博碩士論文 90324014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.144.242.195
姓名 江淑媜(Shu-Chen Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 高分子穩定化奈米NiB觸媒之製備與催化性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以化學還原法製備奈米NiB、CoB 及NiCoB 合金觸媒,
探討觸媒於檸檬醛之選擇性氫化行為,瞭解觸媒製備、反應溶劑(乙
醇、環己烷、正己烷)及促進劑對反應活性及選擇性之影響。
以NiB 為觸媒,鹽類選取以醋酸鎳最佳,反應溶劑以乙醇反應
活性最佳、環己烷次之、正己烷最差。NiB 觸媒不論催化活性或產
物選擇性皆明顯優於倫尼鎳觸媒,其中P-2WNiB 觸媒反應活性是
P-1NiB 的2.1 倍。NiB 觸媒之檸檬醛氫化反應路徑,皆優先選擇氫
化共軛C=C/C=O 中的C=C 鍵成香茅醛,再氫化共軛C=O 鍵成香茅
醇。以P-2WNiB 為觸媒,香茅醇會繼續氫化成全氫化產物3,7-二甲
基-辛醇,以P-1NiB 為觸媒,僅生成少量的全氫化產物。
NiB 觸媒的溶劑明顯影響反應活性與選擇率,以乙醇為檸檬醛
氫化反應溶劑時,明顯使反應速率加快。P-1NiB 觸媒,反應一小時
之轉化率相對大小為乙醇(2.1)>環己烷(1)>正己烷(0.6)。使用環己
烷為反應溶劑,幾無全氫化產物;使用乙醇溶劑時,則有微量的全
氫化產物產生。P-2WNiB 觸媒,不論使用環己烷或乙醇為反應溶劑,
皆不影響產物的分佈,唯使用乙醇溶劑時,反應速率加快。
添加鉻、釷、鎢促進劑於P-1NiB 觸媒中皆顯著促進反應活性,
其中又以鉻的促進效果最佳。反應一小時之轉化率相對大小為
10%Cr-NiB(4.7)>10%Th-NiB(3.9)>5%W-NiB(2.8)>P-1NiB(1)。在
中轉化率下,對主產物香茅醛之選擇率影響不大,在高轉化率下,
產物分佈則有明顯差異。添加鉻、釷、鎢促進劑,香茅醇會快速氫
化成全氫化產物。
以CoB 為觸媒,鹽類選取以醋酸鎳最佳,反應溶劑以乙醇反應活性最佳、環己烷次之、正己烷最差。CoB 觸媒不論催化活性或產物
選擇性皆明顯優於倫尼鈷觸媒,其中P-2WCoB 觸媒反應活性是
P-1CoB 的1.7 倍。CoB 觸媒之檸檬醛氫化反應路徑不同於NiB 觸媒,
皆優先選擇氫化共軛C=C/C=O 中的C=O 鍵成橙花醇與香葉醇,再氫
化共軛C=C 鍵成香茅醇,反應過程幾無全氫化產物,反應過程僅少
量香茅醛的生成。
CoB 觸媒的溶劑明顯影響反應活性,對選擇率的影響較小,以乙
醇為反應溶劑,反應速率明顯增快,以正己烷為反應溶劑,反應速率
反而下降。P-1CoB 觸媒,反應一小時之轉化率相對大小為乙醇(5.5)
>環己烷(1)>正己烷(0.2)。P-1CoB 觸媒,使用乙醇為反應溶劑,幾
無全氫化產物,且僅有微量的香茅醛(<3%)產生;使用環己烷溶劑
時,有相當量的香茅醛(10%)產生。
在P-1CoB 觸媒中,添加氧化鎢有較顯著的促進效果,添加氧化
釷與氧化鉻則幾無促劑效果。促進劑的氫化路徑皆與CoB 觸媒相同,
且最後只停留在香茅醇產物。添加鉻、釷促進劑,不影響橙花醇與香
葉醇之選擇率,添加鎢促進劑,使橙花醇與香葉醇之選擇率略降低。
NiCoB 雙金屬觸媒在與NiB 相同的反應條件下檸檬醛氫化活性
明顯優於NiB 觸媒,且Ni0.7Co0.3B 觸媒之氫化活性是NiB 的1.5 倍。
CoB 的存在使NiB 更具催化活性,NiB、CoB 並非獨自扮演催化角色,
NiB 與CoB 必然產生交互作用。
關鍵字(中) ★ CoB
★ 檸檬醛
★ 選擇氫化反應
★ NiB
★ 奈米
關鍵字(英)
論文目次 第一章緒論⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1
第二章文獻回顧⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4
2-1 金屬-硼奈米合金觸媒⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4
2-1-1 物理性質⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5
2-1-2 催化特性⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 15
2-2 檸檬醛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 18
2-2-1 先趨鹽類與反應溶劑之影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 19
2-2-2 金屬顆粒大小之影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 27
2-2-3 促進劑之影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 27
2-2-4 擔體效應之影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 29
2-2-5 Ru 以外金屬觸媒之檸檬醛氫化反應⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 30
第三章實驗方法與設備⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 33
3-1 觸媒製備⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 33
3-1-1 P-1、P-2W 非負載式NiB、CoB 觸媒之製備⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 33
3-1-2 倫尼鎳、鈷觸媒之製備⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 35
3-2 觸媒性質鑑定⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 35
3-2-1 元素組成分析⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 35
3-2-2 X-射線繞射分析⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 35
3-2-3 比表面積測定⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 36
3-2-4 示差掃瞄熱量測定⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 36
3-2-5 X-射線光電子光譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 37
3-2-6 穿透式電子顯微鏡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 38
3-3 反應活性測定⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 39
3-4 實驗藥品及氣體⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 42
第四章NiB、CoB 觸媒之製備與性質鑑定⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 45
4-1 NiB、CoB 觸媒之ICP 鑑定⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 45
4-2 NiB、CoB 觸媒之BET 鑑定⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 45
4-3 NiB、CoB 觸媒之X-射線繞射分析⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 46
4-4 NiB、CoB 觸媒之TEM 顯微影像分析⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 57
4-5 NiB、CoB 觸媒之表面分析⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 57
第五章檸檬醛選擇氫化反應之研究⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 63
5-1 NiB 觸媒之檸檬醛氫化反應⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 64
5-1-1 先驅鹽類選取⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 64
5-1-2 活性測試前之初步探討⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 67
5-1-3 P-1NiB、P-2WNiB 及倫尼鎳觸媒之比較⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 73
5-1-4 NiB 觸媒之溶劑影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 74
5-1-5 NiB 觸媒之促進劑影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 82
5-2 CoB 觸媒之檸檬醛氫化反應⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 93
5-2-1 P-1CoB、P-2WCoB 及倫尼鈷觸媒之比較⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 93
5-2-2 CoB 觸媒之溶劑影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 94
5-2-3 CoB 觸媒之促進劑影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 102
5-3 NiCoB 雙金屬觸媒於檸檬醛氫化反應研究⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 103
第六章結論⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 110
總結⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 113
參考文獻⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 114
圖目錄
圖1 檸檬醛氫化反應路徑⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2
圖2-1 NiB 之XRD圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9
圖2-2 NiB 觸媒之DSC 圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10
圖2-3 NiB 及NiB/SiO2 觸媒之B 1s XPS 光譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12
圖2-4 NiB 觸媒之RDF 圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13
圖2-5 NiB 原子簇模型⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 14
圖2-6 C=O 基取代與未取代之差異⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 22
圖3-1 觸媒製備裝置⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 34
圖3-2 液相批式氫化反應裝置⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 40
圖4-1 NiB 觸媒之XRD圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 49
圖4-2 P-1NiB 觸媒不同處理溫度之XRD 圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 50
圖4-3 P-2WNiB 觸媒不同處理溫度之XRD 圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 51
圖4-4 10%Cr-NiB 觸媒不同處理溫度之XRD圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 52
圖4-5 CoB 觸媒之XRD圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 53
圖4-6 P-1CoB 觸媒不同處理溫度之XRD 圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 54
圖4-7 Ni-Co-B 雙金屬觸媒之XRD 圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 55
圖4-8 Ni0.7Co0.3B雙金屬觸媒不同處理溫度之XRD圖譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 56
圖4-9
P-1NiB、P-2WNiB、10%Cr-NiB 及Ni0.7Co0.3B 觸媒之TEM 照
片⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 58
圖4-10 P-1NiB、P-2WNiB、P-1CoB 及P-2WCoB 之B 1s XPS 光譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 59
圖4-11
P-1NiB、P-2WNiB、P-1CoB 及P-2WCoB 之Ni 2p3/2 與Co 2p3/2
XPS 光譜⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 60
圖5-1 P-1NiB 觸媒對溫度與攪拌速率於檸檬醛氫化反應之影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 69
圖5-2 P-1CoB 觸媒對溫度與攪拌速率於檸檬醛氫化反應之影響⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 71
圖5-3 NiB 與倫尼鎳觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅ 75
圖5-4 P-1NiB 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 77
圖5-5 P-2WNiB 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 78
圖5-6 Raney Ni 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 79
圖5-7 P-1NiB 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 83
圖5-8 P-2WNiB 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 84
圖5-9 10%Cr-NiB 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅ 89
圖5-10 10%Th-NiB 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅ 90
圖5-11 5%W-NiB 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 91
圖5-12 CoB 及倫尼鈷觸媒於乙醇中對檸檬醛氫化反應活性⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 95
圖5-13 P-1CoB 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 97
圖5-14 P-2WCoB 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 98
圖5-15 Raney Co 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 99
圖5-16 P-1CoB 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 101
圖5-17 5%Cr-CoB 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 105
圖5-18 15%Th-CoB 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 106
圖5-19 10%W-CoB 觸媒於乙醇中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 107
圖5-20 NiCoB 雙金屬觸媒於環己烷中之檸檬醛氫化反應轉化率結果⋅⋅⋅ 108
圖5-21 Ni0.7Co0.3B 觸媒於環己烷中之檸檬醛氫化反應產物分佈圖⋅⋅⋅⋅⋅⋅⋅⋅⋅ 109
表目錄
表2-1 NiB觸媒之組成⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6
表2-2 CoB 觸媒之組成⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7
表2-3 NimB2(m=1~4)原子簇中Ni 和B原子之電荷分佈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 14
表2-4 檸檬醛在不同觸媒上的產物分佈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 20
表2-5 香茅醛在不同觸媒上的產物分佈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 24
表3-1 不飽和碳氫化合物液相氫化之反應及分析條件⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 41
表4-1 NiB 及CoB 觸媒之總體組成⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 47
表4-2 NiB、CoB 觸媒之BET 比表面積⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 48
表4-3 NiB 及CoB觸媒之原位XPS表面分析結果⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 62
表5-1 P-1NiB 觸媒製備條件篩選⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 65
表5-2 P-1CoB 觸媒製備條件篩選⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 66
表5-3 P-1NiB 於不同溫度與最佳攪拌速率之檸檬醛氫化反應結果⋅⋅⋅⋅⋅⋅ 70
表5-4 P-1CoB 於不同溫度與最佳攪拌速率之檸檬醛氫化反應結果⋅⋅⋅⋅⋅ 72
表5-5 NiB觸媒於環己烷中之檸檬醛氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 76
表5-6 P-1NiB 觸媒於不同溶劑中之檸檬醛氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 80
表5-7 P-1NiB 觸媒於不同溶劑對香茅醛氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 85
表5-8 添加不同促進劑於P-1NiB 觸媒中之檸檬醛氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅ 88
表5-9 NiB觸媒於環己烷中之香茅醇氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 92
表5-10 CoB 觸媒於乙醇中之檸檬醛氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 96
表5-11 P-1CoB 觸媒於不同溶劑中之檸檬醛氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 100
表5-12 添加不同促進劑於P-1CoB 觸媒中之檸檬醛氫化反應結果⋅⋅⋅⋅⋅⋅⋅⋅⋅ 104
參考文獻 參考文獻
1. W. J. Wang, H. X. Li, and J. F. Deng, “Boron Role on Sulfur Resistance
by Carbon Disulfide in Cyclopentadiene Hydrogenation”,
Appl. Catal. A, 203 (2000) 293.
2. 吳坤哲, “硼化鈷系列觸媒對選擇性氫化反應的探討”, 國立中央
大學化學工程研究所碩士論文(1990).
3. 魏水文, “促進劑對硼化鈷觸媒於選擇性氫化反應之影響”, 國立
中央大學化學工程研究所碩士論文(1992).
4. G. Neri, C. Milone, A. Donato, L. Mercadante, and A. M. Visco,
“Selective Hydrogenation of Citral over Pt-Sn Supported on Activated
Carbon”, J. Chem. Tech. Biotechnol., 60 (1194) 83.
5. S. Galvagno, C. Milone, A. Donato, G. Neri, and R. Pietro- paolo ,
“Hydrogenation of Citral over Ru-Sn/C”, Catal. Lett., 17 (1993) 55.
6. G. Neri, L. Mercadante, C. Milone, R. Pietropaolo, and S.
Galvagno, “Hydrogenation of Citral and Cinnamaldehyde
over Bimetallic Ru-Me/Al2O3 Catalysts”, J. Mol. Catal. A,
108 (1996) 41.
7. J. N. Coupe, E. Jordao, M. A. Fraga, and M. J. Mendes, “A
Comparative Study of SiO2 Supported Rh-Sn Catalysts
Prepared by Different Methods in the Hydrogenation of
Citral”, Appl. Catal. A, 199 (2000) 45.
8. B. B. Baeza, I. R. Ramos, and A. G. Ruiz, “Influence of
Mg and Ce Addition to Ruthenium Based Catalysts Used
in The Selective Hydrogenation of α,β-Unsaturated
Aldehydes”, Appl. Catal. A, 205 (2001) 227.
9. L. P. Tiainen, P. M. Arvela, and T. Salmi, Catal. Today, 48 (1999) 57.
10. U. K. Singh, M. N. Sysak, and M. A. Vannice, “Liquid-
Phase Hydrogenation of Citral over Pt/SiO2 Catalysts”, J.
Catal., 191 (2000) 181.
11. U. K. Singh, and M. A. Vannice, “Liquid-Phase Hydrogenation
of Citral over Pt/SiO2 Catalysts”, J. Catal., 191
(2000) 165.
12. H. C. Brown, and C. A. Brown, “The Reacction of Sodium Borohydride
with Nickel Acetate in Aqueous Solution - A Convenient
Synthesis of an Active Nickel Hydrogenation Catalyst of Low
Isomerizing Tendency”, J. Am. Chem. Soc., 85 (1963) 1003.
13. 吳忠勳, “硼化鈷觸媒催化性質之研究”, 國立中央大學化學工
程研究所碩士論文(1989).
14. H. C. Brown, and C. A. Brown, “The Reaction of Sodium
Borohydride with Nickel Acetate in Ethanol Solution  A Highly
Selective Nickel Hydrogenation Catalyst”, J. Am. Chem. Soc., 85
(1963) 1005.
15. 陳吟足, “硼化鎳觸媒的催化性質研究”, 國立台灣大學化學工程
研究所博士論文(1985).
16. M. H. Rei, L. L. Sheu, and Y. Z. Chen, “Nickel Boride Catalyst in
Organic Synthesis. I: A New Ferromagnetic Catalyst from the
Diborane Reduction of Nickel Acetate”, Appl. Catal., 23 (1986)
281.
17. N. N. Mal’tseva, Z. K. Sterlyadkina, and V. I. Mikheeva, Chem.
Abstr., 65 (1966) 1751f.
18. C. A. Brown, “Catalytic Hydrogenation. V. The Reaction of
Sodium Borohydride with Aqueous Nickel Salts. P-1 Nickel Borides, a Convenient, Highly Active Nickel Hydrogenation
Catalyst”, J. Org. Chem., 35 (1970) 1900.
19. J. S, A. I, and T. M, “The Effect of Reaction Condition on
Composition and Properties of Ultrafine Amorphous Powders in
(Fe, Co, Ni)-B Systems Prepared by Chemical Reduction”, Metal.
Trans. A, 22A (1991) 2125.
20. H. Li, H. X. Li, W. L. Dai, W. Wang, Z. Fang, and J. F. Deng, “XPS
Studies on Surface Electronic Characteristics of Ni-B and Ni-P
Amorphous Alloy and Its Correlation on Their Catalytic Properties”,
Appl. Surf. Sci., 152 (1999) 25.
21. Y. Z. Chen, and K. J. Wu, “Hydrogenation Activity and
Selectivity of Cobalt Borides”, Appl. Catal., 78 (1991) 185.
22. J. Deng, J. Yang, S. Sheng, H. Chen, and G. Xiong, “The Study
of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as
Catalysts”, J. Catal., 150 (1994) 434.
23. W. J. Wang, M. H. Qiao, J. Yang, S. H. Xie, and J. F. Deng,
“Selective Hydrogenation of Cyclopentadiene to Cyclopentene
over an Amorphous NiB/SiO2 Catalyst”, Appl. Catal. A, 163
(1997) 101.
24. Y. Okamoto, Y. Nitta, I. Imanaka, and S. Teranishi, “Surface
Characterization of Nickel Boride and Nickel Phosphide Catalysts
by X-ray Photoelectron Spectroscopy (Part I)”, J. Chem. Soc.
Faraday I., 75 (1979) 2027.
25. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface
State, Catalytic Activity and Selectivity of Nickel Catalysts in
Hydrogenation Reactions”, J. Chem. Soc. Faraday Trans. I, 76
(1980) 998.
26. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in
Hydrogenation Reactions III. Electronic and Catalytic Properties
of Nickel Catalysts”, J. Catal., 64 (1980) 397.
27. Y. Okamoto, K. Fukino, T. Imanaka, and S. Teranishi, “Surface
State and Catalytic Activity and Selectivity of Nickel Catalysts in
Hydrogenation Reactions IV. Electronic Effects on the Selectivity
in the Hydrogenation of 1,3-Butadiene”, J. Catal., 74 (1982) 173.
28. Y. Okamoto, E. Matsunaga, T. Imanaka, and S. Teranishi,
“Surface State and Catalytic Activity and Selectivity of Nickel
Catalysts in Hydrogenation Reactions V. Electronic Effects on
Methanation of CO and CO2”, J. Catal., 74 (1982) 183.
29. A. H. Uken, and C. H. Bartholomew, “Borided Metal Catalysts in
Methanation of Carbon Monoxide I. Initial Activity and
Conversion-Temperature Behavior of Unsupported Catalysts”, J.
Catal., 65 (1980) 402.
30. S. H. Xie, H. X. Li, H. Li, and J. F. Deng, “Selective Hydrogenation
of Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Comparison
with Other Ni-Based Catalysts”, Appl. Catal. A, 189 (1999) 45.
31. H. Li, X. Li, and J. F. Deng, “Influence on the Reduction Degree of
Ni-B/SiO2 Amorphous Catalyst and Its Role in Selective Hydrogenation
of Acrylonitrile”, Appl. Catal. A,193 (2000) 9.
32. C. A. Brown, and V. K. Ahuja, “Catalytic Hydrogenation. VI.
The Reaction of Sodium Borohydride with Nickel Salts in
Ethanol Solution. P-2 Nickel, a Highly Convenient, New,
Selective Hydrogenation Catalyst with Great Sensitivity to
Substrate Structure”, J. Org. Chem., 38 (1973) 2226.
33. Z. G. Fang, B. R. Shen, J. Lu, K. N. Fan, and J. F. Deng, “DFT
Study of Electron Transfer between B and Ni in Ni-B Amorphous Alloy”, ACTA CHIMICA SINIA, 57 (1999) 894.
34. Y. Nitta, T. Imanaka, and S. Teranish, “Hydrogenation Activity and
Selectivity of Cobalt Boride and Cobalt Nickel Binary Catalysts”,
Bull. Chem. Soc. Jpn., 53 (1980) 3154.
35. 陳義忠, “對氯硝基苯於硼化鎳觸媒之選擇性氫化反應”, 國立中
央大學化學工程研究所碩士論文(1993).
36. 楊盛威, “硼化鎳觸媒於苯乙酮及二苯甲酮選擇性氫化反應之研
究”, 國立中央大學化學工程研究所碩士論文(1994).
37. 楊長峰, “苯胺氫化製程觸媒之改進”, 國立中央大學化學工程研
究所碩士論文(1996).
38. Z. B. Yu, M. H. Qiao, H. X. Li, and J. F. Deng, “Preparation of
Amorphous Ni-Co-B Alloys and the Effect of Cobalt on Their
Hydrogenation Activity”, Appl. Catal. A, 163 (1997) 1.
39. H. Li, H. X. Li, W. J. Wang, and J. F. Deng, “Excellent Activity of
Ultrafine Co-B Amorphous Alloy Catalyst in Glucose Hydrogenation”,
Chem. Lett., (1999) 629.
40. U. K. Singh, and M. A. Vannice, “Liquid-Phase Citral Hydrogenation
over SiO2-Supported Group VIII Metals” J. Catal., 199
(2001) 73.
41. G. Neri, L. Mercadante, A. Donate, A. M. Visco, and S. Galvagno,
“Influence of Ru Precursor, Support and Solvent in the Hydrogenation
of Citral over Ruthenium Catalysts”, Catal. Lett., 29 (1994)
379.
42. W. S. Millmen, and G. V. Smith, in: Catalysis in Organic Syntheses,
ed. G. V. Smith (Academic Press, New York, 1977) p. 33.
43. S. Galvagno, C. Milone, A. Donato, G. Neri, and R. Pietropaolo,
“Influence of Metal Particle Size in Hydrogenation of Citral over
Ru/C”, Catal. Lett., 18 (1993) 349.
44. B. Didillon, A. El Mansour, J. P. Candy, J. P. Bournonville, and J.
M. Basset, in: Heterogenous Catalysis and Fine Chemicals II, eds.
M. Guisent, J. Barrault, C. Bouchoule, D. Duprez, G. Perot, R.
Maurel, and C. Montassier (Elsevier, Amsterdam, 1991) p. 137.
45. A. A. Wismeijer, A. P. G. Kieboom, and H. van Bekkum, “Selective
Hydrogenation of Citronellal to Citronellol over Ru/TiO2 as
Compare to Ru/SiO2”, Appl. Catal., 25 (1986) 181.
46. L. Mercadante, G. Neri, C. Millone, A. Donato, and S. Galvagno,
“Hydrogenation of α,β–Unsaturated Aldehydes over Ru/Al2O3
Catalysts”, J. Mol. Catal. A, 105 (1996) 93.
47. A. M. Silva, O. A. A. Santos, M. J. Mendes, E. Jordão, and M. A.
Fraga, “Hydrogenation of Citral over Ruthenium-Tin Catalysts”,
Appl. Catal., 241 (2003) 155.
48. C. Milone, C. Ganermi, R. Ingoglia, G. Neri, and S. Galvagno,
“Role of Support in The Hydrogenation Citronellal on Ruthenium
Catalysts”, Appl. Catal. A, 184 (1999) 89.
49 W. Yu, H. Lin, M. Liu, and Z. Liu, “Selective Hydrogenation of
Citronellal over Polymer-Stabilized Noble Metal Colloids” React.
Func. Poly., 44 (2000) 21.
50. R. Malathi, and R. P. Viswanath, “Citral Hydrogenation on
Supported Platinum Catalysts”, Appl. Catal. A, 208 (2001) 323.
51. P. Reyes, H. Rojas, G. Pecchi, and J. L. G. Fierro, “Liquid-Phase
Hydrogenation of Citral over Ir-Supported Catalysts”, J. Mol.
Catal. A, 179 (2002) 293.
52. G. Lafaye, C. Micheaud-Especel, C. Montassier, and P. Marecot,
“Characterization of Bimetallic Rhodium-Germanium Catalysts
Prepared by Surface Redox Reaction”, Appl. Catal. A, 230 (2002)
19.
53. 蔡漢良, “硝基苯在P-1 硼化鎳觸媒之氫化反應”台大化工研究所
碩士論文(1984).
54. M. Kajitani, N. Suzuki, T. Abe, Y. Kaneko, K. Kasuya, K.
Takahashi, and A. Sugimor, “A Comparative Study of Nickel and
Cobalt Catalysts in the Hydrogenation of Substituted Acetopheones
Dependence of Hydrogenation Rate and Adsorption Strength on
Subsituted and Solvent”, Bull. Chem. Soc. Jpn., 52(8) (1979)
2343-2348.
55. R. A. Rajadhyasha, and S. L. Karwa, “Solvent Effects in Catalytic
Hydrogenation”, Chem. Eng. Sci., 41(7) (1986) 1765.
56. 廖炳傑, “CuB 超細合金觸媒之製備與催化性質探討”, 國立中央
大學化學工程研究所博士論文(2000).
57 D. V. Sokol’skii, A. M. Pak, M. A. Ginzburg, and V. A. Zavorin,
“The Hydrogenation of Citral to Citronellal on Ni/Al2O3”, (1979)
531-536.
58 John M. Prausnitz, University of California, Berkeley Ruediger N.
Lichtenthaler, University of Heidelberg Edmundo Gomes de Azevedo,
Technical University of Lisbon, “Molecular Thermodynamics
of Fluid-Phase Equilibria”, (1986) 59.
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2003-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明