博碩士論文 87321040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:18.188.154.238
姓名 謝潼穎(Tong-Ying Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 惰性粒子對奈米觸媒在液相氫化反應之影響
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米觸媒由於具有等方向性及大量的表層原子,因此反應活性相當優異。但由於觸媒本身的粒子介於奈米級之間( <100 nm),因此在進行液相的反應時易於因本身的凡得瓦力的影響而聚集,造成在反應器內的分佈不均,而降低其反應性。故一般都需要將轉速提高至高轉速的高耗能狀態,方能使奈米粒子達到完全分散的目的,且克服反應時外部質傳的問題。
本研究旨在探討惰性粒子,如氧化鋁、氧化矽、氧化鋯以及活性碳等,對硼化鎳奈米觸媒在液相氫化反應的影響,其中包括了改變惰性粒子的成分、轉速、溶劑及不同的氫化反應,藉著這些的變化來更進一步地瞭解惰性粒子在液相氫化反應中所扮演的角色。,
進行硝基苯的氫化反應且使用環己烷最為溶劑時,可發現加入惰性粒子確實可以增強奈米觸媒的催化活性,其增強效果大小如下:氧化鋁>氧化矽>氧化鋯>活性碳。而比較加入的惰性粒子/硼化鎳觸媒的重量比所產生增強效應的最佳比例,對於氧化鋁而言是10,對於氧化矽而言是7.5。
當進一步進行轉速效應的研究後,對於在低轉速時加入惰性粒子後的增強效應最好,平均可提高硝基苯的轉化率100 %以上,最高可以達到280 %附近;但在高轉速區的增強效果較差,但最少也有55 %的增強效應。
當改變溶劑為甲醇時,加入惰性粒子並沒有增強效應的產生,甚至產生反效果;在糠醛的選擇性氫化反應中,加入惰性粒子亦可以有效地提升奈米觸媒的催化活性。而在糠醛的氫化反應中不論是在低轉速區或是在高轉速區,惰性粒子的增強效應都差不多。
摘要(英) Ultrafine catalysts had good activity owing to their isotropic and amount surface atoms. But those nanoparticles were agglomerated for van der wall force and their adhesion to the metallic surface of the reactor wall. Therefore, the agitation of liquid reaction was increased for high stirring speed to make nanoparticles dispersed well and overcome external mass transfer.
The effects of inert solids such as alumina, silica, zirconia and charcoal activated in liquid hydrogenation were discussed in this paper. The rule of solid in liquid hydrogenation were research by varied some parameters such as compounds of solid, agitated speed, solvent and different reactions.
The enhancement of inert solid was find significantly in nitrobenzene hydrogenation when solvent was cyclohexane. The enhancements of solids were listed: alumina> silica> zirconia> charcoal activated. The optimum weight ratio of Al2O3/Ni-B was 10 and SiO2/Ni-B was 7.5.
For farther research for effect of agitated speed, the best enhancement of inert solid was existed in low agitated speed. The conversion was average increased over 100 %, and maximum enhancement was 281 %. But high-agitated speed had low enhancement, the conversion only increased for 55 %.
When changed solvent as methanol, the enhancement of inert solid was not existence even had disutility. The enhancement of inert solid also was exited in furfural selectivity hydrogenation. Both high-agitated speed and low-agitated speed in furfural hydrogenation, the enhancement of inert solid was distributed in 60 %~ 80 %.
關鍵字(中) ★ 液相氫化反應
★ 加強效應
★ 奈米觸媒
★ 惰性粒子
★ 硝基苯
★ 糠醛
關鍵字(英) ★ liquid hydrogenation
★ enhancement effect
★ nanocatalyst
★ solid
★ nitrobenzene
論文目次 本文
第一章 序論
第二章 文獻回顧
2.1 硼化鎳奈米觸媒的特性
2.2 硼化鎳奈米觸媒的催化性質
2.3 惰性粒子在氣-液相吸收系統上的應用
2.3.1 惰性粒子對氫化金屬化合物的影響
2.3.2 惰性粒子對於氣-液相質傳速率的影響
2.4 惰性粒子在有機溶劑中扮演的角色
2.5 硝基苯與糠醛的氫化反應
2.5.1 硝基苯的氫化反應
2.5.2 糠醛的的氫化反應
第三章 實驗方法與設備
3.1 藥品與氣體
3.1.1 藥品
3.1.2 氣體
3.2硼化鎳奈米觸媒的製備
3.2.1 硼化鎳觸媒的製備
3.3觸媒的性質鑑定
3.3.1 元素分析
3.3.2 X-射線繞射
3.3.3 總表面積測量
3.3.4 掃描式電子顯微鏡
3.3.5 穿透式電子顯微鏡
3.3.6 光學照相機
3.4 觸媒反應測試
3.4.1 反應裝置
3.4.2 反應步驟
3.4.3 分析方法
第四章 觸媒的性質
4.1 元素分析
4.2 X-射線繞射
4.2.1 非結晶形的結構
4.3 總表面積測量
4.4 掃描式電子顯微鏡
4.5 穿透式電子顯微鏡
4.6 光學照相機
第五章 結果與討論
5.1 硝基苯氫化反應的活性
5.1.1 惰性粒子成分的效應
5.1.2 轉速對氧化鋁的增強效應的影響
5.1.3溶劑的效應
5.2 糠醛的選擇性氫化反應
第六章 結稐
第七章 參考文獻
附錄
參考文獻 Allinger, N. L. et al. Organic Chemistry. 2nd ed., Worth Publishers, Inc., New York, N. Y. 1977, pp. 560.
Alper, E.; Wichtendahl, B. and Deckwer W. -D. Gas Absorption Mechanism in Catalytic Slurry Reactors. Chem. Eng. Sci. 1980, 35, pp. 217-222.
Aramendia, M. A.; Borau, V.; Gomez, J. Jimenez, G. and Marinas, J. M. Appl. Catal. 1984, 10, pp. 347.
Bajjun, L.; Lianhai, L.; Bingchun, W.; Tianxi, C. and Iwatani, K. Liquid Phase Selectivity Hydrogenation of Furfural on Raney Nickel Modified by salts of Heteropolyacids. Appl. Catal. A: General 1998, 171, pp. 117.
Barnett, C. Hydrogenation of Aliphatic Nitriles Over Transition Metal Borides. Ind. Eng. Chem. Prod. Res. Dev. 1969, 8 (2), pp. 145.
Bartos, T. M. and Satterfield, C. N. Effects of Finely Divided Solids on Mass Transfer between a Gas and an Organic Liquid. AIChE J. 1986, 32 (5), pp. 773-781.
Beenackers, A. A. C. M. and Van Swaaij, W. P. M. Mass Transfer in Gas-Liquid Slurry Reactors. Chem. Eng. Sci. 1993, 48 (18), pp. 3109-3139.
Brown, C. A. Catalytic Hydrogenation . V. The Reaction of Sodium Borohydride with Aqueous Nickel Salts. P-1 Nickel Boride, a Convenient, High Active Nickel Hydrogenation Catalyst. J. Org. Chem. 1970, 35 (6), pp. 1900.
Brown, C. A. and Ahuja, V. K. Catalytic Hydrogenation . VI. The Reaction of Sodium Borohydride with Nickel Salts in Ethanol Solution. P-2 Nickel, A Highly Convenient, New, Selective Hydrogenation Catalyst with Great Sensitivity to Substrate Structure. J. Org. Chem. 1973, 38 (12), pp. 2226.
Burge, H. D. and Collins, D. J. Intermediates in the Raney Nickel Catalyzed Hydrogenation of Nitrobenzene to Aniline. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, pp. 389.
Chaudhari, R. V.; Jaganathan, R.; Kolhe, D. S.; Emig, G. and Hofhann, H. Kinetic Modelling of a Complex Consecutive Reaction in a Slurry Reactor: Hydrogenation of Phenyl Acetylene. Chem. Eng. Sci. 1986, 41 (12), pp. 3073-3081.
Collins, D. J. and Smith, A. D. Hydrogenation of Nitrobenzene Over P-2 Nickel Boride Catalyst. M. Enf. Theses, University of Louisville. 1979.
Collins, D. J. and Smith, A. D. Hydrogenation of Nitrobenzene Over Nickel Boride Catalyst. Ind. Eng. Chem. Prod. Res. Dev. 1982, 21, pp.279.
Deng, J. F. and Chen, H. Y. A Novel Amorphous Ni-W-P Alloy Powder and Its Hydrogenation Activity. J. Mateer. Sci. Lett. 1993, 12, pp. 1508.
Deng, J. ; Yang, J.; Sheng, S.; Chen, H. and Xiong, G. The Study of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as Catalysts. J. Catal. 1994, 150, pp. 434.
Demmink, J. F.; Mehra, A. and Beenackers, A. A. C. M. Gas Absorption in the Presence of Particles Showing Interfacial Affinity: Case of Fine Sulfur Precipitates. Chem. Eng. Sci. 1998, 53 (16), pp. 2885-2902.
Fukuoka, Y.; Nagahara, H. and Konishi, H. A New Catalyst for Selectivity Partial Hydrogenation of Benzene. Cal. Soc. Jpn. 1993, 35, pp. 34.
Ganem, B. and Osby, J. O. Synthetically Useful Reactions with Metal Boride and Aluminite Catalysts. Chem. Rev. 1986, 86, pp. 763.
Giner, J. and Rissmann, E. The Catalytic Activity of Nickel and Nickel Boride for Formic Acid Decomposition. J. Catal. 1967, 9 ,pp. 115.
Holstvoogd, R. D.; Ptasinski, K. J.; Van Swaaij, W. P. M. Penetration Model for Gas Absorption with Reaction in a Slurry Containing Fine Insoluble Particles. Chem. Eng. Sci. 1986, 41, pp. 867-873.
Holstvoogd, R. D.; Van Swaaij, W. P. M.; Van Dierendonck L. L. The Absorption of Gases in Aqueous Activated Carbon Slurries Enhanced by Adsorbing or Catalytic Particles. Chem. Eng. Sci. 1988b, 43, pp. 2181-2187.
Joly-Vuillemin, C.; Gavroy, D.; Cordier, G. Bellefon, C. De. and Delmas, H. Three-Phase Hydrogenation of Adiponitrile Catalyzed by Raney Nickel: Kinetic Model Discrimination and Parameter Optimization. Chem. Eng. Sci. 1994, 49 (24), pp. 4839-4849.
Izum, Y.; Tanaka, Y. and Urade, K. Selectivity Catalytic Hydrogenation of Propargyl Alcohol with Heteropoly Acid-Modified Palladium. Chem. Lett. 1982, pp. 679.
Joly-Vuillemin, C.; De Bellefon, C. and Delmas, H. Solid Effects On Gas-Liquid Mass Transfer in Three-Phase Slurry Catalytic Hydrogenation of Adiponitrile over Raney Nickel. Chem. Eng. Sci. 1996, 51 (10), pp. 2149-2158.
Kishida, S.; Murakami.; Imanaka, T. and Teranishi, S. Hydrogenation of Various Ketones on Nickel Boride Catalyst. J. Catal. 1968, 12, pp. 97.
Koritala, S. and Dutton, H. Selectivity Hydrogenation of Soybean Oil with Sodium Borohydride-Reduced Catalyst. J. Am. Oil. Chem. Soc. 1966, 433, pp. 86.
Lee, S. P. and Chen, Y. W. Selectivity Hydrogenation of Furfural on Ni-P, Ni-B and Ni-P-B Ultra Material. Ind. Chem. Res. 1999, 35, pp. 2548.
Li, C.; Chen, Y. and Wang, W. J. Nitrobenzene Hydrogenation over Aluminum Borate Supported Platinum Catalyst. Appl. Catal. 1994, 119, pp. 185.
Linder, D.; Werner, M. and Schumpe, A. Hydrogen Transfer in Slurries of Carbon Supported Catalyst (HPO Process). AIChE J. 1988, 34 (10), pp. 1691-1697.
Liu, I. H.; Chang, C. Y.; Shih, S. M.; Chiu, I. C.; Chu, H. W. and Chen, C. H. Absorption Removal of Carbon Dioxide in the Presence of Inert Solid Particles Flour Powder. J. Chin. Ins. Eng. 1993, 16 (5), pp. 615-620.
Liu, I. H.; Chang, C. Y.; Liu, S. C.; Chang I. C. and Shih, S. M. Absorption Removal of Sulfur Dioxide by Falling Water Droplets in The Presence of Inert Solid Particles. Atmo. Envir. 1994, 28 (21), pp. 3409-3415.
Maybury, P. C.; Mitchell, R. W. and Hawthorne, M. F. Hydrogen Adducts of Cobalt and Nickel Boride. J. Chem. Soc. 1974, D, pp. 534.
McEvoy, J. and Shalit, H. U.S. Copper Chromite Hydrogenation Catalyst, Patent, 1968, 3,374,184.
Mears, D. E. and Boudart, M. The Dehydrogenation of Isopropanol on Catalysts Prepared by Sodium Borohydride Reaction. AIChE J. 1966, 12, pp. 313.
Meng, H. M.; Chang, C. Y. and Chiu, I. C. Effect of Inert Solid Particles (Flour Powder) on Absorption Removal of Ammonia. J. Chin. Ins. Envron. Eng. 1993, 3 (1), pp. 65-71.
Mitsui, O. a Metcalfe, A. and Rowden, M. W. Hydrogenation of nitrobenzene over Palladium-Silver Catalysts. J. Catal. 1971, 22, pp. 30.
nd Fukuoka, Y. (Asahi Chem. Ind.) US Patent 4 678 861, 1985.
Nagahara, H. and Kohishi, M. (Asahi Chem. Ind.) Eur. Patent 220 525, 1986.
Nagahara, H. and Kohishi, M. (Asahi Chem. Ind.) jpn. Patent 6 281 332, 1986.
Nitta, T.; Imanaka, T. and Ternish, S. Hydrogenation Activity and Selectivity of Cobalt Boride and Cobalt Nickel Binary Catalysts. Bull. Chem. Soc. Jpn. 1980, 53, pp. 3154.
Okamoto, Y.; Nitta, Y.; Imanaka, T. and Teranishi, S. Surface Characterisation of Nickel Boride and Nickel Phosphide Catalysts by X-ray Photoelectron Spectroscopy. J. Chem. Soc. Faraday Trans. I. 1973, 75, pp. 2027.
Paul, R.; Buisson, P. and Joseph, N. Catalytic Activity of Nickel Borides. Ind. Fng. Chem. 1952, 44, pp. 1006.
Rao, R.; Dandekar, A.; Baker, R. T. K. and Vannice, M. A. Properties of Copper Chromite Catalysts in Hydrogenation Reaction. J. Catal. 1997, 171, pp. 406.
Rajadhyaksha, R. A. and Karwa, A. L. Solvent Effects in Catalytic Hydrogenation. Chem. Eng. Sci. 1986, 41 (7), 1765-1770.
Rei, M. H.; Sheu, L. L. and Chen, Y. Z. Nickel Boride Catalysts in Organic Synthesis. Appl. Catal. 1986, 23, pp. 281.
Schlesinger, H. I. and Brown, H. C. New developments in the Chemistry of Diborane and Borohydrides, I. Gerenal Summary. J. Am. Chem. Soc. 1953a, 75, pp. 186.
Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Gilbreath, J. R.; Hoeksta, H. R. and Hyde, E. K. Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen, J. Am. Chem. Soc. 1953b, 75, pp. 215.
Schrefifels, J. A.; Maybury, P. C. and Swartz, W. E. Jr. X-Ray Photoelectron Spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with Reaction Products in the Hydrogenation of Acrylonitrile. J. Catal. 1980, 65, pp. 195.
Seo, G. and Chon, H. Hydrogenation of Furfural over Copper-Containing Catalysts. J. Catal. 1981, 67, pp. 424.
Tamaki, J.; Takagaki, H. and Imanaka, T. Surface Characterization of Amorphous Ni-B Films Treated with Oxygen. J. Catal. 1987, 108, pp. 256.
Thomas, D. U.S. Catalyst Comprising Raney Nickel with Adsorbed Molybdenum Compound. Patent. 1979, 4,153,578.
Uken, A. H. and Bartholomew, C. H. Borided Metal Catalysts in Methanation of Carbon Monoxide. J. Catal. 1980, 65, pp. 402.
Wang, W.; Oian, M.; Yang, J.; Xie, S. and Deng, J. F. Selective Hydrogenation of Cyclopentene over an Amorphous NiB/SiO2 Catalyst. Appl. Catal. 1997, 163, pp. 101-109.
Wimmers, O. J.; Paulussen, R.; Vermeulen, D. P. and Fortuin, J. M. H. Enhancement of Absorption of a Gas into a Stagnant Liquid in which a Heterogeneously Catalysed Chemical Reaction Occurs. Chem. Eng. Sci. 1984, 39 (9), pp. 1415-1422.
Wimmers, O. J. and Fortuin, J. M. H. The Use of Adhesion of Catalyst Particles to Gas Bubbles to Achieve Enhancement of Gas Absorption in Slurry Reactors-II. Determination of the Enhancement in a Bubble-Containing Slurry Reactor. Chem. Eng. Sci. 1988, 43 (2), pp. 313-319.
Wisniak, J. and Hlein, M. Reduction of Nitrobenzene to Alniline. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, pp. 44.
Yao, H. C. and Emmett, P. H. Kinetics of Liquid Phase Hydrogenation. IV. Hydrogenation of Nitrocomounds Over Raney Nickel Powder Catalysts. J. Am. Chem. Soc. 1962, 84, pp. 1086.
李少白.,” 鎳-磷-硼納米觸媒之鑑定與催化性質之研究”,國立中央大學化工研究所博士論文,(1999)。
許臨龍,陳吟足,雷敏宏,”A New Ferromagenatic Catalysts from the Diborane Reduced of NickelAcetate” 2nd ROC-Japan Catalyst Symposium, 1984, 106.
陳義忠.,” 對氯硝基苯於硼化鎳觸媒之選擇性氫化反應”,國立中央大學化工研究所碩士論文,(1993)。
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2000-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明