博碩士論文 89341008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:52.15.68.97
姓名 萬文彬(Wen-Pen Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 薄膜氣體吸收系統的解析解與實驗之研究
(The Analytical and Experimental Studies of Laminar Flow Gas Absorption through a Gas-Liquid Membrane Contactor)
相關論文
★ 溶膠-凝膠法製備奈米複合材料暨光子晶體之研究★ 多孔質熱源於封閉區間兩側散熱之自然對流
★ 封閉區間內柱狀多孔質熱源之自然對流系統★ 多孔質中水平絕熱板結合線熱源熱傳與等質通量壁質傳之混合對流
★ 噴流或吸流對共軛熱傳的影響★ 多孔質中結合熱傳與質傳之非達西混合對流
★ 傾斜板在多孔質中結合熱傳與質傳之自然對流★ 多孔質中結合線熱源熱傳與等質通量質傳之非達西混合對流
★ 封閉區間內多孔熱源陣列之數值模擬★ 偶氮系光敏感化合物合成及甲基丙烯酸酯系感光性高分子正、負型光阻製備與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要是針對屬於共軛格拉茲問題的薄膜氣體吸收系統進行理論分析,利用正交展開法求得系統中氣體溶質於氣、液兩相內之二維濃度分佈式,所推導出之解題流程適用於平板及套管之順流與逆流系統。當使用分離變數法將系統之偏微分方程式化簡為常微分方程式以求解其特徵函數時,吾等對平板及套管系統分別取前六項及前七項特徵值(包含 ),以此項數計算的結果相當符合入、出口處之邊界條件。研究中也推導出氣體溶質在氣-液薄膜接觸器內,於氣、液兩相中之平均濃度分佈、質傳係數、吸收速率及吸收效率等物理量之數學表示式。
以本論文所推導之理論為基礎,對二氧化碳之物理吸收作廣泛的討論,結果發現,不論是何種類型之吸收,增加液體的流率或減少氣體的流率皆能增加二氧化碳之吸收效率,而各種濃度變化的趨勢,也都能符合吾等之預期。此外,由平板吸收實驗所得之結果更可以確定本論文所提出的數學模型之正確性。
本論文最大的貢獻為無須經過冗長費時的實驗即可求出整個吸收系統的質傳係數以及氣體溶質之二維濃度分佈式,對影響薄膜吸收的各種變因有更進一步的認識。
摘要(英) In the present dissertation the orthogonal expansion techniques has been employed to solve the conjugated Graetz problems in various membrane gas absorptions, where the theoretical solutions for the solute concentrations in gas and liquid phases. The theoretical analysis aforementioned may be applied to the gas-liquid contactor operating in co-current.
The solution, which is calculated on the basis of the first six eigen values from the system of plate and the first seven ones (including ) from the system of sleeve, respectively, is adequate to the boundary condition of entrance and exit for the co-current or countercurrent flow systems when a corresponding eigen function is acquired by simplifying a partial differential equation into an ordinary differential equation with the method of variable separation.
The research also introduces the mathematical functions for the average distribution of concentration, mass transfer coefficients, absorbing rates and absorbing efficiency of the gas solutes in the gas and liquid phases in the gas-liquid membrane contactor.
There are also comprehensive discussions on the physical absorption of carbon dioxide on the basis of the present research. It is found that not only the added rates of liquid but also the reduced rates of gas may improve the absorbing rates of carbon dioxide, regardless of the types of absorption. However, the trends on the variations of concentration meet researchers’ anticipation. Furthermore, the effects from the experiments on the absorption issue of plate are in support of the correct mathematical model introduced in the present dissertation.
The introduced mathematical model is advantageous to acquire the mass transfer coefficients for the whole system of absorption and the two-dimensional distribution of concentration for the gas solutes without undue experiments, which provides further knowledge on the variables relative to the membrane absorption.
關鍵字(中) ★ 薄膜氣體吸收 關鍵字(英) ★ analtical solution
★ membrane gas absorption
★ conjugated Graetz problem
★ membrane gas-liquid contactor
★ mass transfer
論文目次 中文摘要 I
英文摘要 II
致謝 IV
符號說明 V
目錄 VIII
圖目錄 XI
表目錄 XV
第一章 緒論 1
1-1 簡介 1
1-2 文獻回顧 3
1-3 研究動機、目的與方向 7
第二章 平板型順流式氣-液薄膜接觸器 9
2-1 基本理論 9
2-2 平均濃度與質傳係數 14
2-3 吸收速率與吸收效率 16
2-4 計算範例、結果與討論 17
第三章 平板型逆流式氣-液薄膜接觸器 28
3-1 基本理論 28
3-2 平均濃度與質傳係數 34
3-3 吸收速率與吸收效率 35
3-4 計算範例、結果與討論 36
第四章 套管型順流式氣-液薄膜接觸器 50
4-1 基本理論 50
4-2 平均濃度與質傳係數 56
4-3 吸收速率與吸收效率 58
4-4 計算範例、結果與討論 58
第五章 套管型逆流式氣-液薄膜接觸器 72
5-1 基本理論 72
5-2 平均濃度與質傳係數 79
5-3 吸收速率與吸收效率 81
5-4 計算範例、結果與討論 81
第六章 薄膜吸收實驗 93
6-1 實驗設備 93
6-2 實驗流程 94
6-3 結果與討論 95
第七章 結論 104
第八章 未來研究方向109
參考文獻 110
附錄A 正交性質證明 117
A-1 平板系統正交性質 117
A-2 套管系統正交性質 120
附錄B 積分公式證明 124
B-1 平板系統積分公式 126
B-2 套管系統積分公式 129
附錄C 展開係數求解過程 134
C-1 平板系統展開係數 136
C-2 套管系統展開係數 144
附錄D 平均濃度 153
D-1 平板系統平均濃度 154
D-2 套管系統平均濃度 156
參考文獻 1. G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6 (1960) 179.
2. T. L. Perelman, On Conjugated Problems of Heat Transfer, Int. J. Heat Mass Transfer, 3 (1961) 293.
3. A. P. Hatton and A. Quarmby, Heat Transfer in the Thermal Entry Length with Laminar Flow in an Annulus, Int. J. Heat Mass Transfer, 5 (1962) 973.
4. R. J. Nunge and W. N. Gill, Analysis of Heat or Mass Transfer in Some Countercurrent Flows, Int. J. Heat Mass Transfer, 8 (1965) 873.
5. R. J. Nunge and W. N. Gill, An Analytical Study of Laminar Counterflow Double-Pipe Heat Exchangers. AIChE J., 12 (1966) 279.
6. C. J. Hsu, Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution, AIChE J., 11 (1965) 690.
7. E. J. Davis, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51 (1973) 562.
8. H. M. Yeh, T.W. Chang and S. W. Tsai, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Separation Science and Technology, 21 (1986) 403.
9. M. A. Ebadian and H. Y. Zhang, An Exact Solution of Extend Graetz Problem with Axial Heat Conduction, Int. J. Heat Mass Transfer, 32 (1989) 1709.
10. X. Yin and H. H. Bau, The Conjugated Graetz Problem with Axial Conduction, Journal of Heat Transfer, 118 (1996) 428.
11. C. D. Ho, H. M. Yeh and W. S. Sheu, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer, 44 (1998) 2589.
12. C. D. Ho and W. Y. Yang, Heat transfer of conjugated Graetz problems with laminar counterflow in double-pass concentric circular heat exchangers, Int. J. Heat Mass Transfer, 48 (2005) 4474.
13. R. O. C. Guedes and M. N. Ozisik, Conjugated Turbulent Heat Transfer with Axial Condition in Wall and Convection Boundary Conditions in a Parallel-Plate Channel, Int. J. Heat and Fluid Flow, 13 (1992) 322.
14. E. J. Davis and S. Venkatesh, The Solution of Conjugated Multiphase Heat and Mass Transfer Problems, Chem. Eng. Sci., 34 (1978) 775.
15. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-I General Formalism and a Class of Solid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1381.
16. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-II Fluid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1393.
17. M. R. Doshi, P. M. Daiya and W. N. Gill, Three Dimensional Laminar Dispersion in Open and Close Rectangular Conduits, Chem. Eng. Sci., 33 (1978) 795.
18. C. W. Tan and C. J. Hsu, Low Peclet Number Mass Transfer in Laminar Flow Through Circular Tubes, Int. J. Heat Mass Transfer, 15 (1972) 2187.
19. A. Pozzi and M. Lupo, The Coupling of Conduction with Forced Convection in Graetz Problems, Journal of Heat Transfer, 112 (1990) 1535.
20. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membrane Sci., 23 (1985) 321.
21. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membrane Sci., 23 (1985) 333.
22. M. C. Yang and E. L. Cussler, Designing Hollow-Fiber Contactors, AIChE J., 32 (1986) 1910.
23. D. O. Cooney and C. C. Jackson, Gas Absorption in a Hollow Fiber Device, Chem. Eng. Comm., 79 (1989) 153.
24. H. Kreulen, G. F. Versteeg, C. A. Smolders and W. P. M. van Swaaij, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, J. Membrane Sci., 73 (1992) 293.
25. M. J. Costello, A. G. Fane, P. A. Hogan and R. W. Schofield, The Effect of Shell Side Hydrodynamics on the Performance of Axial Flow Hollow Fiber Modules, J. Membrane Sci., 80 (1993) 1.
26. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membrane Sci., 78 (1993) 197.
27. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membrane Sci., 78 (1993) 217.
28. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48 (1993) 2093.
29. S. Karoor and K. K. Sirkar, Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules, Ind. Eng. Chem. Res., 32 (1993) 674.
30. H. A. Rangwala, Absorption of Carbon Dioxide into Aqueous Solutions Using Hollow Fiber Membrane Contactor, J. Membrane Sci., 112 (1996) 229.
31. H. Chen, A. S. Kovvali, S. Majumdar and K. K. Sirkar, Selective CO2 Separation from CO2-N2 Mixtures by Immobilized Carbonate-Glycerol Membrane, Ind. Eng. Chem. Res., 38 (1999) 3489.
32. A. Gabelman and S. T. Hwang, Hollow Fiber Membrane Contactor, J. Membrane Sci., 159 (1999) 61.
33. Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park and K. H. Lee, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membrane Sci., 194 (2001) 57.
34. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek and G. F. Versteeg, Membrane-Solvent Selection for CO2 Removal Using Membrane Gas-Liquid Contactors, Separation and Purification Technology, 40 (2004) 133.
35. V. Y. Dindore, D. W. F. Brilman, P. H. M. Feron and G. F. Versteeg, CO2 Absorption at Elevated Pressures Using a Hollow Fiber Membrane Contactor, J. Membrane Sci., 235 (2004) 99.
36. S. Nii and H. Takeuchi, Gas Absorption with Membrane Permeation-Acid Gas Removal from Flue Gases by a Permabsorption Method, Trans IChemE., 72 (1994) 21.
37. P. H. M. Feron and A. E. Jansen, Capture of Carbon Dioxide Using Membrane Gas Absorption and Reuse in the Horticultural Industry, Energy Convers. Mgmt, 36 (1995) 411.
38. S. Bhaumik, S. Majumdar and K. K. Sirkar, Hollow-Fiber Membrane-Based Rapid Pressure Swing Absorption, AIChE J., 42 (1996) 409.
39. P. H. M. Feron and A. E. Jansen, The Production of Carbon Dioxide from Flue Gas by Membrane Gas Absorption, Energy Convers. Mgmt., 38 (1997) S93.
40. M. S. Chun and K. H. Lee, Analysis on a Hydrophobic Hollow-Fiber Membrane Absorber and Experimental Observations of CO2 Removal by Enhanced Absorption, Separation Science and Technology, 32 (1997) 2445.
41. K. Li and W. K. Teo, Use of Permeation and Absorption Methods for CO2 Removal in Hollow Fiber Membrane Modules, Separation and Purification Technology, 13 (1998) 79.
42. D. Bhaumik, S. Majumdar and K. K. Sirkar, Absorption of CO2 in a Transverse Flow Hollow Fiber Membrane Module Having a Few Wraps of the Fiber Mat, J. Membrane Sci., 138 (1998) 77.
43. Y. S. Kim and S. M. Yang, Absorption of Carbon Dioxide Through Hollow Fiber Membrane Using Various Aqueous Absorbent, Separation and Purification Technology, 21 (2000) 101.
44. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57 (2002) 1639.
45. M. Mavroudi, S. P. Kaldis and G. P. Sakellaropoulos, Reduction of CO2 Emissions by a Membrane Contacting Process, Fuel, 82 (2003) 2153.
46. S. S. Kim ans D. O. Cooney, An Improved Theoretical Model for Hollow-Fiber Enzyme Reactors, , Chem. Eng. Sci., 31 (1976) 289.
47. J. E. Vivian and C. J. King, Diffusivities of Slightly Soluble Gases in Water, AIChE J., 10 (1964) 220.
48. P. V. Danckwerts, Gas-Liquid Reactions, New York, McGraw-Hill, 1970.
49. G. F. Versteeg and W. P. M. van Swaaij, Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data, 33 (1988) 29.
50. R. E. Walker and A. A. Westenberg, Molecular Diffusion Studies in Gases at High Temperature. I. The “Point Source” Technique, J. chem. phys., 29 (1958) 1139.
51. V. D. Dang and M. Steinberg, Convective Diffusion with Homogeneous and Heterogeneous Reactions in a Tube, J. Phys. Chem., 84 (1980) 214.
52. C. D. Ho, H. M. Yeh and R. C. Wang, Heat-transfer Enhancement in Double-Pass Flat-Plate Solar Air Heaters with Recycle, Energy, 30 (2005) 2796.
53. J. Happle, Viscous Flow Relative to Arrays of Cylinder, AIChE J., 5 (1959) 174.
54. E. M. Sparrow and A. L. Loeffler, Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array, AIChE J., 5 (1959) 325.
55. W.S. W. Ho and K. K. Sirkar, Membrane Handbook, Chapman & Hall, 1992.
指導教授 林孝宗、何啟東
(Hsiao-Tsung Lin、Chii-Dong Ho)
審核日期 2006-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明