博碩士論文 90324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.17.79.188
姓名 蔡瑞云(Jui-Yun Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 光電封裝中金錫銲料微結構之研究
(Study the Microstructure of Au20Sn Solder in the Optoelectronic Packaging)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 金濃度對球矩陣構裝銲點剪力強度影響之研究
★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討
★ 錫銅無鉛銲料與Ni基材界面反應之研究★ 電遷移效應對錫微結構影響之探討
★ 先進半導體封裝技術中之金脆效應及其有效抑制方法★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究
★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用★ 覆晶封裝中電遷移效應導致之銅溶解現象
★ 一種兼具低消耗速率及抗氧化作用之銲點墊層材料★ 覆晶接點與錫電路之電遷移微結構變化模式研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於金屬銲料比其他高分子的焊接材料有較好的機械性質與導熱、導電能力,所以對於更需要導熱性質好與傳輸速率更快的光電封裝中,金屬銲料為光電封裝中主流的封裝材料。在硬銲銲料中,又以機械性質好且低熔點的Au20Sn (wt.%)銲料,較為廣泛的應用在對焊接溫度敏感的元件封裝中。而薄膜的 Au20Sn銲料不但可以增加導熱速率,且在光纖被動對準步驟中,更可以將垂直高度誤差的情形減至最低。又由於銲料的微結構對於銲點的機械性質有相當程度的影響,因此我們先將三明治結構 Sn/Au/Ni (2.5/3.75/2 mm) 和 Sn/Au/Cu (1.83/2.74/5.8 mm) 鍍在Si上, Au和Sn的總組成是Au20Sn (wt.%) 。結果顯示銲料的微結構可以利用不同的焊接條件控制。當焊接條件是在290oC、2分鐘時,由於溫度高於熔點所以銲點是為液態,所以微結構是兩相混合的共晶結構 (Au5Sn and AuSn)。Ni墊層與Cu墊層唯一的不同,是AuSn會與Ni墊層相接,而融入AuSn之Ni會降低Gibbs free energy。同樣地在Au20Sn/Cu系統中,Au5Sn會與Cu墊層相接,融入之Cu會降低Gibbs free energy。當焊接條件是在240oC、2分鐘時,由於幾乎是固固反應,所以微結構是層狀結構 (AuSn/Au5Sn/Ni or Cu)。
當AuSn/Au5Sn/Ni層狀的微結構放在240oC熱處理,在9小時之內,AuSn會與Au5Sn交換位置,變成Au5Sn/AuSn/Ni。而此兩層交換位置的驅動力,是AuSn想要尋找更多的Ni。且從短時間的結果顯示,兩層交換位置的擴散機制是:在Au5Sn中,Sn是主要的擴散元素。而在Au20Sn/Ni與Au20Sn/Cu兩個系統中,Au20Sn在Ni墊層上微結構的熱穩定性比Au20Sn在Cu墊層上的微結構還好。且在熱處理1000小時後,Ni墊層的消耗 (0.8mm)比Cu墊層的消耗 (4.8mm)來的少許多。
摘要(英) The good mechanical property, high thermal conductivity and high electrical conductivity of alloy make it widely used in optoelectronic packaging. Among of all hard solders, Au20Sn (wt.%) solder has the lowest melting point and good high strength and therefore is useful for devices sensitive to high processing temperature. Thin film Au20Sn solder layer not only can spread heat from the bonded device to the substrate quickly, but also can reduce the misalignment of z-position in passive alignment of fiber. It has been reported microstructure of solder may influence the reliability of solder. In this study, the microstructures of the eutectic Au20Sn (wt.%) solder developed on the Cu and Ni substrates were studied. The Sn/Au/Ni sandwich structure (2.5/3.75/2 mm) and the Sn/Au/Ni sandwich structure (1.83/2.74/5.8 mm) were deposited on Si wafers first. The overall composition of the Au and Sn layers corresponded to the Au20Sn binary eutectic. The microstructures of the Au20Sn solder on the Cu and Ni substrates could be controlled by using different bonding conditions. When the bonding condition was 290oC for 2 min, the microstructure of Au20Sn/Cu and Au20Sn/Ni was a two-phase (Au5Sn and AuSn) eutectic microstructure. When the bonding condition was 240oC for 2 minutes, the AuSn/Au5Sn/Cu and AuSn/Au5Sn/Ni layered microstructure formed. The major difference between Au20Sn/Ni and Au20Sn/Cu is that (Au, Ni)Sn preferred to form next to Ni and (Au, Cu)5Sn preferred to form next to Cu due to the different solubility of Ni and Cu in AuSn and Au5Sn. It is because a ternary intermetallic compound often has a lower Gibbs free energy compared to a binary compound of the same structure from the entropy argument.
After bonding, the Au20Sn/Cu and Au20Sn/Ni diffusion couples were subjected to aging at 240oC. In the Au20Sn/Ni system, the AuSn layer gradually exchanged its position with the Au5Sn layer, and eventually formed an Au5Sn/AuSn/Ni three-layer structure in less than 9 hours. The driving force for Au5Sn and AuSn to exchange their positions is for the AuSn phase to seek more Ni. From the result of short time reaction, the diffusion mechanism for the exchange of AuSn and Au5Sn is the diffusion of Sn through Au5Sn. The thermal stability of Au20Sn/Ni was better than that of Au20Sn/Cu. Moreover, less Ni was consumed compared to that of Cu. This indicates that Ni is a more effective diffusion barrier material for the Au20Sn solder.
關鍵字(中) ★ 光電封裝
★ 銲料微結構
★ 金錫銲料
關鍵字(英) ★ microstructure
★ Au20Sn solder
★ optoelectronic packaging
論文目次 Contents…………………………………………………………………..I
List of Figures…………………………………………………………...III
List of Tables………...…………………………………………………VII
Chapter 1 Background and Objectives
1.1 Introduction of the Optoelectronic Packaging………..…..…1
1.2 Materials for Optoelectronic Packaging…………....……….4
1.3 Au-Sn Alloy System………………………………………...8
1.3.1 Au-Sn Binary Phase Diagram…………………………8
1.3.2 Diffusion Behavior of Au and Sn……………...…….12
1.4 Metallization with Au-Sn Alloy.………………………...…16
1.5 The Effect of Solder Microstructure on Reliability………..17
1.6 Objectives………………………………………………….20
Chapter 2 Experimental Procedure……………………………………..21
Chapter 3 Microstructure Evolution of Eutectic Gold-Tin Solder on Ni
Substrate
3.1 Result………………………………...…………………….23
3.1.1 Bonding Reaction at 240oC and 290oC for 2 Minutes.23
3.1.2 Aging Reaction at 240oC……………….……..……..23
3.1.2.1 Reactions up to 72 Hours....………………….27
3.1.2.2 Reactions up to 1000 Hours………………….34
3.2 Discussion……………………………………….…………40
Chapter 4 Microstructure Evolution of Eutectic Gold-Tin Solder on Cu
Substrate
4.1 Result………………………………...…………………….48
4.1.1 Bonding Reaction at 240oC and 290oC for 2 Minutes.48
4.1.2 Aging Reaction at 240oC…………………..………...50
4.2 Discussion……………………………………….…………58
Chapter 5 Summary…………………...………………………………...61
References………………………………………………………………63
Appendix
A.List of Publications…………………………………………68
A.1 Journals………………………………………………..68
A.2 Conferences…………………………………………...69
A.3 Patent………………………………………………….70
參考文獻 1.A. Rae, and R. Gedney, NEMI’s Effort to Make Optoelectronics Manufacturing Mainstream, SMTA, p. 13 (2001).
2.W. H. Cheng, M. T. Sheen, G. L. Wang, S. C. Wang, and J. H. Kuang, J. Lightwave Tech., 19, p. 1177 (2001).
3.K. Mizuishi, J. Appl. Phys., 55, p. 289, (1984).
4.M. Fukuda, O. Fujita, and G. Iwane, IEEE Trans. Compon. Hybr. & Manufact. Tech., 7, p. 202 (1984).
5.J. Brusse, Nasa web side.
6.J. H. Lau ed., Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, NY, 1994.
7.J. S. Pavio, IEEE Trans. Electron. Devices, 35, p. 1507 (1987).
8.G. S. Natijasevic and C. C. Lee, in Proc. 27th IEEE International Reliability Physics Symp., p. 137 (1989).
9.M. Nishiguchi, N. Goto, and H. Nishzawa, IEEE Trans. Compon. Hybr. & Manufact. Tech., 14, p. 523 (1991).
10.G. S. Natijasevic, C.Y. Wang and C. C. Lee, IEEE Trans. Compon. Hybr. & Manufact. Tech., 13, p. 1128 (1990).
11.H. Okamoto and T. B. Massalski, In H. Okamoto and T. B. Massalski (eds.), Phase Diagram of Binary Gold Alloys, ASM International, Metals Park, OH, p. 278 (1987).
12.J. Ciulik and M. R. Notis, J. Alloys. Comp., 191, p. 71 (1993).
13.L. Buene, H. Falkenberg-Arell, and J. Taftø, Thin Solid Films, 65, p. 247 (1980).
14.L. Buene, H. Falkenberg-Arell, J. Gjønnes, and J. Taftø, Thin Solid Films, 67, p. 95 (1980).
15.S. Nakahara, R. J. McCoy, L. Buene, and J. M. Vandenberg, Thin Solid Films, 84, p. 185 (1981).
16.Z. Marinkovic and V. Simic, Thin Solid Films, 156, p. 105 (1988).
17.J. Ciulik and M. R. Notis, Proc. 2nd ASM Int. Electronic Materials and Processing Conger., 1989, ASM International, Metals Park, OH, p. 57 (1989).
18.T. B. Massalski and H. W. King, Acta Metall., 8, p. 677 (1960).
19.K. Osada, S. Yamaguchi and M. Hirabayashi, Trans, Jpn. Inst. Met., 15, p. 256 (1974).
20.S. Misra, B. W. Howlett and M. B. Bever, Trans. Netall. Soc. AIME, 233, p. 749 (1965).
21.J. P. Jan, W. B. Pearson, A. Kjekshus and S. B. Woods, Can. J. Phys., 41, p. 2252 (1963).
22.W. Hume-Rothery and G. V. Raynor, The Stucture of Metals and Alloys, Inst. Met., Monogr. Rep. Ser. 1, The Institute of Metals, London, 1962.
23.C. C. Lee and C. Y. Wang, Thin solid Films, 208, p. 202 (1992).
24.W. K. Warburton and D. Turnbull, in A. S. Nowick and J. J. Burton (eds.), Diffusion in Solids. Recent Developments, Academic Press, New York, p. 171 (1975).
25.W. A. Harrison, Electronic structure and the properties of solids, Freeman, San Francisco, CA, 1980.
26.K. N. Tu and R. Rosenberg, Jpn. J. Appl. Phys., Suppl. 2, Part 1, p. 633 (1974).
27.D. Gregersen, L. Buene, T. Finstad, O Lønsjø and T. Olsen, Thin Solid Films, 78, p. 95 (1981).
28.S. Nakahara and R. J. McCoy, Appl. Phys. Lett., 37, p. 42 (1980).
29.W. G. Bader, Welding Res. Suppl., 48, p.551s (1969).
30.A. Katz, C. H. Lee and K. L. Tai, Mater. Chem. Phs., 37, p. 303 (1994).
31.S. Anhöck, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, and H. Reichl, 1998 IEEE/CPMT Berlin Intl. Manufacturing Tech. Symp. Proc., p. 156 (1998).
32.O. Wada and T. Kumai, Jap., J. Appl. Phys., p. L1056 (1991).
33.S. C. Tjong, H. P. Ho and S. T. Lee, Material Research Bulletin, 36, p. 153 (2001).
34.C. H. Lee, Y. M. Wong, C. Doherty, K. L. Tai, E. Lane, D. D. Bacon, F. Baiocchi and A. Katz, J. Appl. Phys., 72, p. 3808 (1992).
35.Anquiang He, Douglas G. Ivey, Mat. Sci. Eng. B106, p. 33 (2004).
36.J. H. Park, J. H. Lee, Y. H. Lee and Y. S. Kim, J. Electron. Mater., 31, p. 1175 (2000).
37.J. S. Hwang, Surf. Mount Technol., 13, p. 68 (1999).
38.J. W. Morris, Jr., and H. L. Reynolds, SEM Conf., 1996.
39.L. L. Ye, Z. La, J. Liu and A. Tholen, IEEE Electronic Components and Technology, p. 134 (2000).
40.H. G. Song, J. W. Morris, Jr., and M. T. McCormack, J. Electron. Mater., 29, p. 1038 (2000).
41.D. R. Frear and P. T. Vianco, Metall. Trans. A, p. 1509 (1994).
42.E. Zakel, and Herbert Reichl, IEEE Trans. Compon. Hybr. & Manufact. Tech., 16, p. 323 (1993).
43.C. C. Lee and D. H. Chien, Ninth IEEE Semi-Thermtm Symposium, p. 75 (1993).
44.C. E. Ho, Y. L. Lin, J. Y. Tsai, and C. R. Kao, J. Chin. Inst. Chem. Eng., 34, p. 387 (2003).
45.C. E. Ho, L. C. Shiau, and C. R. Kao, J. Electron. Mater., 31, p. 1264 (2002).
46.C. E. Ho, S. Y. Tsai, and C. R. Kao, IEEE Trans. Advanced Packaging, 24, p. 493 (2001).
47.C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, J. Electron. Mater., 30, p. 1152 (2001).
48.C. E. Ho, W. T. Chen, and C. R. Kao, J. Electron. Mater., 30, p. 379, (2001).
49.C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, J. Electron. Mater., 29, p. 1175, (2000).
50.C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Mater., 28, p. 1231, (1999).
51.J. S. Kirkaldy and L.C. Brown, Can. Met. Q., 2, p. 89 (1963).
52.A. A. Kodentsov, J. Alloys Comp., 320, p. 207 (2001).
53.E. Zakel, Ph.D. thesis, Technical University, Berlin, 1994.
54.T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary alloy phase diagrams, 2nd ed. (ASM int, Materials Parks, OH, 1990)
指導教授 高振宏(C. Rober Kao) 審核日期 2004-11-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明