博碩士論文 88341001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.34.237
姓名 龍明有(ming-yeou Lung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 樟芝發酵生產多醣體及其抗氧化特性之研究
(Exopolysaccharide Production and Antioxidant Property of Antrodia camphorata in Batch Fermentation)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 樟芝(Antrodia camphorata)又稱牛樟芝(niu-chang-chih),為一種特有之真菌,只寄生於腐朽中空的牛樟樹(Cinnamomum kanehirai Hayata)上,樟芝是非常重要的中國藥用真菌擔子菌(Basidiomycetes),可用於治療食物及藥物之中毒、腹痛、高血壓、肝癌等疾病。目前有潛力之化合物如固醇類、三怗類已被分離及鑑定出其成分,而且從樟芝子實體及液態培養之菌絲體萃取出之多醣體已證明具有抗B型肝炎病毒(anti-hepatitis B virus)之活性。雖樟芝具有相當潛力之藥學應用,但是很少資訊報導有闗於利用製程之觀點來生產具生物活性之化合物。這也許是因為樟芝寄生專一性(只寄生在牛樟樹)、自然產量很少及很少用人工栽培成功。因此為了解決此問題,樟芝液態培養生產生物活性物質如多醣體為很好之途徑。本研究是利用樟芝之液態發酵藉有機酸及pH之調控來提昇多醣之產量,同時檢測其生物活性。為了程序之設計與最適化,此研究也提出數學模式來模擬pH對樟芝多醣生產之效應。
結果顯示,在搖瓶培養,添加六種有機酸對細胞成長及多醣產量之影響,除丙酮酸(pyruvic acid)外,其餘酸都對細胞成長有抑制作用。在添加六種有機酸之條件下所生成之多醣具有較低之算術平均分子量(Mn),添加琥珀酸(succinic acid)能增加30% 之多醣產量,且在添加3.0g/L琥珀酸時可得最佳之產率。隨著琥珀酸添加量從0到5g/L則EPS之產率隨之上升。在氣舉式生物反應器(air-lift bioreactor)培養,在添加3.0g/L琥珀酸時可提升28%的EPS產率及可得較高之EPS分子量(Mn)大約為310kDa,此外,添加3.0g/L琥珀酸能抑制EPS之降解(degradation)而可得較高之分子量(Mn)。
在攪拌式發酵槽培養,培養條件pH對樟芝發酵液(filtrates)及菌絲體(mycelia)甲醇萃取液之抗氧化及清除自由基活性影響很大。發酵液及菌絲體甲醇萃取液的抗氧化活性是明顯和總多酚含量、多醣含量及蛋白質和多醣比值有關。樟芝發酵生產抗氧化成分之最佳條件是在pH 5.0,在此條件下,菌絲體甲醇萃取液有最大的總多酚含量及多醣含量各為152.2 mg/g 及 33.5%。和樟芝子實體比較,在培養條件pH 5.0之下,可得較高之抗氧化劑產量。從最初培養液萃取而得之甲醇萃取液含非常低的抗氧化活性可證明發酵液及菌絲體甲醇萃取液的抗氧化活性主要是來自發酵程序。因此,從研究成果證明利用液態發酵生產抗氧化劑可替代樟芝子實體。
在搖瓶及攪拌式發酵槽培養,不同pH培養條件對樟芝的成長、 EPS生合成及EPS之分子量影響很大。在控制pH的攪拌槽培養,最佳的細胞成長條件是在pH 4.0,細胞產率(cell yield) 是0.3g/g,但最適EPS生合成的pH為5.0,其產率為5.05mg/g.在較低的pH培養條件,可得相當高的分子量(Mn)及較低產率之EPS,然而,相當低的分子量(Mn)及較高產率之EPS是在較高pH培養條件得到。在搖瓶培養得到的EPS其分子量(Mn)是比在攪拌式發酵槽培養的還高。兩階 段pH操作證實可提升EPS產率為148mg/L及有高的分子量(Mn) 2.18 x 105 Da.
數學模式來模擬pH對樟芝生物質量、EPS生產及EPS分子量之效應。一個簡單數學模式被提出就是利用logistic、Luedeking-Piret及modified Luedeking-Piret 方程式分別來模擬細胞的成長、EPS生產及glucose的消耗。在這數學模式,和pH有關的參數是被求出。成長速率常數和EPS分子量是用exponential equation來模擬。最大生物質量(maximum biomass)、對EPS生成與成長無關參數(non-growth-associated constants for product formation)及EPS產率可用 Gaussian equation 來描述。modified Luedeking-Piret 的參數則用quadratic expression來模擬。本研究所提出的數學模式能夠精確地描述實驗數據。
摘要(英) Antrodia camphorata (Chinese name, niu-chang-chih or chang-chih) is an exclusive fungus parasitic on the inner cavity of the endemic species Cinnamomum kanehirai Hayata and an important traditional Chinese medicinal fungus (Basidiomycetes) for the treatment of human diseases such as food and drug intoxication, diarrhea, abdominal pain, hypertension, itchy skin and liver cancer. Some bioactive compounds of A. camphorata including sesquiterpene lactone, steroids and triterpenoids have been isolated and characterized. Recently, polysaccharides extracted from fruiting bodies and mycelial cultures of A. camphorata have been shown to have anti-hepatitis B virus activities. In spite of these potential pharmaceutical applications, relatively rare information regarding the process aspects of producing these bioactive compounds has been published. This might be partially due to host specificity, rarity in nature and little success in artificial cultivation. Therefore, the submerged culture might be the major route of production of valuable metabolites including exopolysaccharide. Our research is attempting to promote the production of exopolysaccharides by A. camphorata in a batch culture through organic acids and pH regulation. Also, the biological activities of exopolysaccharides were examined. In order to design and optimize both laboratory scale and industrial scale processes, mathematical models were also developed to describe the pH effect.
Our results could be concluded that five out of six organic acid supplemented cultures showed negative effects on cell growth except the pyruvic acid supplemented culture, and lower number average molecular weight (Mn) of EPS were obtained in all organic acid supplemented cultures in shaker flasks. EPS production was enhanced by 31% due to the supplement of succinic acid. An optimum product yield was achieved at 3.0 g dm-3 succinic acid; however, the specific production of EPS increased monotonically as succinic acid was supplemented from 0 to 5 g/L. Enhancement of EPS yield by 28 % and a higher Mn of EPS around 310 kDa due to the supplement of succinic acid were also demonstrated in an air-lift bioreactor. Besides, a novel fermentation process resistant to EPS degradation was proposed by the organic acid supplementation.
Culture pH significantly affected antioxidant and scavenging free radical activities of methanolic extracts from mycelia and filtrates. Antioxidant activities of methanolic extracts from mycelia (MEM) and filtrates (MEF) have been successfully correlated with total polyphenol content, polysaccharide content and protein/ polysaccharide ratios. The optimal culture pH for antioxidants production by Antrodia camphorata was 5.0, and the maximum total polyphenol and polysaccharide/protein ratio in MEM were 152.2 mg/g and 33.5%, respectively. Higher amounts of antioxidants were obtained in the submerged culture at pH 5.0 as compared with that of fruiting body. Besides, the maximum polysaccharide in MEF was 55.3 mg/g. The relatively low antioxidant ability of methanolic extracts from culture medium indicated that the antioxidant abilities of MEM and MEF were mainly derived from the fermentation process. Besides, an alternative approach to produce the antioxidants of A. camphorata by submerged culture was proposed.
The effects of culture pH ranging from pH 3.0 to 6.0 on cell growth, exopolysaccharide biosynthesis and molecular weight distribution of exopolysaccharides of A. camphorata were examined both in shake flask culture and in a stirred tank fermenter. In a controlled pH stirred tank fermentation, the optimum pH for cell growth was 4.0 with a cell yield at 0.3 g/g while that for exopolysaccharide formation was 5.0 with a product yield at 5.05 mg/g. A relatively high molecular weight exopolysaccharide with a lower yield was obtained at low pH values while a relatively low molecular weight exopolysaccharide with a high yield was obtained at higher pH values. The average molecular weight of the exopolysaccharide in the flask culture was higher than that in the stirred tank fermenter. A two stage pH process that maximized product formation was demonstrated with a high product yield of 148 mg/liter with the relatively high average molecular weight of 2.18 x 105.
Fermentation kinetics of pH effects on growth and polysaccharide production of Antrodia camphorata was studied in a pH-controlled batch system. A simple model was proposed by using the logistic equation for cell growth, the Luedeking-Piret equation for polysaccharide production and a modified Luedeking-Piret equation for glucose consumption. The pH dependence of the parameters in this model was evaluated. The growth rate constants and the average molecular weight of polysaccharides were modeled with an exponential equation. The maximum biomass concentration, non-growth-associated constants for product formation and product yields were modeled with a Gaussian equation. The parameters of the modified Luedeking-Piret equation were modeled with a quadratic expression. The model developed in this study accurately described the experimental data.
關鍵字(中) ★ 多醣
★ 抗氧化
★ 樟芝
關鍵字(英) ★ Antrodia camphorata
★ antioxidant
★ polysacchride
論文目次 Abstract
(Chinese).......................................................................................................I
Abstract (English) ………………………………………………………… …IV
Contents……………………………………………………………..……….VII
List of tables……………………………………………………………………XII
List of figures………………………………………………………………….XIV
Nomenclature………………………………………………………………XVIII
Chapter 1 Introduction
1.1 Research motives………………………………………………………..1
1.2 Research aims……………………………………………………………3
Chapter 2 Literature review
2.1 Nomenclature of Antrodia camphorata ………………………………….5
2.2 Classification of Antrodia camphorata…………………………………..5
2.3 Growth environment and characteristic of Antrodia camphorata…………6
2.3.1 Growth environment…………………………………………….6
2.3.2 Morphology and characteristic……………….…………………..6
2.4 Chemical compounds in A. camphorata………………………………….10
2.4.1 Non-volatile taste components………………………………….10
2.4.2 Sesquiterpene lactone, steroids, and triterpenoids…………….11
2.4.3 Maleic and succinic acid derivatives……………………………14
2.4.4 Polysaccharide………………………………………………….17
2.5 Biological activities of A. camphorata………………………………….19
2.6 Antitumor and immunomodulating polysaccharide in medicinal
mushrooms………………………………………………………….23
2.6.1 The numbers of mushrooms with antitumor polysaccharides…...23
2.6.2 Biosynthesis of polysaccharide in mushrooms…………………23
2.6.3 Purification procedures for polysaccharides in medicinal
mushrooms……………………………………………..…25
2.6.3 Structural composition of antitumor polysaccharides
in mushrooms…………………..……………….…………….29
2.6.4 Correlation of structure and antitumor activities of
mushroom polysaccharides…………………………………….30
2.6.5 Mechanisms of antitumor and immunomodulating action by
polysaccharides in medicinal mushrooms…………………….32
2.7 Antioxidant properties of medicinal mushrooms……………………….36
2.8 Exopolysaccharide production of fungi in submerged culture………….41
2.8.1 Effects of culture medium compositions………………………41
2.8.1.1 Effect of carbon source on exopolysaccharide formation..41
2.8.1.2 Effect of nitrogen on exopolysaccharide production…..42
2.8.1.3 Organic acids effects……………………………………..44
2.8.2 Effects of environmental conditions…………………………….44
2.8.2.1 Effect of pH …………………………………………….44
2.8.2.2 Effects of dissolved oxygen (DO)………………………45
2.8.2.3 Effects of temperature…………………………………..46
2.8.2.4 Effect of aeration and agitation…………………………47
2.8.3 Effect of other factors………………………………………………….49
2.9 Kinetic model……………………………………………………………50
Chapter 3 Materials and methods
3.1 Microorganism……………………………………………………………54
3.2 Effects of organic acids supplement……………………………………..54
3.2.1 Culture conditions………………………………………………54
3.2.2 Analysis methods……………………………………………….56
3.3 Antioxidant properties…………………………………………………..56
3.3.1 Culture conditions of Antrodia camphorata…………………..57
3.3.2 Preparation of methanol extraction from filtrate (MEF)…………57
3.3.3 Preparation of methanol extraction from mycelia (MEM)…….59
3.3.4 Preparation of methanol extraction from cultural medium
(MECM)……………………………………………….……….59
3.3.5 Preparation of methanol extraction from fruiting body of
Antrodia camphorata (MEFA)………….………………………59
3.3.6 Antioxidant activity……………………..………………………59
3.3.7 Scavenging effect on 1, 1-diphenyl-picrylhydrazyl (DPPH)
radical……………………………………………………………60
3.3.8 Reducing power…………………………...…………………….61
3.3.9 Chelating effects on ferrous ions………………………………61
3.3.10 Scavenging effect on superoxide anion………………………61
3.3.11 Scavenging effect on hydroxyl radical ………..……………….62
3.3.12 Determination of antioxidant components……………………62
3.4 pH effects ……………………………………………………………….64
3.4.1 pH control and culture conditions …………………………….64
3.4.2 Analysis methods………………………………………………64
3.5 Kinetics and modeling………………………………….………………66
3.5.1 Synopsis and aim…………………………………….……………66
3.5.2 Mathematical model…………………………………………….66
Chapter 4 Results and discussion
4.1 Effects of organic acids supplement……………………………………..68
4.1.1 Effects of organic acid supplementation on cell growth and EPS
production in shaker flask cultures…………………………….68
4.1.2 Effects of different succinic acid concentrations on cell growth
and EPS production in shaker flask cultures…………………….69
4.1.3 Effects of succinic acid supplementation on cell growth and
EPS production in an air-lift bioreactor………………………….70
4.1.4 Effects of different organic acids on the molecular weight of
EPS in shaker flask cultures……………………………………72
4.1.5 Effect of succinic acid supplementation on molecular weight of
EPS in an air-lift bioreactor………………………………………75
4.1.6 Effect of reaction vessel type on molecular weight of EPS………77
4.2 Effect of culture pH on the antioxidant properties
4.2.1 Effect of culture pH on cell growth and methanol extraction yield………………………………………………………………78
4.2.2 Antioxidant activity……………………………………………..79
4.2.3 Scavenging effect on 1, 1-diphenyl-picrylhydrazyl (DPPH) radical…………………………………………………………...80
4.2.4 Reducing power…………………………………………………81
4.2.5 Chelating effect on ferrous ions…………………………………84
4.2.6 Scavenging effect on hydroxyl free radicals……………………..84
4.2.7 Scavenging effect on superoxide anion……………………………87
4.2.8 Antioxidant components………………………………………….89
4.3 Effect of pH on the production and molecular weight distribution
of exopolysaccharide………………………………………………………92
4.3.1 Fermentation kinetics ……………….……………………………..92
4.3.2 Effect of pH control on fermentation kinetics ……………… ……92
4.3.3 Effect of initial pH on exopolysaccharide formation by
flask experiments ………………………………………………….95
4.3.4 Effect of pH on the cell growth of pH controlled fermentation……95
4.3.5 Effect of pH on exopolysaccharide formation of pH controlled
fermentation ………………………………………………………..97
4.3.6 Effect of pH on the molecular weight of exopolysaccharide……….97
4.3.7 Two-stage batch fermentation process for optimal exopolysaccharide
production …………………………………………….………….102
4.4 Kinetics and modeling of pH effects on polysaccharide production……105
4.4.1 Parameter estimation…………………………………………….105
4.4.2 Effects of pH………………………………………………………110
4.4.3 Modeling pH effect………………………………………………..112
4.4.4 Model Simulation and Validation………………………………….116
Chapter 5 Conclusion……………………………………..............................122
References………………………………………………………………………126
參考文獻 Akdemir, Z.Ş., Tatli, İ.İ., Saracoğlu, İsmailoğ, İ., Şahin-Erdemli, U. and Çaliş, İ., Polyphenolic compounds from Geranium pretense and their free radical scavenging activities. Phytochemistry, 2001, 56, 189-193.
Aoki, T., Lentinan. In: Fenichel RL, Chirgis MA (eds), Immune modulation agents and their mechanisms. Immunol Stud, 1984, 25, 62-77.
Bohn, J.A. and BeMiller, J.N., (1→3)-β-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydrate polymers, 1995, 28, 3-14.
Catley, B.J., Regulation of yeast and fungal polysaccharide excluding chitin and cellulose, in Progress in Industrial Microbiology, Vol. 18, Bushell, M. E., Ed., Elsevier, Amsterdam, 1983, 129.
Catley, B.J., Role of pH and nitrogen limitatation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Appl Microbiol, 1971, 27, 650-654.
Catley, B.J., The extracellular polysaccharide, pullulan, produced by Aureobasidium pullulans : a relationship between elaboration rate and morphology. J Gen Microbiol, 1980, 120, 265-268.
Chang, H.L., Chao, G.R., Chen, C.C., and Mau, J.L., Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chemistry, 2001, 74, 203-207.
Chang, S.T., Global impact of edible and medicinal mushrooms on human welfare in the 21 st century: nongreen revolution. Int J Med Mushrooms, 1999, 1, 1-8.
Chang, T.T. and Chou, W.N., Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycology Research, 1995, 99(6), 756-758.
Chen, C.H. and Yang, S.W., New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J Nat Prod, 1995, 58, 1655-1661.
Chen, I.C., Effects of citric acid on growth and schizophyllan production of Schizophyllum commune in batch fermentation. Thesis, National Central University, Chung-Li, Taiwan, 2001, pp 4.
Cherng, I.H. and Chiang, H.C., Three new triterpenoid from Antrodia cinnamomea. J Nat Prod, 1995, 58, 365-371.
Cherng, I.H., Wu, D.P. and Chiang, H.C., Triterpenoids from Antrodia cinnamomea. Phytochemistry, 1996, 41(1), 263-267.
Chiang, H.C., Wu, D.P., Cherng, I.H. and Ueng, C.H., A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea. Phytochemistry 1995, 39(3), 613-616.
Chihara, G., Maeda, Y., Hamuro, J., Sasaki, T. and Fukuoka, F., Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Research, 1970, 30, 2776-2781.
Chihara, G., The antitumor polysaccharide Lentinan: an overview. In: Aoki T et al (eds) Manipulation of host defence mechanisms. 1981, Excerpta Med, Int Congr Ser 576, Elservier, Amsterdam.
Chul Shin, Y., Ko Kim, Y., Soo Le, H., Nam Kin, Y. and Myung Byun, S., Production of pullulan by a fed-batch fermentation. Biotechnol Lett, 1987, 9, 621-624.
Cui, J. and Chisti, Y., Polysaccharides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances, 2003, 21, 109-122.
Decker, E. A. and Welch, B., Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 1990, 38, 674-677.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F., Colorimetric method for determination of sugars and related substances. Anal Chem, 1956, 28(3), 350-356 (1956).
Eugenia, M., Carlos Roseiro, J. and Amaral Collaco, M.T., Interactive effect of pH and temperature on cell growth and polymer production by Xanthomonas campestris. Process Biochemistry, 1995, 30(7), 667-671.
Fang, Q.H. and Zhong, J.J., Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 2002a, 37, 769-774.
Fang, Q.H. and Zhong, J.J., Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochemical Engineering Journal, 2002b, 10, 61-65.
Fang, Q.H., Tang, Y.J. and Zhong, J.J., Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 2002, 37, 1375-1379.
Fang, Y.Z., Yang, S. and Wu, G., Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18, 872-879.
Furuta, S., Nishiba, Y., and Suda, I., Fluorormetric assay for screening antioxidative activity of vegetables. Journal of Food Science, 1997, 62(3), 526-528.
Gadgil, C.J. and Venkatesh, K.V., Structured model for batch culture growth of Lactobacillus bulgaricus. J Chem Tech Biotechnol, 1997, 68, 89-93.
Gao, Q.P., Jiang, R.Z. Chen, H.Q., Jiang, R.Z. and Seljelid, R., Characterization of acidic heteroglycans from Tremella fuciformis Berk. with cytokine stimulating activity. Carbohydr Res, 1996, 288, 135-142.
Gibbs, P.A. and Seviour, R.J., The production of exopolysaccharide by Aureobasidium pullulans in fermenter with low-shear configurations. Appl Microbiol Biotechnol, 1998, 49, 168-174.
Halleck, F.E. 1970. British Patent 1, 107, 614.
Hamuro, J. and Chihara, G, Lentinan, a T-cell oriented immunopotentiator: its experimental and clinical applications and possible mechanism of immune modulation. In: Fenichel RL, Chirigos MA (eds) Immunomodulation agents and their mechanisms. Dekker, New York, 1985, pp 409-436.
Hobbs, C., Medicinal value of Lentinus edodes (Berk.) Sing. (Agricomycetideae). A literature review. Int J Med Mushrooms, 2000, 2, 287-302.
Hseu, Y.C., Chang, W.C., Hseu, Y.T., Lee, C.Y., Yech, Y.Y., Chen, P.C., Chen, J.Y. and Yang, H.L., Protection of oxidative damage by aqeous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sciences, 2002, 71, 469-482.
Hsiao, G., Shen, M.Y., Lin, K.H., Lan, M.H., Wu, L.U., Chou, D.S., Lin, C.H., Su, C.H. and Sheu, J.R., Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agric Food Chem, 2003, 51, 3302-3308.
Hsiao, G., Shen, M.Y., Lin, K.H., Lan, M.H., Wu, L.Y., Chou, D.S., Lin, C.H., Su,C.H. and Sheu, J.R., Antioxidative and hepatoprotective effect of Antrodia camphorata extract. J Agric Food Chem, 2003, 51, 3302-3308.
Huang, L.C., Antioxidant properties and polysaccharide composition analysis of Antrodia camphorata and Agaricus blazei. Master’s Thesis, National Chung-Hsing University, Taichung, Taiwan, 2000.
Hwang, H.J., Kim, S.W., Choi, J.W. and Yun, J.W., Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme and Microbial Technology, 2003, 33, 309-319.
Jagodziński, P.P., Lewandowska, M., Januchowski, R., Franciszkiewicz, K. and Trzeciak W.H., The effect of high molecular weight dextran sulfate on the production of interleukin-8 in monocyte cell culture. Biomed Pharmacother, 2002, 56, 254-257.
Jana, A.K. and Ghost, P., Effect of citric acid on the biosynthesis and composition of xanthan. J Gen Appl Microbiol, 1999, 45,115-120.
Jana, A.K. and Ghost, P., Xanthan biosynthesis in continuous culture: citric acid as an energy source. J Ferment Bioeng, 1996, 80, 485-491.
Kawagishi, H., Inagaki, R., Kanao, T., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T. and Nakamura, T., Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Carbohydr Res, 1989, 186, 267-273.
Kawagishi, H., Inagaki, R., Kanao, T., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T. and Nakamura, T., Formulation of a potent antitumor (1→6)-beta-D-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydr polym, 1990, 12, 393-404.
Kim, S.W., Xu, C.P., Hwang, H.J. Choi, J.W., Kim, C.W. and Yun, J.W., Production and characterization of exopolysaccharides from an enthomopathogenic fungus Cordyceps militaris NG3. Biotechnol Prog, 2003, 19, 428-435.
Klimek, J and Ollis, D.F., Extracellular microbial polysaccharides: kinetics of Pseudomonas sp., Azotobacter vinelandii, and Aureobasidium pullulans batch fermentations Biotechnol Bioeng, 1980, 22, 2321-2342.
Komatsu, N., Okubo, S., Kikumoto, Kimura, K., Saito, G. and Sakai, S., Host-mediated antitumor action of Schizophyllan, a glucan produced by Schizophyllum commune. Gann, 1969, 60, 137-144.
Kulicke, W.M., Lettau AI and Thielking H, Correlation between immunological activity, molar mass, and molecular structure of different (1)-β-D-glucans. Carbohydr Res, 1997, 297, 135-143.
Lacroix, C., LeDuy, A., Noel, G. and Choplin, L., Effect of pH on batch fermentation of pullulan from sucrose medium. Biotechnology and bioengineering, 1985, 27, 202-207.
LeDuy, A., Marson, A.A. and Coupal, B., A study of the rheological properties of a non-Newtonian fermentation broth. Biotechnol Bioeng, 1974, 16, 61-76.
Lee, B.C., Bae, J.T., Pyo, H.B., Choe, T.B., Kim, S.W., Hwang, H.J. and Yun, J.W., Biological activities of the polysaccharides produced from submerged culture of the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 2003, 32, 574-581.
Lee, I.H., Huang, R.L., Chen, C.T., Chen, H.C., Hsu, W.C. and Lu, M.K, Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiology Letters, 2002, 209, 63-67.
Lee, I.H., Studies on the culture of Antrodia camphorata mycelia and its polysacccharides against hepatitis B virus. Thesis, China Medical College, Taichung, Taiwan, 2003, pp 28.
Lee, J.H., Kim, J.H., Zhu, I.H., Zhan, X.B., Lee, J.W., Shin, D.H. and Kim, S.K., Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans. Biotechnology Letters, 2001, 23, 817-820.
Lee, J.W., Yeomans, W.G., Allen, A.L., Deng, F., Gross, R.A. and Kaplan, D.L., Biosynthsis of novel exopolymers by Aureobasidium pulluans. Applied and Environmental Microbiology, 1999a, 65, 5265-5271.
Lee, K.M., Lee, S.Y. and Lee, H.Y., Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermenter. J Biosci Bioeng, 1999b, 88, 646-650.
Lai, C. L., Chemistry and biochemistry in mushroom. 1996, National institute for compilation and translation, Taipei, Taiwan, pp 42.
Lin, H.C., Evaluation of taste quality and antioxidant properties of edible and medicinal mushrooms. Master’s Thesis, National Chung-Hsing University, Taichung, Taiwan, 1999.
Lin, J.M., Lin, C.C., Chen, M.F., Ujiie, T. and Takada, A., Radical scavenger and antihepatotoxic activity of Ganoderma formosanum, Ganoderma lucidum and Ganoderma neo-japonicum. Journal of Ethnopharmacology, 1995, 47, 33-41.
Liu, F., Ooi, V.E.C. and Chang, S.T., Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences, 1997, 60(10), 763-771.
Liu, F., Ooi, V.E.C. and Chang, S.T., Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences, 1997, 60(10), 763-771.
Luedeking, R. and Piret, E.L., A kinetic study of the lactic acid fermentation. J Biochem Microbiol Technol, 1959, 1, 393-412.
LMadi, N.S., McMeil, B. and Harvey, L.M., Influence of culture pH and aeration on ethanol production and pulluan molecular weight by Aureobasidium pullulans. J Chem Tech Biotechnol, 1996, 66, 343-350.
Manzoni, M. and Rollini, M., Isolation and characterization of the exopolysaccharide produced by Daedalea quercina. Biotechnol Lett, 2001, 23, 1491-1497.
Mau, J.L., Chang, C.C., Huang, S.J. and Chen, C.C., Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia, mushrooms. Food Chemistry, 2004b, 87, 111-118.
Mau, J.L., Chao, G.R. and Wu, K.T., Antioxidant properties of methanolic extracts from several ear mushrooms. J Agric Food Chem, 2001, 49, 5461-5467.
Mau, J.L., Huang, P.N., Huang, S.J. and Chen, C.C., Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chemistry, 2004a, 86, 25-31.
Mau, J.L., Lin, C.H. and Chen, C.C., Antioxidant properties of several medicinal mushrooms. J Agric Food Chem, 2002b, 86, 25-31.
Mau, J.L., Lin, H.C. and Song, S.F., Antioxidant properties of several specialty mushrooms. Food Research International, 2002a, 35, 519-526.
McNeil, B. and Kristiansen, B., Influence of impeller speed upon the pullulan fermentation. Biotechnol Lett, 1987, 9, 101-104.
McNeil, B. and Kristiansen, B., Temperature effects on polysaccharide production by Aureobasidium pullulans in stirred tanks. Enz Microb Technol, 1990, 12, 521-526.
Miller, G.L, Use of dinitrosalicylic acid for determination of reducing sugar. Anal Chem, 1959, 31, 426-428.
Miller, R.M. and Liberta, A.E., The effects of light on acid-soluble polysaccharide accumulation in S. rolfsii Sacc. Can. Microbiol, 1976, 22, 967.
Mizuno, T., Development of antitumor polysaccharides from mushroom fungi. Foods Ingredient Journal of Japan, 1996, 167, 69-85.
Mizuno, T., Hagiwara, T. Nakamura, T., Ito, H., Shimura, K., Sumiya, T. and Asakura, A., Antitumor activity and some properties of water-soluble polysaccharides from “Himematsutake”, the fruiting body of Agaricus blazei Murill. Grifola frondosa. Agric Biol Chem, 1990, 54, 2889-2896.
Mizuno, T., Ohsawa, K., Hagiwara, N., and Kuboyama, R., Fractionation and characterization of antitumor polysaccharide from maitake, Grifola frondosa. Agric Biol Chem, 1986, 50, 1679-1688.
Mizuno, T., Saito, H., Nishitoba, T. and Kawagashi, H., Antitumor active substances from mushrooms. Food Rev Int, 1995, 11, 23-61.
Mizuno, T., The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. International Jounal of Medicine Mushrooms, 1999, 1, 9-29.
Mohammad, F.H.A., Badr-Eldin, S.M., El-Tayeb, O.M. and Abd el-Rahman, O.A., Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass and Bioenergy, 1995, 8(2), 121-129.
Moraine, R.A. and Rogovin, P., Xanthan biopolymer production at increased concentration by pH control. Biotechnol Bioeng 1971, 8, 381-389.
Mulchandani, A., Luong, J.H.T. and Leduy, A., Batch kinetics of microbial polysaccharide biosynthesis. Biotechnol Bioeng, 1988, 32, 639-646.
Nakamura, N., Hirakawa, A., Gao, J.J., Kakuda, H., Shiro, M., Komatsu, Y., Sheu, C.C. and Hattori, M., Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod, 2004, 67, 46-48.
Nanba, H., Hamaguchi, A. and Kuroda, H., The chemical structure of an antitumor polysaccharide in fruit bodies of Grifola frondosa (Maitake). Chem Pharm Bull, 1987, 35, 1162-1168.
Ng, T.B., A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmac, 1998, 30(1), 1-4.
Nishikimi, M., Rao, N.A., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 1972, 46, 849-853.
Norisuye, T., Yanaki, T. and Fujita, H., Triple helix of a Schizophyllum commune polysaccharide in aqueous solution. J Polymer Sci, 1980, 18, 547-558.
Ohara, H., Hiyama, K. and Yoshida T., Kinetic study on pH-dependence of growth and death of Streptococcus faecalis. Appl Microbiol Biotechnol. 1992, 38, 403-407.
Olsvik, E.O., Rheological Properties of a filamentous fermentation broth. 1992, Ph.D. thesis, University of Strathclyde, United Kingdom.
Ono, K., Yasuda, N. and Ueda, S., Effect of pH on pullulans elaboration by Aureobasidium pullulans S-1. Agric Biol Chem, 1977, 41(11), 2113-2118.
Ooi, V.E.C. and Liu, F., A review of pharmacological activities of mushroom polysaccharides. Int Med Mushrooms, 1999, 1, 195-206.
Oyaizu, M., Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 1986, 44, 307-315.
Rapp, P., 1,3-β-glucanase, 1,6-β-glucanase and β-glucosidase activities of sclerotium glucanicum: synthesis and properties. J Gen Microbiol, 1989, 135, 2847-2858.
Rau, U., Gura, E., Olszewski, E. and Wagner, F., Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. Ind Microbiol, 1992, 9, 19-26.
Reshetnikov, S.V., Wasser, S.P. and Tan, K.K., Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides. Int J Med Mushrooms, 2001, 3, 361-394.
Rho, D., Mulchandani, A., Luong, J.H.T. and LeDuy, A., Oxygen requirement in pullulan fermentation. Appl Microbiol Biotechnol, 1988, 28, 361-366.
Roukas, T. and Liakopoulou-Kyriakides, M., Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred tank fermentator. Journal of Food Engineering, 1999, 40, 89-94.
Sakagami, H., Ikeda, M. and Konno, K, Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction. Biochem Biophys Res Commun, 1989. 162, 597-603.
Schepers, A.W., Thibault, J. and Lacroix, C., Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II: kinetic modeling and model validation. Enzyme Microb Technol, 2002, 30,187-194.
Shen, Y.C., Chou, C.J., Wang, Y.H., Chen, C.F., Chou, Y.C. and Lu, M.K., Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiology Letters, 2004, 231, 137-143.
Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T., Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem, 1992, 40, 945-948.
Shu, C.H. and Lung, M.Y., Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochem, 2004, 39, 931-937.
Shu, C.H. and Wen, B.J., Enhanced shear protection and increased production of an anti-tumor polysaccharide by Agaricus blazei in xanthan-supplemented cultures. Biotechnol Lett, 2003, 25, 873-876.
Shu, C.H. and Yang, S.T., Kinetics and modeling of temperature effects on batch xanthan gun fermentation. Biotechnol Bioeng, 37, 567-574.
Shu, C.H., Chen, Y.C. and Hsu, Y.C., Effects of citric acid on cell growth and schizophyllan formation in the submerged culture of Schizophyllum commune. J Chin Inst Chem Engrs, 2002, 33, 315-320.
Shu, C.H., Wen, B.J. and Lin, K.J., Monitoring the polysaccharide quality of Agaricus blazei in submerged culture by examining molecular weight distribution and TNF-
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2004-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明