以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:165 、訪客IP:18.216.145.37
姓名 楊逸楨(Yi-Chen Yang) 查詢紙本館藏 畢業系所 環境工程研究所 論文名稱 土壤無機相對有機污染物吸附特性之研究
(Characteristics of organic contaminants adsorption on mineral surface of soil)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 乾燥或水分未達飽和之天然土壤其與環境中有機污染物之作用,往往因土壤有機相含量較無機相為低,使土壤無機相主導整體吸附行為。在水溶液或水分達飽和之系統中,因土壤無機相對水分子之親和力較大,土壤無機相傾向於優先吸附水分子再與有機污染物作用,雖然土壤無機相對於有機污染物仍有微量吸持作用,但相較於有機相之分佈量仍屬偏低。過去許多學者曾針對天然土壤進行水相與氣態之研究,但天然土壤在酸鹼淋洗純化後仍含有無法去除之有機質,且土壤經純化後易導致無機相結構與表面特性改變,使單純具有土壤無機相之研究甚為艱難。本研究為克服土壤無機相純化上之缺點,因此選用三種與土壤無機相礦物晶體結構與化性組成雷同,且不含有任何有機質之人工合成物質:沸石、氧化鋁、矽膠,來模擬土壤無機相於水相、氣相中進行與環境常見有機污染物質:苯、正己烷、環己烷及甲苯之吸附實驗。結果顯示,乾燥系統中,吸附等溫線呈現BET模式中第II型曲線,吸附量與吸附劑比表面積大小呈正相關,並受吸附質分子形狀、極性及官能基影響。由BET吸附理論計算可得各吸附質及水分子對土壤無機相表面之第一層吸附熱,顯示水分子於吸附發生時相較於有機污染物優先被土壤無機相吸附,因此解釋水相系統中,等溫線呈現線性之原因為有機污染物以分離狀態與水分子呈現混合相分佈薄層,以凡得瓦力及官能基引力吸持於吸附劑表面之水膜上,使吸附熱小於凝結熱,並呈現非競爭線性等溫線。研究除證明水分子於水相吸附系統所扮演之角色,亦可得水相系統中吸附量僅與有機污染物水溶解度呈現負相關之結論。 摘要(英) The sorption phenomena of organic compound in dry or water- unsaturated soil are dominated by mineral/inorganic adsorption due to the relatively low soil organic matter contents. However, in water- saturated system, the partioning of organic compounds into soil organic matter as the major process because the adsorption of organic compounds by minerals is suppressed by water.
The sorption of organic compounds by natural soil in dry/water- saturated system has been studied extensively. However there are still some controversies in purification of soil inorganic phase. To overcome the purification shortcomings of soil inorganic phase, three highly pure synthetic mineral oxides with no detectable organic carbon:Boiling chips、Aluminum oxide and Silica gell were selected as adsorbents; In addition, n-hexane、cyclohexane、benzene and toluene were selected as adsorbates for all experiments to evaluate the sorption phenomena between soil mineral phase and organic compounds in dry/water- saturated systems. In dry system,all isotherms are in the form of BET type II,total adsorption capacity was related to adsorbent surface area. Most notably, as stated, the extent of uptake for given compounds is affected by molecular steric structure、polarity as well as polar-group of adsorbate. The heat of first layer on adsorbent surface of all adsorbates and water was calculated by BET adsorption theory. The sorption data in aqueous system show that water molecule must be preferentially adsorbed by soil mineral phase and offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition and hence organic solutes are separated by water showing a partition flake. Adsorption occurs presumably by dispersion forces and polar-group interactions onto a water film above the mineral surface. This study not only proved the role of water in linear adsorption, but also revealed the negative relationship between Kd and water solubility of organic compounds.關鍵字(中) ★ 土壤無機相
★ 吸附作用
★ 分佈作用關鍵字(英) ★ soil inorganic phase
★ adsorption
★ partition論文目次 目 錄.............................................................................................................. I
圖目錄.......................................................................................................... IV
表目錄...........................................................................................................VI
第一章 前言...................................................................................................1
1-1 研究緣起..................................................................................................1
1-2 研究目的與內容......................................................................................2
第二章 文獻回顧...........................................................................................3
2-1 土壤基本性質..........................................................................................3
2-2 土壤對有機污染物之吸持作用..............................................................5
2-2-1 吸附理論 ( Adsorption Theory ).....................................................9
2-2-2 等溫吸附模式..................................................................................9
2-2-3 等溫吸附曲線................................................................................14
2-2-4 等溫吸附曲線之遲滯現象............................................................16
2-3 分佈理論 ( Partitioning )......................................................................19
2-4 土壤有機相與無機相純化方式............................................................22
2-5 NOCs於親水性礦物中微量線性分佈行為........................................23
第三章 實驗內容、設備、材料與方法.........................................................25
3-1 實驗內容................................................................................................25
3-2 實驗設備................................................................................................27
3-2-1 氮氣吸附孔隙儀 ( ASAP ) ..........................................................29
3-2-2 掃描式電子顯微鏡 ( SEM+EDS ) ...............................................29
3-3 實驗材料................................................................................................31
3-3-1 吸附劑............................................................................................31
3-3-2 吸附質............................................................................................32
3-3-3 其他試劑........................................................................................35
3-4 研究方法................................................................................................36
3-4-1 氣態吸附實驗................................................................................36
3-4-1.1 氣態吸附實驗配置.............................................................36
3-4-1.2 氣態吸附實驗步驟.............................................................38
3-4-2 水飽和相吸附實驗........................................................................40
3-4-2.1 水飽和相吸附實驗步驟.....................................................40
第四章 結果與討論.....................................................................................44
4-1土壤無機相理化性質分析......................................................................44
4-4-1 BET比表面積、孔徑體積、平均孔徑與孔徑分佈....................44
4-1-2 吸附劑表面影像與元素分析......................................................49
4-2 土壤無機相對有機污染物氣態吸/脫附行為......................................52
4-2-1 不同吸附劑特性對氣態吸/脫附行為之影響.............................58
4-2-2 不同吸附質特性對氣態吸/脫附特性之影響.............................63
4-2-3 吸附質與水分子對吸附劑表面親和力探討..............................68
4-3 水飽和相吸附實驗...............................................................................71
4-3-1 NOCs於親水性礦物表面之微量線性分佈行為.........................72
4-3-2 不同吸附劑特性對微量線性分佈行為之影響..........................79
4-3-3 不同吸附質特性對微量線性分佈行為之影響..........................83
4-3-3.1 吸附質分子構形對微量線性分佈行為之影響...............84
4-3-3.2 吸附質水溶解度對微量線性分佈行為之影響...............86
第五章 結論與建議.....................................................................................89
5-1 結論........................................................................................................89
5-2 建議........................................................................................................90
參考文獻.......................................................................................................91參考文獻 1. 王明光,“土壤環境礦物學”,藝軒圖書出版社,台北(2000)。
2. 戴國邦, “土壤礦物 能源資源與環境”,第六卷,第三期,第16-21
頁(1993)
3. 王一雄、陳尊賢、李達源, “土壤污染學”,國立空中大學,初版,(1995)
4. Donald L. Sparks 原著,王明光譯,“環境土壤化學”,五南圖書,初版(2000)
5. 石濤, “環境化學”,景茂圖書,四版(2000)
6. Felbeck, G. T., “Structural Chemistry of Soil Humic Substances ”,
Adv. Agron. pp. 327-368 (1965)
7. Lambert, S. M., “Functional Relationship Between Sorption in Soil and
Chemical Structure,” Journal of Agric. Food Chem., 15,
pp.572-576 (1976).
8. Chiou, C. T., P. E. Peter, and V. H. Freed, “A Physical Concept of
Soil-Water Equilibria for Nonionic Organic Compounds,” Science,
206, pp. 831-832 (1979).
9. Chiou, C. T., P. E. Peter, and D. W. Schmedding, “Partition Equilibria of Nonionic Organic Compounds between Soil Organic Matter nd water,” Environmental Science & Technology, 17, pp.227-231 (1983).
10. Chiou, C. T., T. D. Shoup, and P. E. Peter, “Mechanistic Roles of Soil
Humus and Minerals in the Sorption of Nonionic Organic Compounds from Aqueous and Organic Solution,” Org. Geochem., 8,pp.9-14(1985a).
11. Chiou, C. T., and T. D. Shoup, “Soil Sorption of Organic Vapors and
Effects of Humidity on Sorptive Mechanism and Capacity,”
Environmental Science & Technology, 19, pp.1196-1200 (1985b).
12. Ruthven, D. M., “Principles of Adsorption and Adsorption Process,”
John Wiley & Sons (1984).
13. Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am. Chem.
Soc., 62, pp.1723 (1940).
14. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31, pp.578 (1972).
15. Thlbaud, C., C. Erkey, and A. Akgerman, “Investigation of adsorption
equilibria of volatile organics on soil by frontal analysis chromatogram -phy,” Environmental Science & Technology, 26, pp.1159-1164 (1992)
16. Campagnolo, J. F., and A. Akgerman, “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents,” J. Hazard. Mater., 49, pp.231-245 (1996).
17. Dural, N. H., and C. H. Chen, “Analysis of vapor phase adsorption
equilibrium of 1,1,1-trichloroethane on dry soils,” J. of Hazard. Mater., 53, pp.75-92 (1997).
18. Goring C. A. I.“Control of nitrification by 2-chloro-6-(trichloro-methyl)
pyridine., Soil Sci , 93 , 211-218 (1962)
19. Chiou, C. T. and D. W. Schmedding “Partitioning of Organic Compounds in Octanol-water System”, Environmental Science &
Technology, Vol.16, No4, pp.4-10 (1982)
20. Chiou, C. T., Poter, P. E. and D. W. Schmedding, “Partition Equilibria of Nonionic Organic Compounds between Soil Organic Matter and Water”, Environmental Science & Technology, Vol.17, No.4, pp.227-231 (1983)
21. Bear, F. E. (Ed.), “Chemistry of The Soils”, New York, (1964)
22. Stevenson, F. J.,“Human Chemistry Genesis, Composition, Reactions.”Wiley, J and Sons, INC, pp337-354 (1982)
23. Huang, W.; Schlautman, M. A.; Weber, W. J., Jr. A distributed reactivity model for sorption by soils and sediments. 5. The influence of near-surface characteristics in mineral domains. Environ. Sci. Technol., 30, 2993-3000 (1996)
24. Mader, B. T., Goss, K. U.; Eisenreich, S. J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environ. Sci. Technol. 31, 1079-1086 (1997)
25. Huang, W.; Weber, W. J., Jr. Thermodynamic considerations in the sorption of organic contaminants by soils and sediments. 1. The isosteric heat approach and its application to model inorganic sorbents. Environ. Sci. Technol. 31, 3238-3243 (1997)
26. Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C. T. Linear Adsorption of Nonionic Organic Compounds from Water onto Hydrophilic Minerals: Silica and Alumina. Environ. Sci. Technol. 40, 6949-6954 (2006)
27. Chiou, C. T., D. E. Kile, and R. L. Malcolm, “Sorption of Vapors of Some Organic Liquids on Soil Humic Acid and Its Relation to Partition of Organic Compounds in Soil Organic Matter,”Environmental Science & Technology, 22, pp.298-303 (1988).
28. Ong, S. K., and L. W. Lion, “Trichloroethylene vapor sorption onto soil minerals,” Soil Sci. Soc. Am. J., 55, pp.1559-1568 (1991b).
29. Rutherford, D. W., and C. T. Chiou, “Effect of Water Saturation in Soil Organic Matter on the Partition of Organic Compounds,” Environmental Science & Technology, 26, pp.965- 970 (1992).
30. Chiou, C. T., D. W. Rutherford, and M. Manes, “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data,” Environmental Science & Technology, 27, pp.1567-1574 (1993).
31. Chiou, C. T., and D. E. Kile, “Effect of polar and nonpolar groups on the solubility of organic compounds in soil organic matter,” Environmental Science & Technology, 28, pp.1139-1144 (1994).
32. Campagnolo, J. F., and A. Akgerman, “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents,” J. Hazard. Mater., 49, pp.231-245 (1996).
33. Dural, N. H., and C. H. Chen, “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils,” J. of Hazard. Mater., 53, pp.75-92 (1997).
34. 黃富昌,”土壤結構及化性對有機污染物吸/脫附特性之研究”,博士論文,國立中央大學環境工程研究所(2004)
35. 許鴻升,”以高分子聚合物模擬土壤有機質特定官能基對氣態有機物吸附行為之影響”,碩士論文,國立中央大學環境工程研究所(2004)
36. 朱永成,”黏粒中不同水合能交換性陽離子催化加氯副產物之探討”,碩士論文,國立中央大學環境工程研究所(2005)
37. RCR Rress,”Handbook of Chemistry and Physics”,pp C671~675,(1987~1988)
38. Gregg, S. J., and K. S. W. Sing, “Adsorption, Surface Area and Porosity ,” Academic Press Inc., London (1982)
39. Berck, D. W., “Zeolites Molecular Sieves:Structure, Chemistry and Use,” Wiley, New York (1974).
40. Ruiz, J., R. Bilbao, and M. B. Murillo, “Adsorption of Different VOC onto Soil Minerals from Gas Phase: Influence of Mineral, Type of VOC, and Air Humidity,” Environmental Science & Technology, 32, pp.1079-1084(1998).指導教授 李俊福(Jiunn-fwu Lee) 審核日期 2007-7-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare