博碩士論文 89321040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.218.2.200
姓名 盧藝(Yi Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 導電高分子與聚胺基甲酸酯複合材料之研究
(Chracterization of conductive polymer and polyurethane composite)
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 聚苯胺與聚苯乙烯殼核複合材料之研究
★ 在孔道均一的模板內合成聚苯胺奈米管★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析
★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究
★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究★ 二氧化鈦的合成與光催化性質的研究
★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究★ 聚苯胺金屬奈米複合管的合成及鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要是利用聚胺基甲酸酯摻混導電高分子聚苯胺及聚吡咯來增加導電高分子之加工性。在此我們使用4,4’-diphenylmethane diisocyanate (MDI)及poly(oxytetramethylene)glycol (PTMO)製備預聚物(prepolymer),再用N-methyldiethanolamine以及2,2-bis(hydroxymethyl)propionic acid為偶合劑,分別形成正電及負電的離子型聚胺基甲酸酯,然後利用丙酮製程(acetone process)將離子型聚胺基甲酸酯形成帶正電及負電的兩種粒子。利用光散射儀測量出負電及正電之聚胺基甲酸酯粒子的粒徑分別為231.9± 8.5nm及108.3± 3.8nm,界面電位分別為-41.5±4.3mV及61.5±5.2mV,絕對值皆大於30mV,由此可知我們經由acetone process所形成的正、負電型的聚胺基甲酸酯粒子是非常穩定的。
實驗主要分成兩個系統。第一個系統是利用負電型聚胺基甲酸酯直接摻混聚苯乙烯磺酸/聚苯胺錯化物,實驗結果發現當聚苯乙烯磺酸/聚苯胺錯化物的含量達25 %時可達到聚苯乙烯磺酸/聚苯胺錯化物的導電度,且成功提升了原本質硬、脆之聚苯胺的加工性。
第二個系統是將正電型聚胺基甲酸酯和導電高分子聚吡咯/形成一聚吡咯/正電型聚胺基甲酸酯之殼/核乳膠,實驗結果顯示出導電度隨著聚吡咯的含量而提高,由原本聚胺基甲酸酯的1.75 × 10-9 S/cm,提高到母液中吡咯含量為3%時聚合之複合材料的7.69 × 10-7 S/cm ,也使原本性質硬、脆的聚吡咯,其加工性質有效的改善。然而當母液中吡咯含量大於3%時,聚合的殼/核乳膠懸浮液並不穩定。
摘要(英) The purpose of this study is to form polyblends and core-shell structure of soft polyurethane and conducting polymer in order to improve the processibility of conducting polymer.
The prepolymer of polyurethane was prepared by 4,4’-diphenylmethane diisocyanate(MDI) and poly(oxytetramethylene)glycol(PTMO). By using N-methyldiethanolamine and 2,2-bis(hydroxyme-thyl)propionic acid as the chain extenders, cationic and anionic polyurethane ionomers were synthesized. Acetone process was used to prepare monodisperse polyurethane ionomer in water.
The particle size of anionic polyurethane obtained from light scattering is 231.9±8.5nm and cationic polyurethane is 108.3±3.8nm. Zeta potential of anionic polyurethane particle is –41.5±4.3mV, and cationic polyurethane particle is 61.5±5.2mV. The absolute values of zeta potentials are larger than 30mV, the results show that cationic and anionic polyurethane particles synthesized through acetone process are very stable.
There are two systems studied in this experiment. In one system, anionic polyurethane and polyaniline polystyrensulfonic acid complex(PSS/PAni) were blended to form the composite material. The conductivity of this composite material approaches the conductivity of pure PSS/PAni complex when the content of PSS/PAni reaches 25%.
In another system, conductive polypyrrole was grown on the cationic polyurethane ionomer seed by polymerization of pyrrole to form the core-shell structure. The result shows that the conductivity increases with increasing content of polypyrrole. Compared to the conductivity of polyurethane, 1.75×10-9 S/cm, the conductivity of polypyrrole/polyurethane synthesized in mother liquid containing 3wt% pyrrole monomer is 7.69×10-7 S/cm. Polypyrrole/polyurethane synthesized in mother liquid containing more than 3wt% is not stable in suspension.
We have developed a feasible route for preparing the composite material of conducting polymer and polyurethane to improve the processibility.
關鍵字(中) ★ 聚苯胺
★ 聚胺基甲酸酯
★ 導電高分子
★ 殼核複合材料
關鍵字(英) ★ polypyrrole
★ polyaniline
★ core-shell
★ conductive polymer
★ pu
論文目次 目錄
誌謝
中文摘要………………………………………………………………….….Ⅰ
英文摘要………………………………………………………………….….Ⅱ
目錄…………………………………………………………………………..Ⅳ
表索引………………………………………………………………………..Ⅶ
圖索引………………………………………………………………………..Ⅷ
第一章 緒論……………………………………………………………….….....1
1-1導電性高分子……………………………………………………….…....1
1-1.1導電性高分子的種類……………………….….............................3
1-1.2 導電理論……………………….…................................................7
1-1.3 導電高分子之應用………………………………………….…...11
1-1.4 複合材料……………………….………………………………...15
1-2聚胺基甲酸酯……………………….…...................................................16
1-3研究目的……………………….…...........................................................24
第二章 實驗方法……………………….…........................................................25
2-1實驗藥品……………………….…...........................................................25
2-2使用儀器……………………….…...........................................................28
2-3實驗步驟……………………….…...........................................................30
2-3-1正電型聚胺基甲酸酯乳膠之合成………………………….…....30
2-3-2負電型聚胺基甲酸酯乳膠之合成………………………….…....31
2-3-3聚苯乙烯磺酸-聚苯胺錯化物之合成……………..….….............32
2-3-4聚苯乙烯磺酸-聚苯胺錯化物/聚胺基甲酸酯摻合物之合成…...33
2-3-5聚吡咯/聚胺基甲酸酯摻合物之合成………………….…...........34
第三章 結果與討論………………………………….…………………............34
3-1聚胺基甲酸酯乳膠的合成及分析………….…………………...............34
3-1-1聚胺基甲酸酯的結構分析………….…………………................34
3-1-2聚胺基甲酸酯的分子量測定………….…………………............36
3-1-3 聚胺基甲酸酯乳膠之粒徑分析………….……………………...38
3-1-4 界面電位分析………….…………………...................................45
3-2 聚苯乙烯磺酸-聚苯胺錯化物之合成及分析………………………......46
3-2-1聚苯乙烯磺酸-聚苯胺錯化物之結構分析………….…………...46
3-2-2 導電度的測試………….…………………...................................48
3-3聚苯乙烯磺酸-聚苯胺錯化物/聚胺基甲酸酯摻合物之合成與分析…..49
3-3-1 摻合物之結構分析…………........................................................49
3-3-2 紫外光/可見光分光光譜分析………….…………………..........51
3-3-3 導電度的測試………….…………………...................................53
3-4聚吡咯/正電型聚胺基甲酸酯殼/核乳膠合成分析………….….............55
3-4-1 聚吡咯/正電型聚胺基甲酸酯殼/核乳膠之結構分析…………..55
3-4-2 聚吡咯/正電型聚胺基甲酸酯殼/核乳膠之粒徑分析…………..58
3-4-3 聚吡咯/正電型聚胺基甲酸酯殼/核乳膠導電度的測試………..64
第四章 結論………………………………………………………………..........65
參考文獻…………………………………………………………………………67
表索引
表 1 不同程序製備出聚胺基甲酸酯乳膠之特性………………………22
表3-1 正電型聚胺基甲酸酯紅外線光譜特徵吸收峰…………………....35
表3-2 負電型聚胺基甲酸酯粒子以光散射量測之粒徑分析數據………39
表3-3 正電型聚胺基甲酸酯粒子以光散射量測之粒徑分析數據………43
表3-4 (PSS/PAni)錯化物/陰離子型聚胺基甲酸酯摻合物之導電度…...54
表3-5 聚吡咯紅外線光譜特徵吸收……………………………………….56
表3-6 聚吡咯(1%)/正電型聚胺基甲酸酯殼/核乳膠光散射分析數據…..59
表3-7 聚吡咯(2%)/正電型聚胺基甲酸酯殼/核乳膠光散射分析數據…..60
表3-8 聚吡咯(3%)/正電型聚胺基甲酸酯殼/核乳膠光散射分析數據…..61
表3-9 聚吡咯/陽離子型聚胺基甲酸酯殼核乳膠之導電度…………….....64
圖索引
圖 1-1 導體與絕緣體之導電度比較圖….....................................................2
圖 1-2 常見的導電性高分子材料………………………………………….4
圖 1-3 Polyaniline之四種氧化還原型態(a) Leuco-emeraldine(b) Emeraldine (c) Emeraldine salt (d) Pernigraniline………………….5
圖1-4 (a)金屬、半導體、絕緣體及(b)導電性高分子的能帶理論之示意圖…………………………………………………………………8
圖 1-5 聚吡咯過氧化而產生polaron及bipolaron之過程……………….9
圖1-6 ( 1 )鈕釦型 ( 2 )積層式(可繞曲)有機電池的結構圖……………...12
圖1-7 電容器…………………………………………………….……….13
圖1-8 可調顏色或明暗的窗戶………………………………………..….13
圖1-9 丙酮製程流程圖………………...…………………………………19
圖1-10 預聚物混合製程流程圖…………………………………………...20
圖1-11 融熔分散製程流程圖..………………………………………….....20
圖1-12 Ketimine(Ketazine)製程流程圖...……..………………………..…21
圖1-13 正電型聚胺基甲酸酯在酸中形成四級銨鹽…………….…….….23
圖1-14 Polyurethane ionomer 在丙酮/水混合溶劑之形態變化示意圖…23
圖3-1 (a)PTMO預聚物及(b)正電型聚胺基甲酸酯之紅外線光譜圖......35
圖3-2 負電型聚胺基甲酸酯凝膠滲透層析圖…………………………...36
圖3-3 正電型聚胺基甲酸酯凝膠滲透層析圖……………………….….37
圖3-4 負電型聚胺基甲酸酯粒子以光散射量測之粒徑分析圖….…….38
圖3-5 負電型聚胺基甲酸酯之TEM圖………………………………....40
圖3-6 負電型聚胺基甲酸酯之TEM圖…………………………………40
圖3-7 負電型聚胺基甲酸酯之SEM圖………………………………….41
圖3-8 正電型聚胺基甲酸酯粒子以光散射量測之粒徑分析圖….……..42
圖3-9 正電型聚胺基甲酸酯之TEM圖……………………………..…..44
圖3-10 正電型聚胺基甲酸酯之SEM圖………………………………….44
圖3-11 聚苯乙烯磺酸-聚苯胺錯化物 (a)透析前及(b)透析後之紅外線光譜圖………………………………..……………………………....47
圖3-12 (a)陰離子型聚胺基甲酸酯及(b) (PSS/PAni)錯化物/陰離子型聚胺基甲酸酯乳膠摻合物的傅立葉轉換紅外線光譜圖…..……...….50
圖3-13 (PSS/PAni)錯化物/陰離子型聚胺基甲酸酯乳膠摻合物之紫外光/可見光分光光譜圖……………………………………………..…52
圖3-14 不同比例之(PSS/PAni)錯化物/陰離子型聚胺基甲酸酯乳膠之導電度………………………………………………………………..54
圖3-15 (a) 聚吡咯/正電型聚胺基甲酸酯之殼/核乳膠、(b) 正電型聚胺基甲酸及(c) 聚吡咯之傅立葉轉換紅外線光譜圖……..……….….57
圖3-16 聚吡咯(1%)/正電型聚胺基甲酸酯之殼/核乳膠光散射分析圖....59
圖3-17 聚吡咯(2%)/正電型聚胺基甲酸酯殼/核乳膠光散射分析圖……60
圖3-18 聚吡咯(3%)/正電型聚胺基甲酸酯殼/核乳膠光散射分析圖……61
圖3-19 聚吡咯(2%)/正電型聚胺基甲酸酯殼/核乳膠之SEM圖………..63
圖3-20 聚吡咯(3%)/正電型聚胺基甲酸酯殼/核乳膠之SEM圖………..63
參考文獻 參考文獻
1. James C. W. Chein, “Polyacetylene”, Academic Press Inc., 506 (1984).
2. Y. Cao, P. Smith and A. J. Heeger, Syn. Met., 48, 91 (1992).
3. A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans. 97, 2388 (1910).
4. S. S. Pandey, S. Annapoorni, and B. D. Malhocra, Macromolecules, 26, 3190 (1993).
5. K. K. Kanazawa, A. F. Diaz and G. B. Street, J. Chem. Soc., Chem.. Commun., 854 (1979).
6. A. F. Diaz and J. I. Castillo, J. Chem. Soc. ,Chem. Commun., 397 (1980).
7. K. K. Kanazawa, A. F. Diaz and G. B. Street, Synth. Met, 1, 329 (1980).
8. T. Inoue and T. Yamasa, Bull. Chem. Soc. Jpn., 56, 985 (1983).
9. E. M. Geuies, G. Bidan and A. F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
10. K. S. V. Santhanam, J. Electroanal. Chem., 160, 377 (1984).
11. G. P. Gardini, Adv. Heterocycl. Chem., 15, 67 (1973).
12. L. Chierici and G. P. Gardini, Tetraheadron, 22, 53 (1966).
13. V. Bocchi, L. Chierici and G. P. Gardini, Tetraheadron, 23, 737 (1967).
14. V. Bocchi, L. Chierici and G. P. Gardini, Tetraheadron, 26, 4037 (1970).
15. T. A. Skothrim,“ Handbook of Conducting Polymers” , New York:Marcel Dekker , 2, 1195 (1986).
16. T. A. Skothrim ,“Handbook of Conducting Polymers” , New York:Marcel Dekker , 2, 325 (1986).
17. M. Aldissi,“ Inherently Conducting Polymers”, Park Ridge , N. J., U.S.A. :Noyes Data Corp., P.40 (1989).
18. Y. Cao, P. Smith and A. J. Heeger, Syn. Met., 55-57, 3514 (1993).
19. T. Osaka, K. Naoi and T. Hirabayashi, J. Electrochem.Soc., 134, 2645 (1990).
20. 陳壽安 , 化工 , 38 , 98 (1992).
21. B. P. Jelle, G. Hagen, S. Sunde and R. Odegard, Synth. Met., 54, 315 (1993).
22. A. Ohtani, M. Abe, M. Ezoe, T. Doi, T. Miyata and A. Miyake, Synth. Met., 55-57, 3696 (1993).
23. Y. Cao. Synth. Met., 48, 91 (1992).
24. Y. Cao, P. Smith and A. J. Heeger, Synth. Met., 48, 81 (1992).
25. Y. Cao, Smith and A. J. Heeger, Appl. Phys. Lett., 60, 2711 (1992).
26. R. V. Gregory, W. C. Kimrell and H. H. Kuhn, Synth. Met., 28, 823 (1989).
27. E. M. Genies, C. Petrescu and L. Olmedo., Synth. Met., 41, 655 (1991).
28. C. Hepburn,“Polyurethane Elastomers”, Applied Science Publishers, London and New York (1982).
29. J. H. Saunders and K. C. Frisch,“Polyurethanes : Chemistry and Technology Part I. Chemistry”, Interscience Publishers, New York (1997).
30. D. J David and H. B. Staley,“Analytical Chemistry of The Polyurethanes Part III”, Wiley-Interscience, New York (1969).
31. G. Oertel, “Polyurethane Handbook”, Hanser Publishers, New York (1985).
32. H. K. Xiao and K. C. Frisch,“Advances in Urethane Ionomers”, Technomic Publishers Company, Pennsylvania (1995).
33. D. Dieterich, Pro. in Org. Coat., 9, 281 (1981).
34. A. E. Wiersma, L.M.A. vd Steeg, T.J.M. Jongeling, Synth. Met., 71, 2267 (1995).
35. M. A. Khan and Steven P. Armes, Adv. Mat., 12 (9), 671 (2000).
36. V. Aboutanos, L. A. P. Kane-Maguire, G. Wallace, Synth. Met., 114, 313 (2000).
37. L. Sun and S. C. Yang, Mat. Res. Soc. Symp. Proc., 5, 328 (1993).
38. J. M. Liu and S. C. Yang, J. Chem. Commum., 1529 (1991).
39. J. M. Liu, L. Sum, J. H. Hwang and S. C. Yang, Mat. Res. Soc. Symp. Proc., 247, 601 (1992).
40. L. Sun, S. C. Yang and J. M. Liu, Polym. Prep., 33, 379 (1992).
41. J. H. Hwang and S. C. Yang, Synth. Met., 29, E271 (1989).
42. 陳偉明, “聚苯胺聚電解質錯化物性質的研究”, 中央大學碩士論文, (1995).
43. Bruce B. Weiner, Walther W. Tscharnuter and David Fairhurst,“Zeta Potential: A New Approach”, Brookhaven Instruments Corporation, New York (1993).
指導教授 楊思明、王立義
(Sze-Ming Yang、Lee-Yi Wang)
審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明