博碩士論文 90344004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.183.137
姓名 劉世尹(Shih-Yin Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 半導體廠PFCs及VOCs廢氣排放處理之研究
(The investigation of abatement of PFCs and VOCs exhaust gases from semiconductor industries)
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 聚苯胺與聚苯乙烯殼核複合材料之研究
★ 導電高分子與聚胺基甲酸酯複合材料之研究★ 在孔道均一的模板內合成聚苯胺奈米管
★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究
★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究
★ 二氧化鈦的合成與光催化性質的研究★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半導體產業的快速成長,雖然帶動了台灣的經濟發展,但也造成了環境方面的污染。半導體業在製造過程中,由於製程機台種類相當繁多,無可避免地必須使用不同種類的化學物質,而各種排放物質種類更是不勝枚舉。截至目前為止,環保署已實施「半導體製造業空氣汙染管制及排放標準」,嚴格管制晶圓製造等相關半導體產業所排放之空氣汙染;另外,具國際約束力的「京都議定書」(Kyoto Protocol)也於2005年2月正式實施,以規範溫室效應氣體的排放量。因此,如何針對半導體製程廢氣種類的個別汙染特性,發展出一套有效的處理技術,是未來必須面對的重要課題。
全氟化合物(perfluorocompounds, PFCs)是一極穩定且很難裂解去除的強效溫室效應氣體。然而現今半導體廠所採用的處理方式普遍對PFCs之去除效果不彰。本論文的第三章說明以高溫電漿火炬進行對半導體全氟化合物氣體直接裂解破壞與去除的實驗,由實驗結果顯示,對於C2F6廢氣濃度控制於20,000ppm且流量為200L/min及CF4廢氣濃度於10,000ppm且流量為50L/min時,並經由控制適當高溫電漿火炬(12kW)進行裂解後,去除效率均能達到94%以上,產物主要為CO2與HF,而氫氟酸(HF)廢氣則可輕易藉由技術早已成熟的濕式洗滌(wet scrubber)裝置來進一步收集與廢水處理,以避免此強酸之排放。另外,電漿火炬運轉壽命經改善後,壽命已可由原來的215小時提高到800小時以上。
揮發性有機化合物(VOCs)為半導體業另一種值得重視的廢氣,本論文中的第四章與第五章分別探討以金觸媒進行異丙醇(IPA)及苯(Benzene)的完全氧化反應。以異丙醇的反應而言,Au負載於CeO2擔體時其活性優於負載於其他擔體(如Fe2O3、γ-Al2O3及TiO2),而影響Au/CeO2觸媒於異丙醇之完全氧化活性之因素包括有:觸媒煅燒溫度、金粒子大小、金負載量及進料中是否含有水氣。就金負載量而言,過多的金負載(eg.2.1%)將導致金粒子的聚集,不利於活性表現。結果顯示以1.6%Au/CeO2觸媒能表現出較低的起燃溫度,且奈米Au顆粒(≦5nm)能高度分散在CeO2擔體上。另外,Au/CeO2觸媒於300℃下煅燒會表現出較佳的活性,此與金粒子的高氧化價態(Au+n)形成有關。而進料中含有水氣,亦可明顯提升活性。
就苯的完全氧化反應而言,主要是以沉積沉澱法將奈米金顆粒沉積在CeO2上製備Au/CeO2觸媒,另以初濕含浸法將V2O5負載在氧化鈰上作為添加劑,製備Au/V2O5/CeO2觸媒。探討不同金含量、與煅燒溫度對苯完全氧化反應之影響。結果顯示,煅燒300℃之Au/CeO2(b)觸媒,在200℃能將苯完全氧化,而當添加2%釩氧化物於Au/CeO2(b)且於相同溫度300℃煅燒之觸媒,對原來的活性僅有些微的影響。而400℃煅燒下添加釩氧化物於Au/CeO2(b)之觸媒則相較原來未添加釩氧化物之活性有顯著的幫助。然而比較煅燒300℃之Au/CeO2(b)觸媒與400℃煅燒之Au/V2O5/CeO2(b)觸媒的活性相當,由兩者的XPS分析都含有Au+n,由此了解觸媒表面Au具有高氧化態能提升苯的完全氧化反應活性,藉由降低煅燒溫度或添加釩氧化物皆能產生Au+n,而釩氧化物中釩氧化價位的變化對苯氧化活性的影響應不大。耐久性測試方面,Au/CeO2觸媒在120小時內能保持100%的轉化率,而Au/V2O5/CeO2觸媒則已有活性衰退現象。
就Pt和Au觸媒同時對苯完全氧化的活性比較後發現,Au觸媒仍然較Pt觸媒具有較低的反應溫度。另外,Au觸媒不需事先還原及價格上相對較Pt便宜為其優勢。
摘要(英) The evolution of semiconductor industries promotes the economic development of Taiwan, but it also results in environmental pollution problems. The employment of a variety of chemicals during the semiconductor manufacturing process is very complicate due to the numerous types of process facilities. Till now, the Environmental Protection Administration has carried out the rule of“Regulation Governing the Air Pollution of Semiconductor Manufacturing Industries”, in order to restrain stringently the emission of related semiconductor manufacturers. Moreover, the Kyoto Protocol has been signed on December 11, 1997, and entered into force on 16 February 2005. Countries that ratify this protocol commit to reduce their emissions of carbon dioxide and five other greenhouse gases. Therefore, it is a very important issue that how to develop an effective method to abate the waste gases from semiconductor process in the future.
Perfluoro compounds(PFCs) are greenhouse gases which is very chemical stable and difficult to remove by decomposition. Nowadays, the PFCs destruction of semiconductor manufacturer by present treatment methods are not effective. Chapter 3 of the thesis shows the test results for the direct destruction and removal of PFCs by thermal plasma method. According to the test results, the destruction efficiency of PFCs under 12kW of plasma torch power could achieve 94% when the concentrations of C2F6 and CF4 are 20,000ppm and 10,000ppm and the flow rates are 200L/min and 50L/min, respectively. The main products are CO2 and HF, and the HF acidic waste gas could be absorbed completely by wet scrubber and then treats as waste water to avoid the effluence of HF(g). The lifespan of plasma torch has been promoted from 215 hr. to above 800 hr. after improvement.
Volatile organic compounds(VOCs) are other important harmful gases which also emitted from semiconductor industry. Chapter 4 and 5 of the thesis report the complete oxidation of 2-propanol and benzene over gold based catalyst respectively. Concerning the complete 2-propanol oxidation, the catalyst of gold deposited on CeO2 support shows more active than on other supports(eg.Fe2O3、γ-Al2O3 and TiO2). The factors which affect the activities of complete oxidation of 2-propanol over Au/CeO2 including the calcination temperature、the gold particle size、the amount of gold loading and the moisture content in feed. Concerning the gold loading on catalyst, too much amount of gold (eg.2.1%Au) will result in aggregation of gold particles which would cause lower activity. According to the activity test, the 1.6Au/CeO2 catalyst shows lower light off temperature, and the nano gold particles(≦5nm) were highly dispersed on the CeO2 support. Moreover, the Au/CeO2 catalyst which calcined at 300℃ is more active than catalysts calcined at other temperations, and this result could be related to the presence of high oxidation state of gold(Au+n). On the other hand, the more moisture content in feed, the more active on complete 2-propanol oxidation over 1.6%Au/CeO2 catalyst.
Concerning the complete benzene oxidation, Au/CeO2 and Au/V2O5/CeO2 are studied. The factors affect the activities of complete benzene oxidation are calcination temperature and gold loading. The results indicate that the Au/CeO2(b) catalyst(c300) could oxidize benzene completely at 200℃. After the addition of 2%V2O5 to Au/CeO2(b)(c300), the activity just shows slight enhancement. Moreover, the Au/2%V2O5/CeO2 catalyst(c400) are obviously more active than Au/CeO2(c400). However, the activities are almost the same for Au/CeO2(b)(c300) and Au/2%V2O5/CeO2(b)(c400). The XPS results shows these two catalysts all contained Au+n which indicated that the presence of high oxidation state of Au(Au+n) could enhance the activity of complete benzene oxidation. The high oxidation state of Au(Au+n) could be obtained by lowering the calcination temperature of Au/CeO2 or the addition of V2O5 to Au/CeO2. On the other hand, the durability test shows that the Au/CeO2 could maintain 100% conversion, and the Au/V2O5/CeO2 shows slight activity decrease after 120hr.
Comparing the activity of supported Au and Pt catalysts, the Au catalyst is more active than Pt catalyst for complete benzene oxidation. Moreover, The price of Au is cheaper than Pt and Au catalysts do not need to be reduced by hydrogen before use. These could be the advantages for practical application.
關鍵字(中) ★ 六氟乙烷
★ 四氟甲烷
★ 揮發性有機氣體
★ 全氟化物
★ 半導體業
★ 起燃溫度
★ 電漿
★ 異丙醇
★ 金觸媒
★ 苯
關鍵字(英) ★ Au catalyst
★ light off temperature
★ plasma
★ VOCs
★ PFCs
★ semiconductor industries
★ CF4
★ C2F6
★ 2-propanol
★ benzene
論文目次 中文摘要 …………………………………………………………
英文摘要 ……………………………………………………………
誌謝 ……………………………………………………………………
目錄 ……………………………………………………………………
圖目錄 ………………………………………………………………
表目錄 ………………………………………………………………
第一章 緒論 …………………………………………………………
一、前言 ……………………………………………………………
1.1. 半導體業定義 ……………………………………………
1.2. 半導體產業現況 ………………………………………………
1.3. 業者與政府對保護環境之作為 ………………………………
二、半導體廠製程廢氣排放污染源與污染特性 …………………
2.1. 半導體製程簡介 ………………………………………………
2.2. 製程排放廢氣之來源及處理分類 ………………………………
2.3. 製程排放廢氣之污染特性 ………………………………………
三、廢氣特性及其處理對策綜合評價 …………………………………
3.1. 全氟化合物(PFCs) ………………………………………………
3.1.1. 溫室效應氣體管制與PFCs …………………………………
3.1.2. 現有半導體PFCs去除技術綜合評價 …………………………
3.2. 異丙醇(2-propanol)及苯(Benzene) ……………………………
3.2.1. 異丙醇之廢氣特性 ……………………………………………
3.2.2. 苯之廢氣特性 …………………………………………………
3.2.3. 異丙醇及苯之處理對策綜合評價 ……………………………
四、兩種處理廢氣之機制的原理及應用 ………………………………
4.1. 高溫電漿之原理與應用 …………………………………………
4.1.1. 何謂電漿 ………………………………………………………
4.1.2. 高溫電漿之原理 ………………………………………………
4.1.3. 高溫電漿之應用 ………………………………………………
4.2. 觸媒完全氧化之原理與應用 ……………………………………
4.2.1. 觸媒化學反應原理 ……………………………………………
4.2.2. 觸媒完全氧化之原理 …………………………………………
4.2.3. 觸媒完全氧化之應用 …………………………………………
五、研究動機 ……………………………………………………………
參考文獻 …………………………………………………………………
第二章 實驗設備與儀器分析方法 ……………………………………
2.1. 傅立葉轉換紅外光譜儀(FTIR)分析 ……………………………
2.2. X-射線繞射(XRD)分析 …………………………………………
2.3. 比表面積(BET)分析 ………………………………………………
2.4. 氨氣程式升溫脫附(NH3-TPD)分析 ………………………………
2.5. 氫氣程式升溫還原(H2-TPR)分析 ………………………………
2.6. X光光電子(XPS)分析 ……………………………………………
2.7. 穿透性電子顯微鏡(TEM)分析 ……………………………………
2.8. 感應耦合電漿原子放射光譜(ICP-AES)分析 ……………………
2.9. 觸媒反應活性(Activity)分析 …………………………………
第三章 以高溫電漿處理全氟化合物(PFCs) …………………………
一、前言 ………………………………………………………………
1.1. 京都議定書對半導體產業的影響 ……………………………
1.2. PFCs使用減量及削減文獻回顧 …………………………………
1.3. 直流電漿火炬簡介 ………………………………………………
1.4. CF4、C2F6及SiH4之基本特性 ……………………………………
1.4.1. 四氟甲烷(CF4) ………………………………………………
1.4.2. 六氟乙烷(C2F6) ………………………………………………
1.4.3. 矽甲烷(SiH4) …………………………………………………
二、實驗方法 ……………………………………………………………
2.1. 實驗氣體 …………………………………………………………
2.2. 電漿火炬本體及反應器型式 …………………………………
2.3. PFCs電漿火炬反應測試系統 ……………………………………
三、結果與討論 …………………………………………………………
3.1. CF4的去除 …………………………………………………………
3.1.1. 不同電漿反應器型式的影響 ………………………………
3.1.2. 不同CF4濃度的影響 …………………………………………
3.1.3. 不同火炬功率的影響 …………………………………………
3.1.4. 不同CF4流量的影響 ……………………………………………
3.2. C2F6的去除 ………………………………………………………
3.2.1. 不同C2F6氣體流量及濃度之影響 ……………………………
3.2.2. 不同電漿火炬功率之影響 ……………………………………
3.2.3. 不同電漿反應器型式之影響 …………………………………
3.2.4. 副產物CF4生成濃度之影響因子 ………………………………
3.3. SiH4的去除 ………………………………………………………
3.4. 電漿火炬陰極壽命測試 …………………………………………
3.4.1. 電漿火炬耐久測試 ……………………………………………
3.4.2. 電漿火炬運轉壽命改善 ………………………………………
四、結論 ………………………………………………………………
參考文獻 …………………………………………………………………
第四章 以Au觸媒進行異丙醇(IPA)完全氧化反應之研究 ……………
一、前言 …………………………………………………………………
1.1. 二氧化鈰簡介 ……………………………………………………
1.2. 氧化鐵簡介 ……………………………………………………
1.3. 二氧化鈦簡介 ……………………………………………………
1.4. 氧化鋁簡介 ………………………………………………………
1.5. 擔體效應 …………………………………………………………
1.6. 金觸媒的催化應用歷史 …………………………………………
1.6.1. 一氧化碳的氧化 ……………………………………………
1.6.2. 碳氫化合物的氧化 ……………………………………………
1.6.3. 水氣轉移反應 …………………………………………………
1.7. 異丙醇(IPA)在金觸媒的氧化反應文獻回顧 ……………………
二、實驗方法 ……………………………………………………………
2.1. 實驗藥品 …………………………………………………………
2.2. 觸媒分析鑑定儀器設備 …………………………………………
2.3. 金觸媒(Au/support)製備 ………………………………………
2.4. 觸媒活性測試 ……………………………………………………
三、結果與討論 …………………………………………………………
3.1. 觸媒的氫氣程式升溫還原(H2-TPR)測試結果 …………………
3.2. 觸媒的氨氣程式升溫脫附(NH3-TPD)測試結果 …………………
3.3. 觸媒的X-光繞射光譜 ……………………………………………
3.4. 觸媒的TEM影像 …………………………………………………
3.5. 觸媒的BET比表面積 ……………………………………………
3.6. 觸媒的表面化學分析 ……………………………………………
3.7. 異丙醇於Au觸媒之完全氧化反應結果 …………………………
3.7.1. Au負載於不同金屬氧化物之觸媒對活性的影響 ……………
3.7.2. 不同Au負載量對Au/CeO2活性之影響 ………………………
3.7.3. Au/CeO2於不同煅燒溫度下對異丙醇轉化活性之影響 ………
3.7.4. Au/CeO2於進料中不同水氣含量對異丙醇轉化活性之影響
3.7.5. 異丙醇於Au/CeO2完全氧化反應路徑探討 ……………………
3.7.6. 異丙醇於Au/CeO2之耐久活性測試 ……………………………
四、結論 …………………………………………………………………
參考文獻 ………………………………………………………………
第五章 以Au/CeO2及Pt觸媒進行苯(Benzene)完全氧化之研究 ……
一、前言 ………………………………………………………………
二、文獻回顧 ……………………………………………………………
2.1. 鉑觸媒的催化反應 ………………………………………………
2.2. 苯之處理方法文獻回顧 …………………………………………
2.3. 促進劑:釩氧化物(VOx) …………………………………………
2.4. 觸媒及擔體的製備方式 …………………………………………
2.4.1. 擔體製備方式 ………………………………………………
2.4.2. 觸媒製備方式 …………………………………………………
三、實驗方法 …………………………………………………………
3.1. 實驗藥品 …………………………………………………………
3.2. 觸媒分析鑑定儀器設備 …………………………………………
3.3. 觸媒(Au/support)製備 …………………………………………
3.3.1. 觸媒擔體製備 …………………………………………………
3.3.2. 金與鉑觸媒製備 ………………………………………………
3.4. 觸媒反應活性測試 ………………………………………………
四、結果與討論 …………………………………………………………
4.1. 第一部份 …………………………………………………………
4.1.1. 觸媒之鑑定分析 ……………………………………………
4.1.1.1. X光繞射光譜 ………………………………………………
4.1.1.2. 觸媒TEM影像 …………………………………………………
4.1.1.3. 觸媒BET比表面積及Au元素分析 ……………………………
4.1.1.4. 觸媒表面化學分析 …………………………………………
4.1.1.5. 觸媒氫氣程式升溫還原(H2-TPR)結果 ……………………
4.1.2. 苯的完全氧化反應 ……………………………………………
4.1.2.1. CeO2來源對Au/CeO2活性之影響 ……………………………
4.1.2.2. Au負載量對Au/CeO2(a)(b)活性的影響 …………………
4.1.2.3. 釩氧化物添加量對活性的影響 ……………………………
4.1.2.4. 添加釩氧化物與煅燒溫度的關係 …………………………
4.2. 第二部份 …………………………………………………………
4.2.1. 觸媒之鑑定分析 ………………………………………………
4.2.1.1. X光繞射光譜 …………………………………
4.2.1.2. 觸媒TEM影像 …………………………………………………
4.2.1.3. 觸媒表面化學分析 …………………………………………
4.2.1.4. 氫氣程式升溫還原(H2-TPR)圖譜 …………………………
4.2.2. 苯的完全氧化反應 …………………………………………
4.2.2.1. Pt負載於CeO2與γ-Al2O3擔體上之活性測試結果及觸媒
以氫氣還原的影響 …………………………………………………
4.2.2.2. Au觸媒與Pt觸媒之活性比較及添加V2O5的影響 …………
4.2.2.3. 觸媒耐久性測試 ……………………………………………
4.2.2.4. 反應機構探討 ……………………………………………
五、結論 ………………………………………………………………
參考文獻 …………………………………………………………………
第六章 總結論 …………………………………………………………
參考文獻 Chapter 1
[1]. 環保技術輔計畫:行業製程減廢及污染防治技術-半導體業介紹p.1-30.
[2]. 半導體製造業空氣汙染管制及排放標準, 中華民國91年10月16日行政院環境保護署環署空字第0910069403J號令修正發布
[3]. 光電材料及元件製造業空氣污染管制及排放標準, 中華民國95 年1 月5 日行政院環境保護署環署空字第0950000717 號令訂定發布全文十條
[4]. 魏振翼、彭淑惠、胡石政“半導體廠製程排氣系統”,潔淨雜誌第13期
[5]. 國內半導體製造業及光電業之產業現況、製程廢氣汙染來源與排放特性p.1-28.
[6]. 李文亮、陳其華、其易安等,工業實務技術研討會,
http://www.etdc.org.tw/a03161.htm(1999).
[7]. 葉銘鵬、吳榮泰, 半導體廠氣體量測
http://www.cish.itri.org.tw/info/ann10_paper03.html
[8]. 吳榮泰、葉銘鵬、王守凡、王榮輝、羅俊光,
http://140.96.170.24/idb/tech/33/5.html.
[9]. 鄭瑞翔、游生任、李壽南、王光聖, 半導體科技, 68 (2004).
[10]. R.E. Banks, B.E. Smart and J.C. Tatlow, Organicfluorine Chemistry, New York:Plenum Press(1994).
[11]. 余榮彬, 台灣半導體產業協會簡訊專文(1999).
[12]. S.N. Li, J.N. Hsu, S.J. Lin, J.L. Hong and H.Y. Shih, Solid State Technology, 156 (2002).
[13]. 鄭瑞翔、游生任、李壽南、徐彰孚,陽明達 半導體科技, 25, 63 (2002).
[14]. Y.C. Hong, H.S. Kim and H.S. Uhm, Thin Solid Films, 435(1-2), 329 (2003).
[15]. M.T. Radoiu, Radiation Physics and Chemistry, 69(2), 113 (2004).
[16]. J.C. Rostaing, Future Fab Intl., 14 (2003).
[17]. 梁博傑,“VOC觸媒氧化處理技術介紹”,台灣環保產業雙月刊, 21 (2003) 11-13.
[18]. 陳孝輝, 電漿處理在環境工程之應用技術研習會“半導體PFC廢氣處理技術-熱電漿破壞法”p.1-18.
[19]. 何春松, “電漿熔融技術處理焚化爐灰渣之實例探討”, 台灣環保產業雙月刊, 19 (2003) 5-9.
[20]. 董慕愷、陳郁文,”奈米金觸媒”,科學發展 2005年6月390期
[21]. K.Jan, F. Paolo, H. Neal, Catalysis Today, 77 (2003) 419-449.
[22]. 徐禮道、刁秀華、邱襄陵,”觸媒反應塔應用於焚化廠戴奧辛控制之介紹”, 台灣環保產業雙月刊, 33 (2005) 5-7.
[23]. Http://www.libertytimes.com.tw/2002/new/oct/7/today-e4.htm
[24]. C.Y. Huang, Y.Y. Chen, C.C. Su, C.F. Hsu, J. Power Sources, 174 (2007) 294-301.
[25]. J. Photochemistry and Photobiology C:Photochemistry Reviews 1 (2000)1-21.
Chapter 3
[1]. 陳孝輝,“半導體PFC廢氣處理技術-熱電漿破壞法”,電漿處理在環境工程之應用技術研習會。(2005)
[2]. S.P. Sun, “替代性PFC之研究與實廠經驗台灣”, 光電及半導體產業PFC減量技術研討會。(2003).
[3]. S. P. Sun,”替代性PFC之研究與實廠經驗台灣” ,光電及半導體產業PFC減量技術國際研討會,經濟部技術處主辦,新竹市煙波飯店,92年8月19日。
[4].S.A. Rogers,”C2F6與NF3應用於實廠PFC排放減量之特性及成效” ,光電及半導體產業PFC減量技術國際研討會,經濟部技術處主辦,新竹市煙波飯店,92年8月19日。
[5]. C. H. Lee,” C3F8應用於PFC排放減量效益之研究” ,光電及半導體產業PFC減量技術國際研討會,經濟部技術處主辦,新竹市煙波飯店,92年8月19日。
[6]. Wen-Tien Tsai, Horng-Ping Chen and Wu-Yuan Hsien, “A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons(PFCs) emissions from the semiconductor manufacturing processes”, Journal of Loss Prevention in the Process Industries, Volume 15, Issue 2, pp. 65-75, March 2002.
[7]. 曾錦清, “電漿焚化熔融處理廢料技術” ,物理雙月刊, 十八卷五期, 563-569頁, 中華民國八十五年十月。
[8]. Banks, R.E., Smart, B.E., and Tatlow, J.C., Organicfluorine Chemistry, Plenum Press, New York, 1994.
[9]. http://61.221.142.109/All Text/J/94.5半導體及LCD產業PFCs排放減量技術.pdf。
[10]. 王嘉麟,「運用失效模式與影響分析評估矽甲烷供應系統之安全性-以TFT-LCD廠為例」,國立交通大學工學院產業安全與防災學程碩士論文,2006年6月。
[11]. 曾錦清, 劉世尹, 郭年宏, 陳孝輝, 曾能芳, 余玉正, 魏新鎮, 林登連, 連清輝, 朱小蓉, 鄭石治,「高效率全氟化物廢氣電漿處理裝置」,中華民國專利新型第M255377號。
[12]. 吳麗霞,「全氟化物減量及其尾氣處理效率研究~以光電產業TFT-LCD 廠為例~」,國立交通大學工學院產業安全與防災學程碩士論文,2006年6月。
[13]. S-H Chen, C.-C. Tzeng, Y-J Yu, S-Y L, and S-J Chu, “A Thermal Plasma Local Scrubber for Semiconductor Off-Gas Treatment”, Proceedings of the Third Asia-Pacific International Symposium on the Basic and Application of Plasma Technology, Taoyuan, Taiwan, R.O.C., pp.56-59, December 15-17 2003.
[14]. 顏紹儀, 李壽南, 林俊男, 江鴻銘, 化工技術, 154, 158 (2006).
[15]. 張季娜, 羅仕勇, 宋振昌, 蔡彰文, 陳世璉, 莊泰旭, 邱鎮宏, 高術崙, 田口式品質工程導論。
Chapter 4
[1]. A. Trovarelli, Catal. Rev., 38 (1996) 439.
[2]. J. C. Frost, Nature, 334(1988)577.
[3]. S. E. Golunski, H. A. Hatcher, R. R. Rajaram and T. J. Truex, Appl. Catal. B, 5(1995)367.
[4]. S. Scire, S. Minico, C. Crisafulli, C. Satriano, A. Pistone, Appl. Catal. B:Environ, 40(2003)43.
[5]. G. R. Bamwenda and H. Arakawa, J. Mol. Catal. A, 161(2000) 105.
[6]. G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama and H. Arakawa, Appl. Catal. A, 205(2001)117.
[7]. 陳亭穆,「二氧化鈦光觸媒分解甲醛之催化動力學研究」,國立清華大學化學工程研究所碩士論文,2005年6月
[8]. G.C. Bond, D.T. Thompson, Catal. Rev.-Scl. Eng. 41(1999)319.
[9]. M. Haruta, Catal. Today 36(1997)153.
[10]. W.A. Bone, G.W. Andrew, Proc Roy. Soc. A 109(1925)409.
[11]. G.C. Bond, Gold Bull. 5(1971)11.
[12]. G.J. Hutchings, Gold Bull. 29(1996)123.
[13]. G.C. Bond, P.A. Sermon, Gold Bull. 6(1973)102.
[14]. R.T. McNerney, Paper presented at 1985 Symp. Recent Adv. Air Pollution Monitoring Instrum., Raleigh, North Carolina.
[15]. Chem. Engng. News., May 27, 1991, pp24
[16]. C.A. Widrig, C.A. Alves and M.D. poter, J. Amer, Chem. Soc. 113(1991)2805.
[17]. S. Mori and Y. Shitara, Appl. Surf Sci. 78(1994)269.
[18]. Y. Iizuka, H. Fujiki and M. Haruta, unpublished data.
[19]. J.A. Macken, S.K. Yagnik and M.A. Samis, IEEEJ. Quantum Electronics, 25(1991)1695.
[20]. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett. 1987. 405.
[21]. M. Haruta, G. R. Bamwenda, S. Tsubota, T. Nakamura, Catal. Lett. 44(1997) 83.
[22]. S. D. Gardner, G. B. Hoflund, B. T. Upchurch, D. R. Schryer, E. J. Kielin, J. Schryer, J. Catal. 129(1991)114.
[23]. S. D. Gardner, G. B. Hoflund, B. T. Upchurch, D. R. Schryer, E. J. Kielin, J. Schryer, Appl. Catal. B:Environ 6(1995)117.
[24]. G. J. Hutchings, Gold Bull.,29(1996)123
[25]. M. Date, Yamashita, M. Haruta, Catal. Today,72(2002) 89.
[26]. M. Haruta,M. Date, Appl. Catal. A:General 222(2001)427.
[27]. A. Wolf, F. Schuth, Appl. Catal. A:General 226(2002)1.
[28]. M. C. Kung, C. K. Costello, H. –S. Oh, Y. Wang, H. H. Kung, Appl. Catal. A:General 232(2002)159.
[29]. R.J.H. Grisel, B.E. Nieuwenhuys, Catal. Today 64(2001)69.
[30]. E. D. Park, J. S. Lee, J. Catal. 186(1999)1.
[31]. M. Haruta, Now and Future 7(1992)13.
[32]. R. D. Waters, J. J. Weimer and J. E. Smith , Catal. Lett. 30(1995)181.
[33]. R. J. H. Grisel, P. J. Kooyman, B. E. Nieuwenhuys, J. Catal. 191(2000)430.
[34]. S. Scire, S. Minico, C. Crisafulli, S. Galvagno, Catal. Commun. 2(2001)229.
[35]. S. Scire, S. Minico, C. Crisafulli, R. Maggiore, S. Galvagno, Appl. Catal. B:Environ. 28(2000)245.
[36]. S. Scire, S. Minico, C. Crisafulli, S. Galvagno, Appl. Catal. B:Environ. 34(2001)277.
[37]. S. Scire, S. Minico, C. Crisafulli, C. Satriano, A. Pistone, Appl. Catal. B:Environ. 40(2003)43.
[38]. M.A. Centeno, M. Paulis, M. Montes, J.A. Odriozola, Appl. Catal. A:Gen. 234(2002)65.
[39]. D. Andreeva, T. Tabakova, V. Idakiev, J. Catal. 158(1996)354.
[40]. G. Panzera, V. Modafferi, S. Candamano, A. Donato, F. Frusteri, P.L. Antonucci, J. Power Sources 135(2004)177.
[41]. CMC Publishing, Structural Change and Prospect of Detergent Markets,CMC Publishing Co. Ltd., Tokyo, 1998.
[42]. M.F.M. Zwinkels, S.G. Jaras, P.G. Menon, T.A. Griffin, Catal. Rev. Sci. Eng. 35 (1993) 319.
[43]. E.M. Cordi, J.L. Falconer, J. Catal. 162 (1996) 104.
[44]. J.J. Spivey, Ind. Eng. Chem. Res. 26 (1987) 2165.
[45]. M. Baldi, E. Finocchio, F. Milella, G. Busca, Appl. Catal. B: Environ. 16 (1998) 43.
[46]. G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng. 41 (1999) 319.
[47]. S. Minico, S. Scire, C. Crisafulli, S. Galvagno, Appl. Catal. B: Environ. 34 (2001) 277.
[48]. R. Dictor, S. Roberts, J. Phys. Chem. 93 (1989) 5846.
[49]. A. Martinez-Arias, M. Fernandez-Garcia, L.N. Salamanaca, R.X. Valenzuela, J.C. Conesa, J. Phys. Chem. B 104 (2000) 4038.
[50]. A. Trovarelli, Catal. Rev. Sci. Eng. 38 (1996) 439.
[51]. M.A. Centeno, M. Paulis, M. Montes, J.A. Odriozola, Appl. Catal. A: Gen. 234 (2002) 65.
[52]. S. Scire, S. Minico, C. Crisafulli, C. Satriano, A. Pistone, Appl. Catal. B: Environ. 40 (2003) 43.
[53]. P.-O. Larsson, H. Berggren, A. Andersson, O. Augustsson, Catal. Today 35 (1997) 137.
[54]. E.M. Cordi, J.L. Falconer, Appl. Catal. A: Gen. 151 (1997) 179.
[55]. R.J.H. Grisel, P.J. Kooyman, B.E. Nieuwenhuys, J. Catal. 191 (2000) 430.
[56]. M.E. Manriquez, T. Lopez, R. Gomez, J. Navarrete, J. Mol. Catal. A: Chem. 220 (2004) 229.
[57]. T. Mizuno, Y. Matsumura, T. Nakajima, S. Mishima, Int. J. Hydrogen Energy 28 (2003) 1393.
[58]. H.C. Yao, Y.F. Yu Yao, J. Catal. 86 (1984) 254.
[59]. A. Trovarelli, G. Dolcetti, C.D. Leitenburg, J. Kaspar, P. Finetti, A. Santoni, J. Chem. Soc., Faraday Trans. 88 (1992) 1311.
[60]. Y.J. Chen, C.T. Yeh, J. Catal. 200 (2001) 59.
[61]. A. Wolf, F. Schuth, Appl. Catal. A: Gen. 226 (2002) 1.
[62]. M. Haruta, Catal. Today 36 (1997) 153.
[63]. C.T. Wang, S.H. Ro, J. Non-Crystalline Solids 352 (2006) 35.
[64]. R.D. Waters, J.J. Weimer, J.E. Smith, Catal. Lett. 30 (1995) 181.
[65]. E.D. Park, J.S. Lee, J. Catal. 186 (1999) 1.
[66]. A.M. Visco, A. Donato, C. Milone, S. Galvagno, React. Kinet. Catal. Lett. 61 (1997) 219.
[67]. M. Hatuta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301.
[68]. W. Li, Y. Lin, Y. Zhang, Catal. Today 83 (2003) 239.
[69]. Y.A. Saleh-Alhamed, R.R. Hudgins, P.L. Silveston, J. Catal. 161 (1996) 430.
[70]. K. Okumura, E. Shinohara, M. Niwa, Catal. Today 117 (2006) 577.
[71]. W.Y. Suprun, D.P. Sabde, H.K. Schadlich, B. Kubias, H. Papp, Appl. Catal. A: Gen. 289 (2005) 66.
[72]. V.K. Diez, C.R. Apesteguia, J.I. Di Cosimo, Catal. Today 63 (2000) 53.
[73]. X. Chen, Y.F. Shen, S.L. Suib, C.L. O’Young, J. Catal. 197 (2001) 292.
[74]. S. Minico, S. Scire, C. Crisafulli, R. Maggiore, S. Galvagno, Appl. Catal. B: Environ. 28 (2000) 245.
[75]. 王崇人(2002),科學發展月刊,第354期,P48-51.
[76]. http://zh.wikipedia.org/w/index.php?title=%E4%B8%99%E9%85%AE&varia nt=zh-tw
[77]. 曾文妮,「土壤無機相結構對揮發性有機污染物吸卅脫附行為之影響」,國立中央大學環境工程研究所碩士論文,2001年6月
[78]. V. Blasin-Aube, J. Belkouch, L. Monceaux, Appl. Catal. B:Environ. 43 (2003) 175.
[79]. M. Baldi, E. Finocchio, F. Milella, G. Busca, Appl. Catal. B:Environ.16 (1998) 43.
Chapter 5
[1]. http://www.catalysts.basf.com/apps/eibprices/mp/
[2]. M. Freifelder, “Practical Catalytic Hydrogenation, Techniques and Applications”,Wiley, New York, 1971.
[3]. Z. Paal and P.G. Menon,“Hydrogen Effects in Catalysis”, Dekker, New York, 1988.
[4]. J.W. Ward and S.A. Qader, “Hydrocracking and Hydrotreating”, ACS Symp. Ser. No. 20 (1975).
[5]. J.C. Vlugter and P. Van’t Spijker, “Eighth World Petroleum Congress”, vol.4, Applied Science Publishers, London, (1971) 159.
[6]. S.S. Wong, P.H. Otero-Schipper, W.A.Wachter, Y. Inoue, M. Kobayashi, J.B. Butt, R.L. Burwell, J.B. Cohen, J. Catal. 71 (1981) 411.
[7]. G.C. Bond, Newham, J. Chem. Soc. Faraday Transl., 56 (1967) 1501.
[8]. T. Hattori, R.L. Burwell, J.Phys.Chem., 83 (1979) 241.
[9]. J.T. Kummer, J. Phys. Chem., 90 (1986) 4747.
[10]. M. Shelef and G.W. Graham, Catal. Rev. Sci. Eng., 36 (1994) 433.
[11]. G.C. Bond, J.Catal., 116 (1989) 531.
[12]. V.F. Kiselev and O.V. Krylov,“Adsorption and Catalysis on Transition Metals and their Oxides”, Springer Verlag, New York, 1989.
[13]. Ullman,T.L.,SAE(Society of Automotive Engineering,Inc.) Paper 892072, 1989.
[14]. C.N. Satterfield, “Heterogeneous Catalytic in Industrial Practice”, p312, McGraw-Hill, New York, 1991.
[15]. K.T. Chuang, M. Zhang, B. Zhou, Appl. Catal. B:Environ. 139 (1997) 123.
[16]. F.B. Noronha, R.S.G. Ferreira, P.G.P. de Oliveira, Appl. Catal. B:Environ. 29 (2001) 275.
[17]. F.B. Noronha, R.S.G. Ferreira, P.G.P. de Oliveira, Appl. Catal. B:Environ. 50 (2004) 243.
[18]. T.F. Garetto, C.R. Apesteguia, Appl. Catal. B:Environ. 32 (2001) 83.
[19]. H.S. Kim, T.W. Kim, H.L. Koh, S.H. Lee, B.R. Min, Appl. Catal. A:Gen. 280 (2005) 125.
[20]. M.I. Vass, V. Georgescu, Catal. Today 29 (1996) 463.
[21]. L. Monceaux, V. Blasin-Aubé, J. Belkouch, Appl. Catal. B:Environ. 43 (2003) 175.
[22]. R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta, J. Mol. Catal. A :Chem. 197 (2003) 147.
[23]. M.A. Centeno, M. Paulis, M. Montes, J.A. Odriozola, Appl. Catal. A:Gen. 234 (2002) 65.
[24]. D. Andreeva, L. Ilieva, V. Idakiev, J.L. Blin, L. Gigot, B.L. Su, Appl. Catal. A:Gen. 243 (2003) 25.
[25]. D. Andreeva, L. Ilieva, R. Nedyalkova, M.V. Abrashev, Appl. Catal. A:Gen. 246 (2003) 29.
[26]. D. Andreeva, L. Ilieva, R. Nedyalkova, M.V. Abrashev, Appl. Catal. B:Environ. 52 (2004) 157.
[27]. D. Andreeva, P. Petrova, J.W. Sobczak, L. Ilieva, M. Abrashev, Appl. Catal. B:Environ. 67 (2006) 237.
[28]. Suk-Yin Lai , Yongfu Qiu , Shuiju Wang, J. Catal. 237 (2006) 303.
[29]. R.J.H. Grisel, B.E. Nieuwenhuys, Catal. Today 64(2001)69.
[30]. D. Shopov, A. Andreev, N. Kotzev, S. Georgieva, M. Vassileva, Bulgarian Pat. 145(1983)39.
[31]. M. Vassileva, S. Georgieva, A. Andreev, N. Kotsev, D. Shopov, Comp. Rend. Acad. Bulg. Sci. 36(1983)1547.
[32]. M. Vassileva, A. Andreev, D. Dancheva, N. Kotsev, Appl. Catal. 49(1989)125.
[33]. M. Vassileva, A. Andreev, D. Dancheva, Appl. Catal. 69(1991)221.
[34]. G. Deo, I.E. Wachs, J. Catal. 146(1994)323.
[35]. A.T. Bell, E. Iglesia, A. Khodakov, J. Yang, S. Su, J. Catal. 177(1998)343.
[36]. A.T. Bell, E. Iglesia, A. Khodakov, B. Olthof, J. Catal. 181(1999)205.
[37]. A. A. Barresi , G. Baldi , Ind. Eng. Chem. Res. 33 (1994) 2964.
[38]. J. J. Spivey,, Ind. Eng. Chem. Res.26 (1987) 2165.
[39]. 李秉傑、邱宏明、王奕凱,「非均勻系催化原理與應用」,渤海堂文化公司,1993年10月。
[40]. 顏駿翔,「添加Mn/γ-Al2O3於觸媒濕式氧化程序處理2,4-二氯酚水溶液之研究」,國立中山大學環境工程研究所碩士論文,2001年6月。
[41]. W. J. Shen, Y. Ichihashi, H. Ando, Y. Matsumura, M. Okumura, M. Haruta, Appl. Catal. A:Gen. 217(2001)231.
[42]. R.J. Colton, A.M. Guzman, J.W. Rabalais, J. Appl. Phys. 49(1978)409.
[43]. S. Scire, S. Minico, C. Crisafulli, S. Galvagno, Appl. Catal. B:Environ. 34 (2001) 277.
[44]. H.C. Yao, Y.F. Yu, Y.U. Yao, J. Catal. 86 (1984) 254.
[45]. A. Venugopal, M.S. Scurrell, Appl. Catal. A: Gen 258 (2004) 241.
[46]. Scire S, Minico S, Crisafulli C, Satriano C, Pistone A (2003)
Appl Catal B: Environ 40:43
[47]. E.D. Park, J.S. Lee, J. Catal. 186 (1999) 1.
[48]. J. Guzman, B.C. Gates, J. Am. Chem. Soc. 126 (2004) 2672
[49]. J. Guzman, B.C. Gates, J. Phys. Chem. B 106 (2002) 7659.
[50]. A.A. Barresi, G. Baldi, Ind. Eng. Chem. Res. 33 (1994) 2964.
[51]. K.T. Chuang, S. Cheng, S. Tong, Ind. Eng. Chem. Res. 31 (1992) 2466.
[52]. J. Hermia, S. Vigneron, Catal. Today 17 (1993) 349.
[53]. G.I. Golodets, Heterogeneous Catalytic Reactions Involving Molecular Oxygen, Elsevier, Amsterdam, 1983.
[54]. A. Holmgren, B. Andersson, D. Duprez, Appl. Catal. B : 22 (1999) 215.
[55]. M.P. Casaletto, A. Longo, A.M. Venezia, A. Martorana, A Prestianni, Appl. Catal. A : 302 (2006) 309.
[57]. M.A.P. Dekkers, M.J. Lippits, B.E. Nieuwenhuys, Catal. Today 54(1999)381.
[58]. D. Andreeva, L. Ilieva, V. Idakiev, T. Tabakova, P. Falaras, A. Bourlinos, A. Travlos, Catal. Today 72(2002)51.
[59]. A. Venugopal, J. Aluha, D. Mogano, M.S. Scurrell, Appl. Catal. A:Gen. 245(2003)149.
[60]. A. Trovarelli, G. Dolcetti, C.D. Leitenburg, J. Kaspar, P. Finetti, A. Santoni, J. Chem. Soc., Faraday Trans. 88 (1992) 1311.
[61]. C.T. Wang, S.H. Ro, J. Non-Crystalline Solids 352 (2006) 35.
[62]. A. Khodakov, B. Olthof, A. Bell, E. Iglesia, J. Catal. 181 (1999) 205.
[63]. Chih-An Lin, Jeffrey C. S. Wu, Jen-Wei Pan, Chuin-Tih Yeh, J. Catal. 210 (2002) 39.
[64]. M. Zawadzki, W. Mista, L. Kepinski, Vacuum 63 (2001) 291.
[65]. M.J. Tiernan, O.E. Finlayson, Appl. Catal. B 19 (1998) 23.
[66]. J. Tsou, L. Pinard, P. Magnoux, J.L. Figueiredo, M. Guisnet, Appl. Catal. B :Environ. 46 (2003) 371.
[67]. C.-A. Lin, J.C.S. Wu, T.-W. Pan, C.-T. Yeh, J. Catal. 210 (2002) 39.
[68]. A. Trovarelli, Catal. Rev. Sci. Eng. 38 (1996) 439.
[69]. M. Baldi, E. Finocchio, F. Milella, G. Busca, Appl. Catal. B:Environ. 16 (1998) 43.
[70]. A. Barresi, I. Mazzarino, G. Baldi, Can. J. Chem. Eng. 70 (1992) 286.
[71]. A. Barresi, G. Baldi, Chem. Eng. Comm. 12 (1993) 31.
[72]. M. A. Centeno, M. Paulis, M.Montes, Appl. Catal. B:Environ. 61 (2005) 177.
[73]. C. S. Wu and Z.A. Lin, Catal. Today,63 (2000) 419.
[74]. Sang Chai Kima, Seung Won Nahma, Wang Geun Shim, Jae Wook Lee , Hee Moon, J. Materials. 141 (2007) 305.
指導教授 楊思明(Sze-Ming Yang) 審核日期 2008-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明