摘要(英) |
This study was to investigate turbidity removal and residuals generation in sedimentation and filtration processes of Ping-Jan Water Treatment Plant. Furthermore, physical-chemical characteristics of residuals were also analyzed.
According to the statistical data, the probability of raw water turbidity lower than 15 NTU in Ping-Jan Water Treatment Plant was 63%. However, raw water turbidity might higher than 10,000 NTU due to typhoon events. By changing the location of collecting raw water, the probability of turbidity over 10,000 NTU reduced from 4 to 1%. When influent turbidity was between the range of 15 to 500 NTU, the removal efficiency of turbidity and probability of settled water turbidity in sludge blanket clarifiers below 5 NTU were upon 90%. Moreover, the probability of settled water turbidity in tube settlers below 5 NTU was under 60% resulting from improper design of overflow weir when influent turbidity over 15 NTU. In addition, 7 NTU was the limit for the influent turbidity of Hardinge and Wheeler filters. Consequently, 3 and 6 NTU were suggested for these limits, respectively.
For coagulation sludge from sludge blanket clarifiers, the SS was 3,955 mg/L, BOD5 was 5 mg/L, and COD was 172 mg/L. In addition, the characteristics of coagulation sludge of tube settlers including 6,262 mg/L SS, 35 mg/L BOD5, and 362 mg/L COD were increased with settled time. The routine amount of coagulation sludge from sludge blanket clarifiers and tube settlers were 1,975 and 2,014 kg/day, respectively. However, sludge production was 73 times of routine amount during typhoon seasons. The analysis results of the filter backwash water (FBW) produced by Hardinge and Wheeler filters revealed that the SS was 252 and 223 mg/L, BOD5 was <1 mg/L, and COD were 17 and 11 mg/L, respectively. FBW was typically only a small fraction of filtered water volume for Harding and Wheeler filters (0.2~0.3% and 1.9~2.5%, respectively). Additionally, the amount of FBW from Wheeler filters was 7~14 times comparing to that from Hardinge filters.
When raw water turbidity was below 5 NTU, direct filtration might decrease PAC dosage in coagulation process and reduce the amount of coagulation sludge. Also, changing the strategy of two-stage coagulation sedimentation and adding flocculent while raw water turbidity was over 10,000 NTU might be reasonable. In addition, monitoring turbidity of FBW from Wheeler filters ensure media wasn’t too clean due to too long backwashing. Therefore, it might keep removal efficiency and reduce the amount of FBW of Wheeler filters. |
參考文獻 |
1.Adin, A., L. Dean, F. Bonner, A. Nasser, and Z. Huberman, “Characterization and Destabilization of Spent Filter Backwash Water Particles,” Water Science and Technology:Water Supply, Vol. 2, pp. 115-122(2002).
2.American Water Works Association(AWWA), “Water Quality and Treatment-A Handbook of Community Water Supplies,” 5th Ed, McGraw-Hill (1999).
3.Arora, H., G. D. Giovanni, and M. Lechevallier, “Spent Filter Backwash Water Contaminants and Treatment Strategies,” Journal of American Water Works Association, Vol.93, pp.100-112(2001).
4.ASCE and AWWA, “Water Treatment Plant Design”, McGraw-Hill (1971).
5.Babatunde, A. O. and Y. Q. Zhao, “Constructive Approaches toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses,” Critical Review in Environmental and Science and Technology, Vol. 37, pp. 129-164(2007).
6.Br?gger, A., K. Vo?enkaul, T. Melin, R. Rautenbach, B. Golling, U. Jacobs, and P. Ohlenforst, “Reuse of Filter Backwash Water by Implementing Ultrafiltration Technology,” Water Science and Technology: Water Supply, Vol.1, pp.207-214(2001).
7.Cocchia, S., K. H. Carlson, and F. Marinelli, “Use of Total Suspended Solids in Characterizing the Impact of Spent Filter Backwash Recycling,” Journal of Environmental Engineering, Vol.128, pp.220-227(2002).
8.Committee Report, “The Status of Direct Filtration,” Journal of American Water Works Association, Vol.72, pp.405-411(1980).
9.Cornwell, D. and M. MacPhee, “Effects of Spent Filter Backwash Water Recycling on Cryptosporidium Removal,” Journal of American Water Works Association, Vol.93, pp.153-162(2001).
10.Dotremont, C., B. Molenberghs, W. Doyen, P. Bielen, and K. Huysman, “The Recovery of Backwash Water from Sand Filters by Ultrafiltration,” Desalination, Vol.126, pp.87-94(1999).
11.Eades, A., B. J. Bates, and M. J. MacPhee, “Treatment of Spent Filter Backwash Water Using Dissolved Air Flotation,” Water Science and Technology, Vol.43, pp.59-66(2001).
12.Edzwald, J. K. and J. E. Tobiason, “Fate and Removal of Cryptosporidium in a Dissolved Air Flotation Water Plant with and without Recycle of Waste Filter Backwash Water,” Water Science and Technology: Water Supply, Vol.2, pp.85-90(2002).
13.Edzwald, J. K., K. J. Ives, J. G. Janssens, J. B. McEwen, and M. R. Wiesner, “Treatment Process Selection for Particle Removal,” Chap. 5, AWWRF/IWSA (1999).
14.Gregory, R., “Floc Blanket Clarification”, WRc Technical Report, TR111, Water Research Centre, Medmenbam (1979).
15.Kawamura, S., “Integrated Design of Water Treatment Facilities,” John Wiley & Sons (1991).
16.Masschelein, W. J., “Unit Processes in Drinking Water Treatment,” Marcel Dekker (1992).
17.McGlohorn, G., in: G. Trofatter, D. Kinard, B. Randolph, R. Welch (Eds.), “Filter Assessment Manual,” 3rd Ed, South Carolina Department of Health and Environmental Control (2003).
18.MWH, “Water Treatment Principles and Design,” 2nd Ed, John Wiley & Sons (2005).
19.Nasser, A., Z. Huberman, L. Dean, F. Bonner, and A. Adin, “Coagulation as a Pretreatment of SFBW for Membrane Filtration,” Water Science and Technology: Water Supply, Vol.2 pp.301-306(2002).
20.Reissmann, F. G. and W. Uhl, “Ultrafiltration for the Reuse of Spent Filter Backwash Water from Drinking Water Treatment,” Desalination, Vol.198, pp.225-235(2006).
21.Rout, D., R. Verma, and S. K. Agarwal, “Polyelectrolyte Treatment-An Approach for Water Quality Improvement,” Water Science and Technology, Vol.40, pp.137-141(1999).
22.Song, H., X. Fan, Y. Zhang, T. Wang, and Y. Feng, “Application of Microfiltration for Reuse of Backwash Water in a Conventional Water Treatment Plant-A Case Study,” Water Science and Technology: Water Supply, Vol.1, pp.199-206(2001).
23.Tobiason, J. E., J. K. Edzwald, V. Gilani, G. S. Kaminski, H. J. Dunn, and P. B. Galant, “Effects of Waste Filter Backwash Recycle Operation on Clarification and Filtration,” Journal of Water Supply: Research and Technology-AQUA, Vol.52, pp. 259-275(2003).
24.Tobiason, J. E., J. K. Edzwald; B. R Levesque; G. K. Kaminski, H. J. Dunn, and P. B. Galant, “Full-scale Assessment of Waste Filter Backwash Recycle,” Journal of American Water Works Association, Vol.95, pp.80-93(2003).
25.USEPA, “Handbook:Optimizing Water Treatment Plant Performance Using the Composite Correction Program,” EPA/625/6-91/027(1991).
26.Viessman, Warren, Jr and Mark J. Hammer, “Water Supply and Pollution Control,” 7th. Ed, Pearson Education (2005).
27.Vigneswaran, S., S. Boonthanonb, and H. Prasanthia, “Filter Backwash Water Recycling Using Crossflow Microfiltration,” Desalination, Vol.106, pp.31-38(1996).
28.Willemse, R. J. N. and Y. Brekvoort, “Full-scale Recycling of Backwash Water from Sand Filters Using Dead-end Membrane Filtration,” Water Research, Vol.33, pp.3379-3385(1999).
29.小坪淨水場,「自來水淨水場操作管理評鑑-九十五年度營運成果報告」,坪頂給水廠(2006)。
30.中央氣象局,「氣候監測報告」,中央氣象局氣象預報中心,http://www.cwb.gov.tw/V5/climate/watch/watch.php(2004~2007)。
31.丹保憲仁及小笠原紘一,「淨水技術」,技報堂出版株式會社(2002)。
32.王金田譯,「密度對沉澱作用之影響」,自來水會刊,第4卷,第3期,第45-52頁(1986)。
33.史午康、張次郎、班巖雄、江清蓮,「快濾池操作最佳化的探討」,自來水會刊,第11卷,第3期,第38-65頁(1992)。
34.台北自來水事業處,「台北自來水事業統計年報」,台北自來水事業處(2006)。
35.台灣自來水公司第十一區管理處,「彰化給水廠第三淨水場94年度營運報告書」,台灣自來水公司第十一區管理處(2005)。
36.平鎮淨水場,「CPE綜合效能評鑑執行成果報告」,平鎮淨水場(2003)。
37.平鎮淨水場,「九十五年度期末營運成果報告書」,平鎮淨水場(2006)。
38.甘其銓、黃志彬、張怡怡、蔣本基,「淨水場處理效能評鑑之方法及實例」,自來水會刊,第16卷、第4期,第31-50頁(1997)。
39.自來水協會,「自來水工程設施解說」,中華民國自來水協會(2006)。
40.宋金順、廖福全、張嬉麗、李坤峰,「平鎮淨水場初沉池效益探討」,自來水會刊,第20卷、第1期,第12-22頁(2001)。
41.李丁來、甘其銓、黃志彬、劉廷政、李乾華、林慶春,「淨水場去除濁度功能自我評鑑之個案研究」,自來水會刊,第18卷、第4期,第105-120頁(1999)。
42.李坤峰,「飲用水處理程序二階段添加PAC與污泥毯穩定度提昇之研究」,元智大學化學工程研究所碩士論文(2001)。
43.林玉君,「以混凝-絮凝處理高濁度原水之研究」,國立台灣科技大學化學工程系碩士論文(2000)。
44.林秀樹,「上水污泥有效利用」,環境技術,Vol.30, pp.285-289(2001)。
45.林忠逸,「水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究」,中央大學環境工程研究所碩士論文(2003)。
46.林聖寰,「淨水污泥取代黏土作為水泥生料之研究」,交通大學環境工程研究所碩士論文(2003)。
47.南化給水廠,「南化淨水場操作管理評鑑九十五年度營運成果報告」,南化給水廠(2006)。
48.洪嘉蔚及黃志彬,「有機物對污泥氈澄清池特性及處理成效影響探討」,第二十一屆自來水研究發表會報告集,第363-372頁(2004)。
49.胡南澤、曹敏中、張宇超、林益鋙、張進興,「淨水場單元操作之缺失檢討」,自來水會刊,第16卷,第4期,第51-53頁(1997)。
50.孫國鼎,「水庫淤泥及淨水污泥再利用製磚之研究」,交通大學環境工程研究所碩士論文(2001)。
51.翁韻雅,「以高分子凝集劑處理高濁度原水之研究」,成功大學環境工程學系博士論文(2003)。
52.財團法人生物技術開發中心,「高速膠凝沉澱固體接觸式膠凝池操控之研究」,台灣省自來水股份有限公司(2005)。
53.高肇凡,「給水工程」,三民出版社(1985)。
54.康世芳,「淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估」,台北自來水事業處(2001)。
55.張晉,「水處理工程與設計」,茂鼎圖書出版有限公司(1999)。
56.深溝給水廠,「深溝淨水場操作管理評鑑-九十五年度營運成果報告」,深溝給水廠(2006)。
57.郭琮貴,「原水濁度變化對高速膠凝平板式污泥毯澄清池處理效能影響之探討」,國立中央大學環境工程研究所在職碩士論文(2006)。
58.陳文祥、業清華、林信忠、盧烽銘,「快濾池反洗程序探討及技術實作」,經濟部(2007)。
59.陳兩全、宋尚軒、鍾瀚億、王之仲、林文煒、吳容銘、李篤中、李坤峰、莊瑞鑫、張嬉麗,「平底式污泥毯澄清池處理低濁度原水之膠羽特性」,第十七屆自來水研究發表會報告集,第149-170頁(2002)。
60.陳宜晶,「利用添加劑提昇淨水污泥燒結之材料品質研究」,逢甲大學環境工程與科學學系碩士論文(2004)。
61.陳國宏及陳怡靜,「降低高濁度對沉澱池衝擊探討」,自來水會刊,第23卷、第4期,第101-109頁(2003)。
62.黃志彬,「以MF薄膜程序回收淨水場砂濾反沖洗廢水之研究」,行政院國家科學委員會專題研究計畫成果報告(2005)。
63.黃志彬及洪嘉蔚,「淨水廠污泥氈澄清池操作影響因子之探討」,自來水會刊,第23卷,第4期,第17-30頁(2004)。
64.楊正邦,「反沖洗廢水處理技術之研究」,台灣科技大學化學工程系碩士論文(2005)。
65.楊正邦及劉志成,「快濾池反沖洗廢水之處理技術及回收再利用」,自來水會刊,第23卷、第4期,第81-86頁(2004)。
66.楊萬發譯,「水及廢水處理化學」,茂昌圖書有限公司(2002)。
67.鳳山淨水場,「自來水淨水場操作管理評鑑-九十五年度營運成果報告」,鳳山淨水場(2006)。
68.劉又瑞,「淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究」,交通大學環境工程研究所碩士論文(2002)。
69.潭頂淨水場,「自來水淨水場操作管理評鑑-九十五年度營運成果報告」,潭頂淨水場(2006)。
70.蔡桂郎,「自來水工程規劃」,國彰出版社(1985)。
71.鄭傳南譯,「濾池的行為」,自來水會刊,第3卷、第3期,第76-95頁(1984)。
72.謝寅雲,「淨水污泥/工業廢水污泥之燒結資源化之研究」,台灣大學環境工程研究所碩士論文(2001)。
73.鍾朝恭及劉家盛,「滾滾濁流-石門水庫的淤砂問題」,地質,第24卷,第4期,第16-37頁(2005)。
74.鯉魚潭給水廠,「鯉魚潭淨水場94年度(第1季)營運成果報告書」,台灣省自來水股份有限公司第四區管理處(2005)。
75.鯉魚潭給水廠,「鯉魚潭淨水場95年度期末(1-9月)營運成果報告書」,台灣省自來水股份有限公司第四區管理處(2006)。
76.鯉魚潭給水廠,「鯉魚潭淨水場九十三年度營運成果報告書」,台灣省自來水股份有限公司第四區管理處(2004)。
77.羅健成譯,「水平流沉澱」,自來水會刊,第4卷、第3期,第38-44頁(1985)。
78.羅雅含,「工業廢水污泥卅淨水污泥共同熔融處理之資源化研究」,台灣大學環境工程研究所碩士論文(2002)。
79.寶山淨水場,「寶山淨水場九十五年度(1-9月)營運成果報告書」,寶山淨水場(2006)。
80.寶山淨水場,「寶山淨水場九十四年度營運成果報告書-期中報告」,寶山淨水場(2005)。
81.蘇信團,「向上流動懸浮流體床之泥毯動態研究」,台灣大學化學工程研究所碩士論文(2003)。 |