博碩士論文 89341011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.138.67.56
姓名 陳坤源(Kun-Yuan Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究
(Effects of Solvents on the Formation and Morphology of Nanocrystalline Barium Titanae Powders in Hydrothermal Method)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ Au/FexOy 奈米材料之製備 及CO 氧化的應用★ 非晶態奈米鐵之製備與催化性質研究
★ 奈米含銀二氧化鈦光觸媒之製備與應用★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要
本研究主要利用低介電常數之醇類與水混合,調整溶液之介電常數及無機酸與水之混合,藉由酸為觸媒以増加溶液中鹽類之水解速率及粒子之結晶速度;以控制二氧化鈦(TiO2)粉體之成長機構,進而控制其外形、粒徑及晶形。其次再利用此二氧化鈦粉體為原料於低溫下(<100℃)經水熱反應製備外形與粒徑和起始二氧化鈦粉體相同且具正方晶形(tetragonal)之鈦酸鋇(BaTiO3)粉體。本研究分兩步驟:(1)直接加熱水解含有機醇或無機酸之四氯化鈦水溶液,製備球形及菱形TiO2粉體。TiO2粉體之外形、粒徑及晶相可由溶液中之醇水體積比(RH ratio)或氫鈦莫耳比(H/Ti)控制。(2)將TiO2及Ba(OH)2置於高壓反應器中,水熱合成BaTiO3粉體。BaTiO3粉體之外形、粒徑及晶相可由起始之TiO2粉體控制。
在醇-水溶液中,以丙酮或正丙醇調整溶液之介電常數,最適宜製備球形鈦酸鋇粉體。當RH=3時,以70℃熱處理30min以上,可製得分散之球形TiO2粉體。當熱處理溫度高於70℃會破壞球形粉體之外形。四氯化鈦(TiCl4)濃度低於0.2 M,均可製備球形之TiO2粉體,唯濃度増加時粒徑變大,粒徑與濃度約略成正比關係。為減少粉體之聚集,加入0.001 g/cm3之丙羥基纖維素(HPC)為立體分散劑。球形TiO2粉體於Ba(OH)2水溶液中水熱反應合成BaTiO3粉體,水熱合成之BaTiO3粉體具立方晶系,其粒徑與外形均和起始TiO2粉體相同,反應機構應為In-situ Transformation。水熱反應之溫度及時間並不影響粉體之外形及粒徑;但稍為影響其晶格大小;鋇鈦比(Ba/Ti)則會影響粉體粒徑大小,但不影響粉體之晶格及外形。球形BaTiO3粉體熱處理至900℃時仍維持立方晶相,熱處理至1150℃時晶相轉變為正方晶系(tetragonal)其晶格比(c/a)=1.0110。此球形BaTiO3粉體之燒結體的體密度為5.86 g/cm3;其緻密度可達理論密度之97.34 %。
在無機酸-水溶液中,無機酸的種類及濃度影響TiO2粉體的外形、粒徑及晶形甚大。其中以過氯酸為介質製備之TiO2粉體粒徑為最小;當H/Ti比為1時TiO2粉體之外形為長軸為80nm;短軸為10nm之菱形狀且具金紅石(rutile)之晶形。此奈米TiO2粉體於Ba(OH)2水溶液中水熱反應合成BaTiO3粉體,水熱合成之BaTiO3粉體具立方晶系,其粒徑與外形均和起始TiO2粉體不同,外形由菱形(TiO2)變為球形(BaTiO3),粒徑由50 nm(TiO2)變為20~50 nm(BaTiO3);此反應機構應為Dissolution- precipitation Reaction。水熱反應之溫度及時間並不影響粉體之外形及粒徑;但稍為影響其晶格大小。而不同之Ba/Ti比會影響粉體粒徑大小,但不影響粉體之晶格及外形。奈米BaTiO3粉體熱處理至900℃時仍維持立方晶相,熱處理至1150℃時晶相轉變為正方晶系(tetragonal)其晶格比(c/a)=1.0165。此奈米BaTiO3粉體其燒結體之體密度為5.92 g/cm3;其緻密度可達理論密度之98.33 %。
摘要(英) ABSTRACT
Spherical barium titanate particles with cubic phase were synthesized by a low-temperature hydrothermal reaction. Firstly, the method of hydrolysis of titanium tetrachloride was used for producing spherical or rhombus TiO2 particles in alcoholic or acidic solution with various concentrations of TiCl4 in the range of 0.05 and 0.2 M. These TiO2 particles were converted to barium titanate particles by a hydrothermal method in a barium hydroxide solution. It was attempted to control the size and morphology of the BaTiO3 particles by the original TiO2 particles.
In alcoholic solution, the size and morphology of the TiO2 particles was greatly influenced by the volume ratios of alcohol/water, temperature, concentration of titanium and surfactant (hydroxyl propyl cellulose, HPC). Using acetone or 1-propanol as the alcohol source, spherical TiO2 particles in the colloid sol with approximately 0.5-1.4 μm in diameter were synthesized at various concentrations of titanium with alcohol/water (RH) ratio of 3 at 70 ℃.These TiO2 particles were in the anatase phase and were converted to the rutile phase when the calcination temperature increased to 700℃ and above. Uniform and spherical barium titanate particles were synthesized from the as-prepared TiO2 particles by using a hydrothermal reaction in a barium hydroxide solution. The Ba/Ti ratios, reaction temperature, and reaction time did not influence the size and morphology of BaTiO3 particles, but increase the concentration of unfavorable salts such as Ba(OH)2 and BaCO3. The high purity BaTiO3 particles could be obtained by washing with formic acid to remove the undesired salts. The size and morphology of the BaTiO3 particles remained the same as those of the TiO2 particles, confirming the in-situ transformation mechanism for the conversion of TiO2 to BaTiO3. The as-synthesized particles were cubic phase and transformed to tetragonal phase after calcinations at 1150 ℃ for 2 h. The mean density of the pellets sintered at 1250℃ for 2 h was 5.86 g/cm3 and accounted for 97.34% of the theoretical density.
In acidic solution, the nanosized TiO2 sol was successfully synthesized by the directly thermal-hydrolysis of TiCl4 solution with various acids. The size and morphology of the TiO2 particles was greatly influenced by the mole ratios of H/Ti, temperature, and concentration of titanium. Nanosized TiO2 powders with rutile phase, which have small particle size, ca.50 nm and narrow particle size distribution, were prepared at 100 ℃ for 24 h by using HCl or HClO4 acid. These nanosized TiO2 particles maintained the rutile phase when the calcination temperature increased to 700 ℃ or above. Nanosized barium titanate particles with cubic phase were synthesized from the as-prepared TiO2 particles by using a hydrothermal reaction in a barium hydroxide solution. The Ba/Ti ratios slightly influenced the particles size but did not influence the morphology and lattice constant of BaTiO3 particles. The reaction temperature and reaction time slightly influenced the lattice constant and did not influence the size and morphology of BaTiO3 particles. The high purity BaTiO3 particles could be obtained by washing with formic acid to remove the undesired salts. The size and morphology of the BaTiO3 particles were different from those of the original TiO2 particles, indicating the dissolution-precipitation reaction mechanism for the conversion of TiO2 to BaTiO3. The as-synthesized BaTiO3 particles were cubic phase and transformed to tetragonal phase after calcinations at 1150℃ for 2 h. The mean density of the pellets sintered at 1250 ℃ for 2 h was 5.92 g/cm3 and accounted for 98.33% of the theoretical density.
關鍵字(中) ★ 金紅石
★ 銳鈦礦
★ 二氧化鈦
★ 水熱合成法
★ 鈦酸鋇
關鍵字(英) ★ barium titanate
★ hydrothermal method
★ rutile
★ anatase
★ colloid sol
★ titania
★ thermal hydrolysis
論文目次 總 目 錄
中文摘要……………………………………………………………. Ⅰ
英文摘要……………………………………………………………. Ⅲ
致謝……………………………………………………………..... Ⅵ
總 目 錄……………………………………………………………. Ⅶ
表 目 錄……………………………………………………………. Ⅹ
圖 目 錄…………………………………………………………….
第 一 章…………………………………………………………….. 1
1-1 簡 介…………………………………..…………………. 1
1-2 研究目的………………………………..………………… 2
1-3 文獻回顧…………………………… ……………………. 3
1-4 研究動機及方向…………………… …………………….... 6
第 二 章 理論基礎……………………………………………….. 8
2-1 鈦酸鋇之質………….……………………………………. 8
2-2 粒子穩定性原理(DLVO理論)……………………………... 9
2-3 水熱合成反應機構………………………………………..... 11
2-4 晶格常數…………………………………………………..... 12
第 三 章 實 驗…..……………………………………………… 19
3-1 實驗藥品…………………………………………………. 19
3-2 實驗設備及儀器…………………………………………. 20
3-3 實驗流程…………………………………………………. 22
3-3-1 四氯化鈦水溶液之製備……………………………. 22
3-3-2 球形二氧化鈦粉體之製備…………………………. 22
3-3-3 奈米二氧化鈦粉體之製備…………………………. 23
3-3-4 球形鈦酸鋇粉體之製備…………………………... 24
3-3-5 煆燒粉體……………………………………………. 24
3-3-6 燒結試片……………………………………………. 25
3-4 性質測定………………………………………………….. 25
3-4-1 X光繞射分析 (XRD)……………………………….. 25
3-4-2 掃瞄式電子顯微鏡 (SEM)分析………………….… 26
3-4-3 穿透式電子顯微鏡 (TEM)分析………………….… 26
3-4-4 粒徑分析 (DLS)……………………………………. 26
3-4-5 熱重及熱差分析 (TGA/DTA)……………………... 26
3-4-6 體密度 (Bulk density)……………………………….... 27
第 四 章 球形二氧化鈦粉體之製備…………………………….. 32
4-1 溶劑對粉體成長機構之影響…………………………….. 32
4-2 溶劑對粉體外形之影響………………………………….. 33
4-3 醇-水體積比(RH)對粉體之影響…………………………. 35
4-4 反應溫度對粉體之影響………………………………... 36
4-5 反應時間對粉體之影響………………………………… . 38
4-6 反應濃度對粉體之影響…………………………………. 38
4-7 HPC對粉體之影響……………………………………….. 39
4-8 粉體之X-ray繞射分析………………………………….. 40
4-9 結 論……………………………………………………. 40
第五章 奈米二氧化鈦粉體之製備……………………………….. 64
5-1 酸對粉體成長機構之影響…………………………….... 64
5-2 氫/鈦比(H/Ti)對粉體之影響……………………….…… 66
5-3 粉體之熱處理分析………………………………………..... 68
5-4 氫鈦比對粉體產率之影響………………………………..... 69
5-5 結 論……………………………………………………..... 72
第六章 球形鈦酸鋇粉體之製備……………………………….…. 87
6-1 球形鈦酸鋇粉體之合成…………………………………..... 87
6-2 鋇/鈦比(Ba/Ti)對球形鈦酸鋇粉體之影響………………... 88
6-3 反應溫度對球形鈦酸鋇粉體之影響……………………..... 89
6-4 反應時間對球形鈦酸鋇粉體之影響…………………….. 90
6-5 球形鈦酸鋇粉體之晶格分析…………………………….. 91
6-6 結 論……………………………………………………. 95
第七章 奈米鈦酸鋇粉體之製備……………………………..... 107
7-1 奈米鈦酸鋇粉體之合成…………………………………. 107
7-2 鋇/鈦比(Ba/Ti)對奈米鈦酸鋇粉體之影響……….…… 109
7-3 反應溫度對奈米鈦酸鋇粉體之影響……………………. 109
7-4 反應時間對奈米鈦酸鋇粉體之影響……………………. 111
7-5 奈米鈦酸鋇粉體之晶格分析……………………………. 111
7-6 結 論……………………………………………………. 116
第八章 總 結……………………………………………………. 129
參考資料…………………………………………………......... 132
參考文獻 參 考 資 料
1. J. C. Niepce and G. Thomas, Solid State Ionics, 43 (1990), 69.
2. P. P. Phule and S. H. Risbud, J. Mater. Sci., 25(1990), 1169.
3. S. Wada, T. Suzuki and T. Nova, J. Ceram. Soc. Jap., Int. Edition, 103 (1995) 151.
4. P. K. Dutta, R. Asiaie, A. Akbar and W. Zhu, Chem. Mater., 6 (1994) 1542.
5. Z. H. Park, H. S. Shin, B. K. Lee and S. H. Cho, “ Particle Size Control of Barium Titanate Prepared from Barium Titanyl Oxalate”, J. Am. Ceram. Soc., 80[6](1997) 1599.
6. A. V. Ragulya, O. O. Vasylkiv and V. V. Skorokhod, Powder Metallurgy and Metal Ceramics, 36(1997), 170.
7. S. W. Kim, M. H. Lee, T. Y. Noh and C. Lee, J. Mater. Sci., 31(1996), 3643.
8. M. Rajendran and M. S. Rao, “Formation of barium titanate from citrate precursor”, J. Solid State Chem., 113 (1994) 239.
9. C. Proust, C. Miot and E. Husson, J. Europ. Ceram. Soc., 15 (1995)
631.
10. H. S. Potdar, S. B. Deshpande, A. S. Deshpande, Y. B. Khollam, A.
J. Patil and S. D. Pradhan; “Simplified chemical route for the synthesis of barium titanyl oxalate”, Inter. J. Inorg. Mater., 3 (2001) 613.
11. D. Hennings, G. Rosenstein and H. Schreinemacher, “Hydrothermal
Preparation of Barium Titanate from Barium-Titanium Acetate Gel Precursors”, J. Eur. Ceram. Soc.,, 8 (1991), 107.
12. R. N. Viswanath and S. Ramasamy, Nanostruct. Mater., 8 (1997),
155.
13. T. Fukui, C. Sakurai and M. Okuyama, J. Mater. Sci., 32 (1997),
189.
14. M. Ikeda, S. –K Lee, K,Shinozaki and N. Mizutani, J. Ceram. Soc. Jap., Int. Edition, 100 (1992) 674.
15. P. P. Phule, S. Raghavan and S. H. Risbud, J. Am. Ceram. Soc., 70 (1987) C108.
16. P. K. Dutta, R. Asiaie, S. A. Akbar and W. Zhu, “ Hydrothermal Synthesis and Dielectric Properties of Tetragonal BaTiO3”, Chem. Mater., 6 (1994) 1542.
17. S. Wada, T. Suzuki and T. Noma, “ Preparation of Barium Titanate Fine Particles by Hydrothermal Method and Their Characterization”, J. Ceram. Soc. Jpan., 103 (1997) 1207.
18. J. A. Kerchner, J. Moon, R. E. Chodelka, A. A. Morrone and J. H. Adair, ACS Symp. Ser., 681 (1988) 106.
19. H. Herrig and R. Hempelmann, Mater. Lett., 27 (1996) 287.
20. D. Sporn, J. Grobmann, A. Kaiser, R. Jahn and A. Berger, Nanostruct. Mater., 6 (1995) 329.
21. L. M. Gan, L. H. Zhang, S. O. Chan, C. H. Chew and B. H. Loo, J. Mater. Sci., 31 (1996) 1071.
22. P. Gherardi and E. Matijevic, Colloids Surf., 32 (1988) 257.
23. J. O. Eckert Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka and R. E. Riman, “Kinetics and Mechanism of Hydrothermal Synthesis of Barium Titanate”, J. Am. Ceram. Soc. 79 (1996) 2929.
24. T. Ogihara, N. Mizutani and M. Kato; “Processing of Monodispersed Powders”, Ceram. Int.; 13(1987) 35.
25. H. K. Park, D. K. Kim and C. H. Kim; “Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4”, J. Am. Ceram. Soc., 80[3] (1997) 743.
26. S. J. Kim, S. D. Park and Y. H. Jeong, J. Am. Ceram. Soc., 82[2] (1999) 927.
27. E. Matijevic, M. Budnik and L.Meites, “Preparation and Mechanism of Formation of Titania Dioxide Hydrosols of Narrow sized Distribution”, J Colloid Interface Sci., 6[2] (1977) 302.
28. Y. T. Moon, H. K. Park, D. K. Kim, I. S. Seog and C. H. Kim, “Preparation of Monodisperse and Spherical Zirconia Powders by Heating of Alcohol-Aqueous Salt Solution”, J. Am. Ceram. Soc., 78[10] (1995) 2690.
29. Y. T. Moon, D. K. Kim and C. H. Kim, J. Am. Ceram. Soc., 78[4] (1995) 1103.
30. M. Z.-C. Hu, G. A. Miller, E. A. Payzant and C. J. Rawn, “Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles”, J. Mater. Sci., 35 (2000) 2927.
31. H. Kumazawa, T. Kagimoto and A. Kawabara, “Prepqration of barium titanate ultrafine particles from amorphous titania by a hydrothermal method and specific dielectric constants of sintered discs of the prepared particles”, J. Mater. Sci., 31 (1996) 2599.
32. I. J. Clark, T. Takeuchi, N. Ohtori and C. Sinclair, “Hydrothermal synthesis and characterization of BaTiO3 fine powders: precursors, polymorphism and properties”, J. Mater. Chem., 9 (1999) 83.
33. B. J. Schoeman, “Analysis of the nucleation and growth of TPA-silicslite-1 at elevated temperature with the emphasis oh colloidal stability”, Microporous and Mesoporous Mater. 22 (1998), 9.
34. R. J. Hunter, “Foundation of Colloid Science”, Vol. 1; p.443, Clarendon Press, New York, 1987.
35. R. J. Hunter, “Zeta Potential in Colloid Science”, Academic Press, New York, 1981.
36. N. Spanos, I. Georgiadou and A. Lycourghiotis, “Investigation of Rutile, Anatase, and Industrial Titania/Water Solution Interfaces using Potentiometric Titration and Microelectrophoresis”, J. Colloid Interface Sci., 172 (1995) 374.
37. Y. K. Leong, D. V. Boger, P. J. Scales and T. W. Healy, “ Interparticle Forces Arising from Adsorbed Surfactants in Colloidal Suspensions: An Additional Attractive Firce”, 181 (1996) 605.
38. Y. K. Leong, “Interparticle Forces Arising from Adsorbed Strong Polyelectrolyte in Colloidal Dispersions: Charged patch Attraction”, Colloid Polym. Sci., 277 (1999) 299.
39. W. Hertl, “ Kinetics of Barium Titanate Synthesis”, J. Am. Ceram. Soc. 71 (1988) 879.
40. P. Pinceloup, C. Courtois, J. Vicens, A. Leriche and B. Thierry, “ Evidence of a Dissolution-Precipitation Mechanism in Hydrothermal Synthesis of Barium Titanate Powders”, J. Europ. Ceram. Soc., 19 (1999) 973.
41. L. L. Hench and J. K. West, “Principles of Electronic Ceramics”, John Wiley & Sons Inc. Press, 1990.
42. H. Park, Y. Moon, D. Kim and C. Kim, “ Formation of Monodisperse TiO2 Powders by Thermal Hydrolysis of Ti(SO4) 2, J. Am. Ceram. Soc., 79 (1996) 2727.
43. Y. T. Moon, D. K. Kim and C. H. Kim,” Preparation of Monodisperse ZrO2 by the Microwave Heating of Zirconyl Solutions”, J. Am. Ceram. Soc., 78[4] (1995) 1103.
44. J. -L. Look and C. F. Zukoski,” Colloidal Stability and Titania Precipitate Morphology: Influence of Short-Range Repulsions”, J. Am. Ceram. Soc., 78[1] (1995) 21.
45. T. Ogihara, H. Nakajima, T. Yanagawa and K. Yoshida, “ Preparation of Monodispersed Spherical Alumina Powders from Alkoxides”, J. Am. Ceram. Soc., 74[9] (1991) 2263.
46. DJ. Janackovic, V. Jokanovic, S. Zec and D. Uskokovic, “ Synthesis and formation mechanism of submicrometer spherical cordierite powders by ultrasonic spray pyrolysis”, J. Mater. Sci., 32 (1997) 163.
47. J. H. Jean and T. A. Ring, “ Effect of a Sterically Stabilizing Surfactant on the Nucleation, Growth and Agglomeration of Monosized Ceramic Powders” Colloids and Surfaces. , 29 (1988) 273.
48. D. Sorddet and M. Akinc, “ Preparation of the Spherical Mosized Y2O3 Cursor Particles”, J. Colloid Interface Sci., 122[1] (1988) 47.
49. H. Shimooka and M. Kuwabara, J. Am. Ceram. Soc., 78 (1995) 2849.
50. S. Takahashi, H. Ohmura, K. Miki, H. Shimooka and M. Kuwabara, J. Ceram. Soc. Jap., Int. Edition, 102 (1994) 1182.
51. L. Meites, Handbook of Analytical Chemistry; p. 47-49, McGRAW -HILL Press, New York, 1982.
52. F. Franks, Water-A Comprehensive treatise, Vol. 3; p. 60-78. Plenum Press, New York, 1973.
53. F. Franks,”Water-A Comprehensive Treatise, Vol. 2; p. 405., Plenum Press, New York, 1973.
54. I. Mellan, “ Industrial Solvents Handbook”, 2nd ed., pp. 123-124, Noyes Corp., Park Ridge, NJ, 1977.
55. A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles and J. P. Jolivet, “ Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media”, J. Mater. Chem., 11 (2000) 1116.
56. L. B. Bischoff and M. A. Anderson, “ Peptization process in the sol-gel preparation of porous anatase (TiO2)”, Chem. Mater., 7 (1995) 1772.
57. H. Chen, J. Ma, Z. Zhao and L. Qi, “ Hydrothermal preparation of uniform nanosize rutile and anatase particles”, Chem. Mater., 7 (1995) 663.
58. L. Elfenthal, E. Klein and F. Rosendahl, “Process for the production of a fine particle titanium dioxide”, Assignee: Kronos USA, Inc., U. S. Patent 5, 215, 580(1993).
59. D. L. Foulger, P. G. Necini and S. Poeri, “Preparation of anatase titanium dioxide, Assignee: Tioxide Group Services Limited., U. S. Patent 5, 630, 995 (1997).
60. D. H. Kim and M. A. Anderson, “Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin-film electrode, Environ. Sci. Tech.. 28 (1994) 479.
61. L. G. Li and G. H. Wang, “Synthesis of nanometer-sized TiO2 particles by a microemulsion method”, Nanostructured Mater., 11 (1999) 663.
62. H. D. Man, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee and S. Park, “Preperation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation”, Jap. J. App. Phy., (1998) 4603.
63. S. D. Park, Y. H. Cho, W. W. Kim and S. J. Kim, “Understanding on homogeneous spontaneous precipitation for monodispersed of TiO2 ultrafine powders with rutile phase around room temperature”, J. Solid State Chem., 146 (1999) 230.
64. I. Sopyan, Hashimoto and Fujishima, “An efficient TiO thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, J. Photo A., (1996) 79.
65. M. Tunashima, K. Muraoka, K. Yamamoto, M. Mikami and S. Sasaki, “ Stable anatase titanium dioxide and process for preparing the same, Asssignee: Sakai Chemical Industry Co., Ltd., U. S. Patent 6, 113,873 (2000).
66. I. J. Clark, T. Takeuchi, N. Ohtori and C. Sinclair, “Hydrothermal synthesis and characterization of BaTiO3 fine powders: precursors, polymorphism and properties”, J. Mater. Chem., 9 (1999) 83.
67. M. Z.-C. Hu, V. Kurian, E. A. Payzant and C. J. Rawn, “ Wet-chemical synthesis of monodispersed barium titanate particles-hydrothermal conversion of TiO2 microspheres to nanocrystalline”, Powder Technol., 110 (2000) 2.
68. M. Z. –C. Hu, E. A. Payzant and C. H. Byers, J. Colloid Inter. Sci., 222 (2000) 20.
69. M. Z. -C. Hu, R. D. Hunt, E. A. Payzant and C. R. Hubbard, ibid,
82 (1999) 2313.
70. J. -L. Look and C. F. Zukoski, “ Alkoxide-Derived Titania Particles: Use of Electrolytes to Control Size and Agglomeration Levels” J. Am. Ceram. Soc., 75[6] (1992) 1587.
71. J. -L. Look and C. F. Zukoski, J. Colloid Interface Sci., 153[2] (1992) 469.
72. D. Hennings and H. Schreinemacher, “ Characterization of
Hydrothermal Barium Titanate”, J. Eur. Ceram. Soc., 9 (1991) 47.
73. S. F. Liu, I. R. Abothu and S. Komarneni, “ Barium titanate ceramics prepared from conventional and microwave hydrothermal powders”, Mater. Letters, 38 (1999) 344.
74. M. S. H. Chu, “ Manufacturing Dielectric Powders”, Am. Ceram. Soc. Bull., 74[6] (1995) 65.
75. F. C. Chaput and J. P. Boilot, “ Alkoxide-Hydroxide Route to Synthesize BaTiO3 Based Powders”, J. Am. Ceram. Soc., 73[4] (1990) 942.
76. P. K. Dutta and R. Gregg, ibid, 4 (1992) 843.
77. K. Fukai, K. Hidaka, M. Aoki and K. Abe, “ Preparation and Properties of Uniform Fine Perovskite Powders by Hydrothermal Synthesis”, Ceram. Inter., 16 (1990) 285.
78. A. D. Hilton and R. Forst, “ Recent Development in the Manufacture of Barium Titanate”, Key Eng. Mater., 66&67 (1992) 145.
79. P. Nanni, M. Leoni, V. Buscaglia and G. Aliprandi, “ Low-Temperature Aqueous preparation of Barium Matatitanate Powders”, J. Europ. Ceram. Soc., 14 (1994) 85.
80. Y. G. Wang, W. L. Zhang and P. L. Zhang, “ Size Driven Phase Transition in Ferroelectric Particles”, Solid State Comm., 90 (1994) 329.
81. S. F. Yen, H. I. Hsiang and Y. H. Chang, “ Cubic to Tetragonal Phase Transform of Ultrafine BaTiO3 Crystallites at Room Temperature”, Jap. J. Appl. Phys., 34 (1995) 6146.
82. E. W. Shi, C. T. Xia, W. Z. Zhong, B. G. Wang and C. D. Feng, “ Crystallographic Properties of Hydrothermal Barium Titanate Crystallites”, J. Am. Ceram. Soc., 80[6] (1997) 1567.
83. Y. S. Cho, V. L. Burdick and v. R. W. Amarakoon, “ Hydrothermal preparation and Morphology Characteristics of Y3Fe5O12, J. Am. Ceram. Soc., 80[6] (1997) 1605.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2004-5-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明