,即可獲得與新的碳氣凝膠紙相似的電吸附特性。
摘要(英) Carbon aerogel composite has good properties such as nanopores, high electrical conductivity, and high surface area; therefore, carbon aerogel composite is suitable for electrosorption. In this study, carbon aerogel composite was used to electro-adsorb CuCl2 in pure water. The influences of applied voltage and copper concentration on the electrosoprtion of CuCl2 were investigated. Temperature, conductivity, current, pH, and concentrations of total copper, cuprous and chloride ions were monitored. The result showed that, in the initial stage of electrosorption, hydrogen ions were released from the anode due to the oxidation of oxygen-containing functional groups on the carbon aerogel composite. Later, hydrogen ion may be released from cathode due to the reduction reactions from the functional groups on the carbon aerogel composite. Both reactions resulted in accumulation of hydrogen ions; as the consequence, the solution pH decreased and the conductivity increased. The removal efficiencies were similar (>95%) when the applied voltages were 1.0 V and 1.2 V. However, as the concentration of copper increased, the electrosorption equilibrium time decreased. It was also found that washing the carbon aerogel composite by the HCl solution of pH 3 has the best regenerate efficiency. Further washing by NaOH of pH 10 can wash out the free hydrogen ions in the pores and the washed carbon aerogel composite showed similar electrosoprtion behaviors to a new one.
關鍵字(中) ★ 電吸附
★ 碳氣凝膠紙
關鍵字(英) ★ Electrosorption
★ Carbon aerogel composite
論文目次 圖目錄..................................................................Ⅳ
表目錄...................................................................Ⅶ
第一章 前言………………………………………………………………………1
1.1. 研究緣起……………………………………………………………………1
1.2. 研究目的……………………………………………………………………2
1.3. 研究流程……………………………………………………………………3
第二章 文獻回顧…………………………………………………………………4
2.1. 碳氣凝膠紙…………………………………………………………………4
2.1.1. Carbon nanofoam 的基本簡介…………………………………………4
2.1.2. 碳氣凝膠的生成…………………………………………………………6
2.1.3. 碳氣凝膠紙的基本性質…………………………………………………8
2.1.4. 碳凝膠紙於環境工程的應用………………………………..…………12
2.2. 電離理論………………………………………………………..…………12
2.3. 電雙層與電吸附……………………………………………………………19
2.3.1. Helmholtz電雙層模型……………….…………………………………19
2.3.2. Stern 電雙層模型………………………………………………………20
2.3.3. 特定吸附…………………………………………………………………22
2.3.4. 電雙層電容器……………………………………………………………24
2.3.5. 電雙層與電吸附…………………………………………………………25
2.3.6. 多孔洞電極………………………………………………………………26
2.3.7. 特定吸附對電位的影響…………………………………………………27
2.4. 物種物化特性對總電容量的影響…………………………………………30
2.5. 碳氣凝膠紙之再生…………………………………………………………34
第三章 實驗藥品、設備與方法…………………………………………………35
3.1. 實驗藥品與設備……………………………………………………………35
3.2. 監控流程……………………………………………………………………41
3.3. 實驗方法……………………………………………………………………43
3.3.1. 電吸附實驗………………………………………………………………43
3.3.2. 再生實驗…………………………………………………………………45
3.3.3. 碳氣凝膠紙定性分析……………………………………………………47
3.3.4. 水質分析…………………………………………………………………48
第四章 結果與討論………………………………………………………………51
4.1. 碳氣凝膠紙特性分析………………………………………………………51
4.1.1. 表面微觀結構……………………………………………………………51
4.1.2. 表面孔隙分析……………………………………………………………53
4.1.3. 官能基的鑑定……………………………………………………………55
4.1.4. 氧化還原反應的判定……………………………………………………56
4.2. 槽體的測試…………………………………………………………………57
4.2.1. 空氣溶入所增加的導電度………………………………………………57
4.2.2. NaCl 的測試………………………….…………………………………58
4.3. CuCl2 電吸附………………………………………………………………59
4.3.1. 總銅濃度的變化…………………………………………………………59
4.3.2. 電流的變化………………………………………………………………62
4.3.3. pH…………………………………………………………………………63
4.3.4. 導電度……………………………………………………………………65
4.3.5. 銅離子的氧化還原反應…………………………………………………69
4.3.6. 氯離子……………………………………………………………………71
4.4. 銅濃度對吸附容量的影響…………………………………………………74
4.5. 電壓對吸附容量的影響……………………………………………………76
4.6. 銅離子濃度與電壓對物種分佈之影響……………………………………78
4.6.1. 氫根離子…………………………………………………………………78
4.6.2. 氯離子……………………………………………………………………81
4.7. 碳氣凝膠紙的再生…………………………………………………………83
4.8. 再生後的電吸附……………………………………………………………86
4.8.1. 再生方法一:酸洗->去離子水…………………………………………86
4.8.2. 再生方法二:酸洗->鹼洗->去離子水…………………………………88
第五章 結論與建議………………………………………………………………91
5.1. 結論…………………………………………………………………………91
5.2. 建議…………………………………………………………………………92
參考文獻……… …………………………………………………………………94
參考文獻 1. Vaught, Clark, "Carbon aerogel really cleans up water", Materials Technologies, 56-57 (1998).
2. Johnson, A. M. and Newman, J., "Desalting by means of porous carbon electrodes", Journal of The Electrochemical Society, 118, 510 -517(1971).
3. Oren, Y. and Soffer, A., "Electrochemical parametric pumping", Journal of The Electrochemical Society, 125, 869-875 (1978).
4. Oren, Y. and Soffer, A., "Water desalting by means of electrochemical. parametric pumping: I. The equilibrium properties of a batch unit cell", Journal of Applied Electrochemistry, 13, 473-487 (1983).
5. Farrell, J., Bostick, W. D., Jarabek, R. J., and Fiedor, J. N., "Electrosorption and reduction of pertechnetate by anodically polarized magnetite", Environmental Science & Technology, 33, 1244-1249 (1999).
6. Matlosz, M. and Newman, J., "Experimental investigation of a porous carbon electrode for the removal of mercury from contaminated brine ", Journal of The Electrochemical Society, 133, 1850-1859 (1986).
7. Frackowiak E. and Beguin F., "Carbon materials for the electrochemical storage of energy in capacitors", Carbon, 39, 937-950 (2001).
8.Meng, Q. H., Liu, L., Song, H. H., Zhang, R., and Ling, L. C., "Electrochemical properties of carbon aerogels electrode for super-capacitor", Wuji Cailiao Xuebao/Journal of Inorganic Materials, 19, 593-598 (2004).
9. Meng, Q. H., Liu, L., Song, H. H., and Ling, L. C., "Study on carbon aerogel electrodes for supercapacitor", Gongneng Cailiao/Journal of Functional Materials, 35, 457-459 (2004).
10. Marketech International:http://www.mkt-intl.com/index.html
11. Li, W., Lu, A., Zhu, S., and Guo, S., "Preparation of monolithic carbon aerogels from M-cresol with formaldehyde through sol-gel process", Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 28, 332-335 (2000).
12. Mattson, J. S. and Mark, H. B. Jr., Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York (1971).
13. Aerogel compostie:http://www.aerogelcomposite.com/technology/technology.html
14. LLNL:http://www.llnl.gov/IPandC/
15. Tran, T. D., Lenz D., Kinoshita, K., and Droege M., "Effects of processing conditions on the physical and electrochemical properties of carbon aerogel composites", Materials for Electrochemical Energy Storage and Conversion II-Batteries, 496, 607-611 (1998).
16. Pekala, R. W., Farmer, J. C., Alviso, C. T., Tran, T. D., Mayer, S. T., Miller, J.M., and Dunn, B., "Carbon aerogels for electrochemical applications", Journal of Non-Crystalline Solids, 225, 74-80 (1998).
17.Hwang, S. W., Hyun, S. H., and Lee, K. H., " Development of tin oxide/carbon aerogel composite electrodes for supercapacitor applications ", Meeting Abstracts, 2004 Joint International Meeting - 206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan, MA 2004-02, 658 (2004).
18. Zhang, S. Q., Wang, J., Shen, J., Deng, Z. S., Lai, Z. Q., Zhou, B., Attia, S. M., and Chen, L. Y., "The investigation of the adsorption character of carbon aerogels", Nanostructured Materials, 11, 375-381 (1999).
19. Lu, X., Nilsson O., Fricke, J., and Pekala R. W., "Thermal and electrical conductivity of monolithic carbon aerogels", Journal of Applied Physics, 73(2), 581-584 (1993).
20. Fung, A. W. P., Wang, Z. H., Lu, K., Dresselhaus, M. S., and Pekala, R. W., "Characterization of carbon aerogels by transport measurements", Journal of Materials Research, 8(8), 1875-1885 (1993).
21. Pekala, R. W., Mayer, S. T., Poco, J. F., and Kaschmitter, J. L., " Structure and performance of carbon aerogel electrodes", Materials Research Society Symposium – Proceedings, 349, Novel Forms of Carbon, 78-85 (1994).
22. Creager, S., Shaban, I., and Navratil, J., " Carbon aerogels as electrodes in electrochemical double-layer capacitors ", Meeting Abstracts, Meeting Abstracts - 205th Meeting of The Electrochemical Society, MA 2004 01, 856 (2004).
23. Ying, T.-Y., Yang, K.-L., Yiacoumi, S., and Tsouris, C., "Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel", Journal of Colloid and Interface Science, 250, 18-27 (2002).
24. Yang, K.-L., Ying, T.-Y., Yiacoumi, S., Tsouris, C., and Vittoratos, E. S., " Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model", Langmuir, 17, 1961-1969 (2001).
25. Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., and Poco, J. F, "Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes", Journal of Applied Electrochemistry, 26, 1007-1018 (1996).
26. Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., and Poco, J. F., " Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes", Journal of the Electrochemical Society, 143, 159-169 (1996).
27. Yang, C. M., Lee, G. T., Na, B. K., Suh, D. J., Cho, B. W., and Cho, W I., " Capacitive deionization of NaCl solution using four-series cells with carbon aerogel composite electrodes", Meeting Abstracts, 2004 Joint International Meeting - 206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan, MA 2004-02, 276 (2004).
28. Hwang, S. W., Jung, H. H., Hyun, S. H., Lee, K. H., and Kim, G. T., " Capacitive deionization characteristics of nanostructured carbon aerogel electrodes", Meeting Abstracts, 2004 Joint International Meeting - 206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan, MA 2004-02, 1459 (2004).
29. Rana, P., Mohan, N., and Rajagopal, C., "Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes", Water Research, 38, 2811-2820 (2004).
30. Rana-Madaria, P., Nagarajan, M., Rajagopal, C., and Garg, B. S., "Removal of chromium from aqueous solutions by treatment with carbon aerogel electrodes using response surface methodology", Industrial and Engineering Chemistry Research, 44, 6549-6559 (2005).
31. Farmer, J. C., Bahowick, S. M., Harrar, J. E., Fix, D. V., Martinelli, R. E., Vu, A. K., and Carroll, K. L., "Electrosorption of chromium Ions on Carbon Aerogel: Electrodes as a Means of Remidiating Ground Water", Energy & Fuels, 11, 337-347 (1997).
32. Goel, J., Kadirvelu, K., Rajagopal, C., and Garg, V. K., "Removal of mercury(II) from aqueous solution by adsorption on carbon aerogel: Response surface methodological approach", Carbon, 43, 197-200 (2005).
33. Hamann, C. H., Hamnett, A., and Vielstich, W., Electrochemistry, Wiley-Vch: New York (1998).
34. Stern, O., "Zur Theorie der, Elektrolytischem Doppelschicht", Acta Electro-chemistry, 30, 508-532 (1924).
35. Johnson, A. M. and Newman, J., "Desalting by means of porous carbon electrodes", Journal of The Electrochemical Society, 118, 510-517 (1971).
36. Oren, Y. and Soffer, A., "The electrical double layer of carbon and graphite electrodes : Part III. Charge and dimensional changes at wide potential range", Journal of Electroanalytical Chemistry, 206, 101-114 (1986).
37. Oren, Y., Glatt, I., Livnat, A., Kafri, O., and Soffer, A., "The electrical double layer charge and associated dimensional changes of high surface area electrodes as detected by more deflectometry", Journal of Electroanalytical Chemistry, 187, 59-71 (1985).
38. Golub, D., Oren, Y., and Soffer, A., "Electro adsorption, the electrical double layer and their relation to dimensional changes of carbon electrodes ", Carbon, 25, 109-117 (1987).
39. Wang, J., Angnes, L., and Tobias, H., "Carbon aerogel composite Electrodes", Anal. Chem., 65, 2300-2303 (1993).
40. Lin, C., Ritter, J. A., and Popov, B. N., "Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels", Journal of The Electrochemical Society, 146, 3155-3160 (1999).
41. Hunter, R., "Foundations of Colloid Science", Vol. I. Oxford Univ Press, New York (1992).
42. Golub, D., Soffer, A., and Oren, Y., "The electrical double layer of carbon and graphite electrodes : Part V. Specific interactions with simple ions", Journal of The Electrochemical Society, 260, 383-392 (1989).
43. Pillay, B., and Newman, J., "Influence of side reactions on the performance of electrochemical double-layer capacitors", Journal of The Electrochemical Society, 143, 1806-1814 (1996).
44. Parsons, R., "A primitive four state model for solvent at the electrode-solution interface", Journal of Electroanalytical Chemistry, 59, 229-237 (1975).
45. Dutkiewicz, E. and Lamperski, S., "Effect of molecular interaction at the interface : Part I. the metal/aqueous electrolyte interface", Journal of Electroanalytical Chemistry, 62, 13-28 (1984).
46. Lamperski, S., "A molecular model for anion adsorption at the electrode | electrolyte interface: a classical approach", Journal of Electroanalytical Chemistry, 379, 445-454 (1994).
47. Lamperski, S. J., "Molecular model for anion adsorption from electrolyte of constant ionic strength", Journal of Electroanalytical Chemistry, 437, 225-231 (1997).
48. Grahame, D. C., J. Am. Chem. Soc., 76, 4819 (1954).
49. Grahame, D. C., and Parson, R., J. Am. Chem. Soc., 83, 1291 (1961).
50 Gabelich, C. J., Tran, T. D., and Mel Suffet I. H., "Electrosorption of inorganic salts from aqueous solution using carbon aerogels", Environmental science & technology, 36, 3010-3019 (2002).
51 Bard, A. J. and Faulkner, L. R., "Electrochemical Methods Fundamental and Application", John Wiley & Sons, Canada, 1980.
52.Goel, J., Kadirvelu, K., Rajagopal, C., and Garg, V. K., "Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel", Journal of Chemical Technology and Biotechnology, 80, 469-476 (2005).
53.Meena, A. k., Mishra, G.K., Rai, P.K., Rajagopal, C., and Nagar, P.N., "Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent", Hazardous Materials, 122, 161-170 (2005).
54.Periasamy, K. and Namasivayam, C., "Removal of Ni(II) from aqueous solution and nickel industry wastewater using an agricultural waste:peanut hull", Waste Manage, 15, 63-68 (1995).
55. Keiser, H., Beccu, K.D., and Gutjahr, M.A., "Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen", Electrochim. Acta, 21, 539-543 (1976).
56.黏駿楠,「¬碳電極之氧官能基對電化學電容之影響」,碩士論文,國立成功大學化學工程學系,台南,2002。
57. Hebalkar, N., Arabale, G., Sainkar, S. R., Pradhan, S. D., Mulla, I.S., Vijayamohanan, K., Ayyub, P., and Kulkarni, S. K., " Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels", Journal of Materials Science, 40, 3777-3782 (2005).
58. Reade Advanced Materials:http://www.reade.com/
59.行政院環保署環境檢驗所,水質檢測方法。網址:http://www.niea.gov.tw/
60. American Public Health Association, American Water Works Association and Water Pollution Control Federation, "Standard Methods for the Examination of Water and Waste water", 16th Ed., Method 313 B, 205-207 (1985).
61. American Public Health Association, American Water Works Association and Water Pollution Control Federation, "Standard Methods for the Examination of Water and Waste water", 16th Ed., Method 407 D, 292-294 (1985).
62. Nightingale, E. R. Jr., "Phenomenological Theory of Ion Solvation: Effective Radii of Hydrated Ions", Journal of Physical Chemistry, 63, 1381-1387(1959).
63. Copper - the variable material! : http://www.pyrosafety.com/copper/copper.html
64.熊楚強、王月,「電化學」,新文京開發出版股份有限公司,2004
65. NJIT UCS Home:http://www-ec.njit.edu/~grow/conductivity.htm
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2006-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明