博碩士論文 90344011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.129.69.134
姓名 劉玉章(Yu-Chang Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
(Preparation of Amorphous Nano-sized Nickel alloy Catalysts and its Application for Liquid Phase Selectivity p-Chloronitrobenzene Hydrogenation Reaction )
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文探討用硼氫化鈉為還原劑、醋酸鎳為前驅鹽類跟次磷酸鈉,以化學還原法製備NiB跟NiPB奈米合金觸媒,藉由ICP、BET、XRD、TEM及XPS等儀器瞭解其物理與表面性質,再以對-氯硝基苯(p-CNB)之液相氫化反應,瞭解NiB奈米合金系列觸媒的催化性質與氫化活性,並與商用鎳–鋁觸媒倫尼鎳(Raney Nickel)之活性做比較。NiB觸媒之最佳製備條件為:鎳/硼莫耳比為1/3,298K製備溫度,通氮氣流,攪拌速率500rpm,可在短時間內製得具有活性之新鮮鎳觸媒。添加促進劑(鈷、鑭等)能提升結晶溫度增加觸媒熱穩定性,並增加觸媒分散度,促進劑金屬大都集中於觸媒表層,並與硼相同有供給電子的能力,提高活性。高分子穩定劑PVP,分子量以10k為主,添加量PVP/Ni莫耳比10為較佳製備觸媒比例,結果顯示能有效降低觸媒粒徑,並為耐熱性與結構穩定性較佳的非晶形奈米合金觸媒。
奈米鎳觸媒以液相選擇性對-氯硝基苯氫化反應測試其活性,反應條件同樣能提升氫化反應的活性,使用甲醇當溶劑為反應媒介比乙醇能大範圍的提升對-氯硝基苯的轉化率。所有NiB觸媒系列的主產物對-氯苯胺(p-CAN)其選擇率都大於99%。
摘要(英) A series of NiB catalysts were prepared by mixing nickel acetate in 50% ethanol /water or methanol/water solution. The solution of sodium borohydride (1 M) in excess amount to nickel was then added dropwise into the mixture to ensure full reduction of nickel cations. The mol ratio of boron to nickel in mother solution was 3
to 1.
A series of Ni-P-B catalysts were prepared by liquid phase reduction. Nickel acetate and sodium hypophosphite were mixed in ethanolic solution. The solution of sodium borohydride in excess amount was then added dropwise into the above mixture to ensure full reduction of nickel cations. The Ni:P:B ratios in the mother
solution was used 1:3:3 and 1:1:3.
A promoter of lanthanum and cobalt metals was addition to NiB catalysts. The La- NiB catalyst was passivity by boron; therefore it was more stable than Raney nickel and did not catch fire after exposure to air.
The effects of preparation conditions such as temperature, stirring speed, and sheltering gas on the particle size, surface compositions, electronic states of surafce atoms and catalytic activities of the NiB catalysts were studied. Ranel nickel catalyst was included for comparison. These catalysts were characterized by Inductively coupled plasma atomic emission spectroscopy, N2 sorption, X-ray diffraction, trnasmission electron microscopy, and X-ray photoelectron spectroscopy. The catalysts were tested for liquid phase hydrogenation of p-chloronitrobenzene. All of the catalysts prepared in this study had nanosized particles. The preparation condition has significant influence on the particle size and surface compositions of the catalyst. The NiB catalyst was passivity by boron; therefore it was more stable than Raney nickel and did not catch fire after exposure to air. The catalysts prepared under N2 flow could suppress the oxidation of Ni by the dissolved oxygen in water and had metallic state of nickel. The catalyst prepared with vigorous stirring at 25oC under N2 stream yielded the smallest particles and resulted in the highest activity. It was much
more active than the Raney nickel catalyst.
The reaction condition also has pronounced effect on the hydrogenation activity. Using methanol as the reaction solvent increased p-chloronitrobenzene conversion to a large extent, compared to that using ethanol as the reaction medium. The selectivity of main product (p-chloroaniline) was greater than 99 % on all of the NiB catalysts.
關鍵字(中) ★ 液相氫化反應
★ 鎳
★ 奈米觸媒
★ 對-氯硝基苯的氫化反應
關鍵字(英) ★ nanocatalyst
★ nickel
★ liquid phase hydrogenation
★ hydrogenation of
論文目次 目 錄
中文摘要-------------------------------------------------------------------Ⅰ
英文摘要-------------------------------------------------------------------Ⅱ
目錄-------------------------------------------------------------------------Ⅲ
表目錄----------------------------------------------------------------------III
圖目錄----------------------------------------------------------------------III
壹. 緒論------------------------------------------------------------------1
1. 簡介---------------------------------------------------------------------1
2. 研究動機---------------------------------------------------------------3
貳. 文獻回顧-----------------------------------------------------------5
2.1硼化金屬奈米合金觸媒-------------------------------------------5
2.1.1 硼化金屬之組成與物理、化學性質-----------------------6
2.2對-氯硝基苯的液相選擇性氫化反應(p-CNB)----------------8
2.3促進劑(promoter)之效應----------------------------------------9
2.4高分子穩定劑之效應----------------------------------------------9
2.5擔體效應------------------------------------------------------------11
III
參. 實驗-----------------------------------------------------------------12
3.1藥品------------------------------------------------------------------12
3.2奈米觸媒的製備------------------------------------------------14
3.2.1 硼化鎳觸媒的製備(NiB) ----------------------------------14
3.2.2 硼化鎳磷觸媒的製備(NiPB) -----------------------------14
3.2.3 硼化鎳觸媒添加促進劑的製備----------------------------15
3.2.4 磷化鎳觸媒的製備(NiP) ----------------------------------15
3.2.5 硼化鎳、硼化鎳磷觸媒添加高分子穩定劑的製備----16
3.2.6 硼化鎳觸媒承載於SiO2單體上的製備--------------------16
3.2.7 倫尼鎳觸媒之製備-------------------------------------------16
3.3 觸媒的性質鑑定-----------------------------------------------17
3.3.1 元素分析(Inductively coupled plasma atomic emission
IV
spectroscopy, ICP-AES) --------------------------------17
3.3.2 X-光繞射分析(X-ray diffraction,XRD)---------------17
3.3.3 比表面積的測定----------------------------------------------18
3.3.4 穿透式電子顯微鏡(transmitted electron
microscope, TEM) ----------------------------------------18
3.3.5 掃瞄式電子顯微鏡鏡(scanning electron microscope,
SEM) ----------------------------------------------------------19
3.3.6 X-射線光電子光譜(X-ray photoelectron spectroscopy,
XPS) -----------------------------------------------------------19
3.4 觸媒反應活性測試-------------------------------------------20
3.4.1 反應裝置-------------------------------------------------------20
3.4.2 反應步驟及分析方法----------------------------------------20
肆.觸媒之製備與性質鑑定----------------------------------------24
4.1 NiB觸媒製備與性質鑑定--------------------------------------24
V
4.1.1 NiB觸媒之元素分析、ICP鑑定-------------------------24
4.1.2 NiB觸媒之比表面積(BET)量測-------------------------24
4.1.3 NiB觸媒之X-射線繞射分析(XRD) -------------------25
4.1.4 NiB之TEM影像分析--------------------------------------25
4.1.5 NiB觸媒之XPS表面分析---------------------------------26
4.2 NiPB、NiP觸媒製備與性質鑑定-----------------------------27
4.2.1 NiPB、NiP觸媒之元素分析、ICP鑑定----------------27
4.2.2 NiPB、NiP觸媒之比表面積(BET)量測---------------27
4.2.3 NiPB、NiP觸媒之X-射線繞射分析(XRD) ----------27
4.2.4 NiPB、NiP之TEM影像分析----------------------------28
4.2.5 NiPB、NiP觸媒之XPS表面分析-----------------------28
4.3 NiB添加促進劑觸媒製備與性質鑑定-----------------------29
VI
4.3.1 NiB添加促進劑觸媒之元素分析、ICP鑑定----------29
4.3.2 NiB添加促進劑觸媒之比表面積(BET)量測-----------29
4.3.3 NiB添加促進劑觸媒之X-射線繞射分析(XRD)------30
4.3.4 NiB添加促進劑觸媒之TEM影像分析-----------------30
4.3.5 NiB添加促進劑觸媒之XPS表面分析------------------30
4.4 NiB、NiPB添加PVP高分子穩定劑觸媒製備與性質鑑定--------------------------------------------------------------------31
4.4.1 NiB、NiPB添加PVP高分子穩定劑觸媒之元素分析、
ICP鑑定--------------------------------------------------------31
4.4.2 NiB、NiPB添加PVP高分子穩定劑觸媒之比表面積
(BET)量測-----------------------------------------------------31
4.4.3 NiB、NiPB添加PVP高分子穩定劑觸媒之X-射線繞射
分析(XRD) ---------------------------------------------------32
VII
4.4.4 NiB、NiPB添加PVP高分子穩定劑觸媒之TEM影像
分析-------------------------------------------------------------32
4.4.5 NiB、NiPB添加PVP高分子穩定劑觸媒之XPS表面
分析-------------------------------------------------------------32
4.5 結論---------------------------------------------------------------34
伍.對-氯硝基苯之氫化反應-----------------------------------77
5.1 NiB觸媒的p-CNB氫化反應--------------------------------77
5.1.1 製備氣體對NiB觸媒在p-CNB氫化反應的效應---77
5.1.2 製備溶劑對NiB觸媒在p-CNB氫化反應的效應---78
5.1.3 反應溶劑對NiB觸媒在p-CNB氫化反應的效應---79
5.1.4 反應溫度對NiB觸媒在p-CNB氫化反應的效應---79
5.2 NiPB、NiP觸媒的p-CNB氫化反應-----------------------79
VIII
5.2.1 製備氣體對NiPB觸媒在p-CNB氫化反應的效應--------------------------------------------------------------------79
5.2.2 製備溶劑對NiPB觸媒在p-CNB氫化反應的效應-------------------------------------------------------------------80
5.2.3 反應溶劑對NiPB觸媒在p-CNB氫化反應的效應-80
5.2.4 NiPB、NiP與倫尼鎳觸媒對p-CNB的氫化反應----81
5.2.5不同莫爾比對NiPB觸媒在p-CNB氫化反應的效應--
-------------------------------------------------------------------81
5.2.6 反應溫度對NiPB觸媒在p-CNB氫化反應的效應--81
5.3 NiB觸媒添加促進劑的p-CNB氫化反應-------------------82
5.3.1 製備溶劑對NiB觸媒添加Co和La在p-CNB氫化反應
的效應---------------------------------------------------------82
5.3.2不同添加量Co和La對NiB觸媒在p-CNB氫化反應的
效應------------------------------------------------------------82
IX
5.3.3反應溫度對NiPB觸媒添加Co和La在p-CNB氫化反應
的效應---------------------------------------------------------83
5.4 NiB、NiPB觸媒添加PVP高分子穩定劑的p-CNB氫化
反應------------------------------------------------------------83
5.5結論------------------------------------------------------------------84
陸.總結-----------------------------------------------------------------109
X
表 目 錄
Table 4.1 Ni-B觸媒的製備條件------------------------------------35
Table 4.2 NiPB觸媒的製備條件----------------------------------- 36
Table 4.3 NiB添加促進劑觸媒的製備條件-------------------------37
Table 4.4 NiB、NiPB添加PVP高分子穩定劑觸媒的製備條件-----39
Table 4.5 NiB觸媒的特性----------------------------------------- 40
Table 4.6 NiB觸媒的XPS表面分析-------------------------------- 41
Table 4.7 NiPB、NiP觸媒的特性---------------------------------- 42
Table 4.8 NiPB、NiP觸媒的XPS表面分析--------------------------43
Table 4.9 NiB觸媒添加促進劑的特性------------------------------44
Table 4.10 NiB觸媒添加促進劑的XPS表面分析--------------------45
Table 4.11 NiB、NiPB觸媒添加PVP高分子穩定劑的特性---------46
XI
Table 4.12 NiB、NiPB觸媒添加PVP高分子穩定劑的XPS表面分析-47
Table 4.13 Ni、B元素的標準XPS鍵結能與各NiB觸媒的XPS表面分析--------------------------------------------------48
Table 4.14 Ni、B元素的標準XPS鍵結能與各NiPB、NiP觸媒的XPS
表面分析---------------------------------------------- 49
Table 4.15 Ni、B元素的標準XPS鍵結能與各NiB觸媒添加促進劑的XPS表面分析------------------------------------------50
Table 4.16 Ni、B元素的標準XPS鍵結能與各NiB、NiPB觸媒添加PVP高分子穩定劑的XPS表面分析---------------------51
Table 5.1 The activities of NiB catalysts. ----------------------------85
Table 5.2 The activities of NiPB catalysts. ---------------------------86
Table 5.3 The activities of Co-NiB、La-NiB、PVP-NiB and PVP-NiPB catalysts. ------------------------------------------------87
XII
圖 目 錄
圖2.1 NiB及NiB/SiO2 觸媒之B 1s XPS光譜-------------------7
圖3.1觸媒製備裝置---------------------------------------22
圖3.2對-氯硝基苯的氫化反應裝置---------------------------23
圖4.1 NiB觸媒之XRD圖譜----------------------------------51
圖4.2 NiPB觸媒之XRD圖譜--------------------------------52
圖4.3 NiB觸媒添加促進劑之XRD圖譜-----------------------53
圖4.4 NiB觸媒添加PVP高分子穩定劑之XRD圖譜------------54
圖4.5 NiB觸媒之TEM圖譜---------------------------------55
圖4.6 NiPB、NiP觸媒之TEM圖譜---------------------------57
圖4.7 NiB觸媒添加促進劑之TEM圖譜-----------------------60
圖4.8 NiB觸媒添加PVP高分子穩定劑之TEM圖譜------------62
XIII
圖4.9不同製備條件下,NiB觸媒的Ni 2p3/2 and Ni 2p1/2 XPS圖譜--66
圖4.10不同製備條件下,NiB觸媒的B 1s XPS圖譜------------67
圖4.11不同製備條件下,NiPB、NiP觸媒的Ni 2p3/2 and Ni 2p1/2
XPS圖譜------------------------------------------68
圖4.12不同製備條件下,NiPB、NiP觸媒的P 2p3 XPS圖譜-----69
圖4.13不同製備條件下,NiPB、NiP觸媒的B 1s XPS圖譜------70
圖4.14不同製備條件下,NiB觸媒添加促進劑Co和La的Ni 2p3/2 and Ni 2p1/2 XPS圖譜-----------------------------------71
圖4.15不同製備條件下,NiB觸媒添加促進劑Co和La的B1s XPS圖譜----------------------------------------------72
圖4.16不同製備條件下,NiB觸媒添加促進劑Co的Co2p3/2XPS圖譜
--------------------------------------------------73
XIV
圖4.17不同製備條件下,NiB觸媒添加促進劑La的La3d5/2XPS圖譜
--------------------------------------------------74
圖4.18不同製備條件下,NiB觸媒添加PVP高分子穩定劑的
Ni 2p3/2 and Ni 2p1/2 XPS圖譜------------------------75
圖4.19不同製備條件下,NiB觸媒添加PVP高分子穩定劑的
P2p3 XPS圖譜-------------------------------------76
圖4.20不同製備條件下,NiB觸媒添加PVP高分子穩定劑的
B1s XPS圖譜--------------------------------------77
圖5.1 NiB觸媒在不同製備氣體下的p-CNB氫化反應活性測試---88
圖5.2 NiB觸媒在不同製備溶劑下的p-CNB氫化反應活性測試----89
圖5.3 NiB觸媒在不同甲醇體積比製備溶劑下的p-CNB氫化反應活性測試-----------------------------------------------90 XV
圖5.4(a) NiB觸媒在不同反應溶劑下的p-CNB氫化反應活性測試-91
圖5.4(b) NiB觸媒跟倫尼鎳在不同反應溶劑下的p-CNB氫化反應活性測試--------------------------------------------92
圖5.5 NiB觸媒在不同反應溫度下的p-CNB氫化反應活性測試---93
圖5.6 NiPB觸媒在不同製備氣體下的p-CNB氫化反應活性測試---94
圖5.7 NiPB觸媒在不同製備溶劑下的p-CNB氫化反應活性測試---95
圖5.8 NiPB觸媒在不同反應溶劑下的p-CNB氫化反應活性測試---96
圖5.9 NiPB、NiP和倫尼鎳觸媒的p-CNB氫化反應活性測試------97
圖5.10 NiB、NiPB、NiP、NiB/SiO2和倫尼鎳觸媒的p-CNB氫化反應活性測試-------------------------------------------98
圖5.11 NiPB在不同反應溫度下的p-CNB氫化反應活性測試------99
圖5.12 NiPB在不同莫爾比下的p-CNB氫化反應活性測試-------100
XVI
圖5.13 NiPB (1:1:3) 在不同溫度下的p-CNB氫化反應活性測試--101
圖5.14 NiB觸媒添加Co在不同溶劑體積比下的p-CNB氫化反應活性測試-------------------------------------------102
圖5.15 Co-NiB觸媒在不同溫度下的p-CNB氫化反應活性測試---103
圖5.16 Co-NiB觸媒在不同添加量下的p-CNB氫化反應活性測試-104
圖5.17 Co-NiB觸媒在不同溫度下的p-CNB氫化反應活性測試---105
圖5.18 La-NiB觸媒在不同添加量下的p-CNB氫化反應活性測試-106
圖5.19 La-NiB觸媒在不同溫度下的p-CNB氫化反應活性測試---107
圖5.20 PVP-NiB、PVP-NiPB觸媒的p-CNB氫化反應活性測試----108 XVII
參考文獻 1. Mustard, D.G.; Bartholomew, G.H., J.Catal. , 67(1981)186.
2. Peterson, R.J., ” Hydrogenation Catalysis ”, Noyes Data: Park Ridge, NJ,1977.
3. Battholomew, C.H.; Sorensen, W.L., J.Catal. , 81(1983)131.
4. F.E.Luborsky, Ed., “ Amorphous Metallic Alloys “, Butterworths,London,1983.
5. Brown,C.A., J. Org.Chem.,35(1970)1900.
6. Chen Yin-Zu “硼化鎳觸媒的催化性質研究“國立台灣大學博士論文, 1985.
7. Shen,J. ; Li,Z.; Yan,Q.; Chen Y., J.Phys.Chem.,97(1993)8504.
8. Deng, J.F.; Chen, H.Y.; Bao, X.H.; Muhler, M., Appl.surf. Sci., 81(1994)341.
9. Deng, J.; Yang. J.; Sheng, S.; Xiong, G., J.Catal. , 150(1994)434.
10. Jiang, Y.L.; Wei, X.Y.; Tang, S.P.; Yuan, L.B., Catal. Lett., 34(1995)19.
11. Linderoth, S. and MØrup, S., “Amorphous TM1-xBx Alloy Particles by Chemical Reduction (invited)”, J. Appl. Phys. 69 (1991) 5256-5261.
12. Okamoto, Y., Nitta, Y., Imanaka, T. and Teranishi, S., “Surface Characterization of Nickel Boride and Nickel Phosphide Catalysts by Xray Photoelectron Spectroscopy”, J. Chem. Soc. Faraday Trans. I. 75 (1973) p.2027.
13. Baltzly, R.; Phillips, A.P., 1946. “The Catalytic Hydrogenolysis of Halogen
Compounds”, J. Am. Chem. Soc. 68, 261.
14. H. Li, H. X. Li, W. J. Wang, and J. F. Deng, “Excellent Activity of Ultrafine Co-B
Amorphous Alloy Catalyst in Glucose Hydrogenation”,Chem. Lett., (1999) 629.
15. Schlesinger, H. I.; Brown, H. C., 1953a. “New Developments in the Chemistry of
Diborane and Borohydrides, I. General Summary”, J. Am. Chem. Soc., 75, 186.
Seo, G.; Chon, H., 1981. “Hydrogenation of Furfural over Copper-containning
catalysts”, J. Catal. 67, 424.
16. Brown, H. C., and C. A. Brown, 1963. “The Reacction of Sodium Borohydride
withNickel Acetate in Aqueous Solution-A Convenient Synthesis of an Active
Nickel Hydrogenation Catalyst of Low Isomerizing Tendency”, J. Am. Chem.
Soc., 85, 1003.
17. H. C. Brown, and C. A. Brown, “The Reaction of Sodium Borohydride with Nickel Acetate in Ethanol Solution   A Highly Selective Nickel Hydrogenation Catalyst”, J. Am. Chem. Soc., 85(1963) 1005.
18. N. N. Mal’tseva, Z. K. Sterlyadkina, and V. I. Mikheeva, Chem. Abstr., 65 (1966) 1751f.
19. Chen, Y., “Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles”, Catal. Today 44 (1998) 3-16.
20. Deng, J. F. and Zhang X. P., “Amorphous nickel-phosphorus alloy deposited on a support and its hydrogenation activity”, Appl. Catal. 37 (1988) 339-343.
21. W. J. Wang, M. H. Qiao, J. Yang, S. H. Xie, and J. F. Deng,“Selective
Hydrogenation of Cyclopentadiene to Cyclopentene over an Amorphous
NiB/SiO2 Catalyst”, Appl. Catal. A, 163 (1997) 101.
22. Y. Okamoto, Y. Nitta, I. Imanaka, and S. Teranishi, “Surface Characterization of
Nickel Boride and Nickel Phosphide Catalysts by X-ray Photoelectron Spectroscopy (Part I)”, J. Chem. Soc.Faraday I., 75 (1979) 2027.
23. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State, Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions”, J. Chem. Soc. Faraday Trans. I, 76 (1980) 998.
24. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions III. Electronic and Catalytic Properties of Nickel Catalysts”, J. Catal., 64 (1980) 397.
25. Y. Okamoto, K. Fukino, T. Imanaka, and S. Teranishi, “Surface State and
Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions IV. Electronic Effects on the Selectivity in the Hydrogenation of 1,3-Butadiene”, J. Catal., 74 (1982) 173.
26. Y. Okamoto, E. Matsunaga, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions V. Electronic Effects on Methanation of CO and CO2”, J. Catal., 74 (1982) 183.
27. H. Li, H. X. Li, W. L. Dai, W. Wang, Z. Fang, and J. F. Deng, “XPS Studies on Surface Electronic Characteristics of Ni-B and Ni-P Amorphous Alloy and Its Correlation on Their Catalytic Properties”,Appl. Surf. Sci., 152 (1999) 25.
28. S. H. Xie, H. X. Li, H. Li, and J. F. Deng, “Selective Hydrogenation of
Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Comparison with Other
Ni-Based Catalysts”, Appl. Catal. A, 189 (1999) 45.
29. H. Li, X. Li, and J. F. Deng, “Influence on the Reduction Degree of Ni-B/SiO2
Amorphous Catalyst and Its Role in Selective Hydrogenation of Acrylonitrile”,
Appl. Catal. A,193 (2000) 9.
30. A. H. Uken, and C. H. Bartholomew, “Borided Metal Catalysts in Methanation of
Carbon Monoxide I. Initial Activity and Conversion-Temperature Behavior of
Unsupported Catalysts”, J.Catal., 65 (1980) 402.
31. Y. Z. Chen, and K. J. Wu, “Hydrogenation Activity and Selectivity of Cobalt
Borides”, Appl. Catal., 78 (1991) 185.
32. Schreifels, J. A., Maybury, P. C. and Swartz, W. E., “X-ray photoelectron
spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with
Reaction Products in the Hydrogenation of Acrylonitrile”, J. Catal. 65 (1980)
195-206.
33. Shen, J., Hu, Z., Zhang, H., Li, Z. and Chen, Y., “The preparation of Ni-P ultrafine
amorphous alloy particles by chemical reduction”, Appl. Phys. Lett. 59 (1991)
3545-3546.
34. Shen, J., Hu, Z., Zhang, Q., Zhang, L. and Chen, Y., “Investigation of Ni-P-B
ultrafine amorphous alloy particles produced by chemical reduction”, J. Appl.
Phys. 71 (1992) 5217-5221.
35. Shipley, C. R. Jr., Historical Highlights of Electroless Plating. Plating and Surface
Finishing 1984, 71, 94.
36. Paul, R.; Buisson, P.; Joseph, N., 1952. “Catalytic Activity of Nickel Borides”,
Ind.Eng. Chem. 44, 1006.
37. Lee, S. P. and Y. W. Chen,2000. “catalytic properties of Ni-B and Ni-P ultrafine
materials“, J. Chem. Tech. Biotech. 75, 1073.
38. Rei, M. H.; Sheu L. L.; Chen, Y. Z., 1986. “Nickel Boride Catalysts in Organic
Synthesis”, Appl. Catal., 23, 281.
39. Li, H., H. X. Li, W. L. Dai, W. Wang, Z. Fang, and J. F. Deng,1999. “XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its
Correlation on their catalytic properties”,Appl. Surf. Sci., 152, 25.
40. Fang, Z. G., B. R. Shen, J. Lu, K. N. Fan, and J. F. Deng,1999. “DFT study of electron transfer between B and Ni in Ni-B amorphous alloy”, ACTA CHIMICA
SINIA, 57,894.
41. Yu, Z. B., Qiao M. H., Li, H. X. And Deng, J. F., 1997. “Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation
activity”, Appl. Catal., A 163, 1-13.
42. Midland, M.M. and P.E. Lee, 1985. “Efficient asymmetric reduction of acyl
cyanides with B-3-pinanyl 9-BBN (Alpine-borane)”, J. Org. Chem. 50, 3237.
43. Hutchinson, C.R., A.H. Heckendorf, J.L. Straughn, P.E. Daddona, and D.E.Cane,
1979. “Biosynthesis of camptothecin. 3. Definition of strictosamide as the
Penultimate biosynthetic precursor assisted by carbon-13 and deuterium NMR
spectroscopy”, J. Am. Chem. Soc. 101, 3358.
44. Osby, J.O. and S.W. Heinzman, B. Ganem,1986. “Studies on the mechanism of
transition-metal-assisted sodium borohydride and lithium aluminum hydride
reductions”, J. Am. Chem. Soc. 108, 67.
45. Yan, X., Liu, M., Liu, H. and Liew, K. Y., 2001. “Role of boron species in the
hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium
colloidal catalysts”, J. Mol. Catal. A: Chem. 169,225-233.
46. Li, C.; Chen Y.; Wang, W. J. Nitrobenzene hydrogenation over aluminum
borate-supported platinum catalyst. Appl. Catal. 1994, 119, 185.
47. Metcalfe, A.; Rowden, M. W. Hydrogenation of nitrobenzene over Palladium-
Silver Catalysts. J. Catal., 1971, 22, 30.
48. Yao, H. C.; Emmett, P. H. Kinetics of Liquid Phase Hydrogenation. IV. Hydrogenation of Nitrocomounds Over Raney Nickel and Nickel Powder
catalysts, J. Am. Chem. Soc. 1962, 84, 1086.
49. Coq, A .B, Tijani, R. Dutartre, F. Figuéras.,1993. “Catalysis by Rh/B system: part 2 Higly regioselective vapour phase hydroformylation of propene at atmospheric
pressure on Rh/B on silica and silica-alumina”,J. Mol. Catal. 79,243.
50.Coq, B.; Tijani, A.; Figuéras, F. Reaction., 1992. “Pathways and the Role of
solvent in the Hydrogenation of Chloronitrobenzenes”, J. Mol. Catal. 71, 317.
51.Coq, B.; Tijani, A.; Figuéras., 1991. “F. Pt/ -Al2O3 catalytic membranes vs. Pt on
γ-Al2O3 powders in the selective hydrogenation of p-chloronitrobenzene”, J. Mol.
Catal. 68, 331
52. Chiuping, L. Y.; Chen, W.; Wang, W. J. Nitrobenzene hydrogenation over
aluminum borate-supported platinum catalyst. Appl. Catal. A: General 1994, 119,
185.
53. Liao, Yu, Z., S., Xu, Y., Yang, B. and Yu, D., 1995. “A Remarkable Synergic Effect of Polymer-anchored Bimetallic Palladium-Ruthenium Catalysts in the Selective Hydrogenation of p-Chloronitrobenzene”, J. Chem. Soc., Chem.
Commun.1155-1156.
54. Liu, Tu, W., H. and Tang Y.,2000. “The metal complex effect on the selective
hydrogenation of m- and p-chloronitrobenzene over PVP-stabilized platinum
colloidal catalysts”, J. Mol. Catal. A: Chem. 159,115-120.
55. Zhou, Han. X., R., Zheng, X. and Jiang, H., 2003. “Effect of rare earths on the
hydrogenation properties of p-chloronitrobenzene over polymer-anchored
platinum catalysts”, J. Mol. Catal. A: Chem. 193,103-108.
56. Han, X., Zhou R., Lai, G., Yue, B. and Zheng, X.,2003. “Influence of rare earth (Ce,Sm, Nd, La, and Pr) on the hydrogenation properties of chloronitrobenzene over Pt/ZrO2 catalyst”, Catal. Lett. 89, 255-259.
57. Dai, W. L., Qiao, M. H. and Deng, J. F., “XPS studies on a novel amorphous Ni-Co-W-B alloy powder”, Appl. Surf. Sci. 120 (1997) 119-124.
58. Chen, Y. Z. and Chen, Y. C., “Hydrogenation of para-chloronitrobenzene over
nickel borides”, Appl. Catal., A 115 (1994) 45-47.
59. W. Yu, H. Lin, M. Liu, and Z. Liu, “Selective Hydrogenation of Citronellal over
Polymer-Stabilized Noble Metal Colloids” React. Func. Poly., 44 (2000) 21.
60. K. Kralik, and A. Biffis, “Catalysis by Metal Nanoparticles Supported on
Functional Organic Polymers’’, J. Mol. Catal. A, 177(2001) 113.
61. H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loy, J.F.Deng, and
G.Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly
(N-vinylpyrrolidone)”, Langmuir, 12 (1996) 909.
62. H. Hirai, N. Yakura, Y. Seta, and S. Hodoshima, “ Characterization of Palladium
Nanoparticles Protected with Polymer as Hydrogenation Catalyst”, React. Func.
Polym., 37 (1998) 121.
63. A.B.R. Mayer, and J. E. Mark, “Colloidal Gold Nanoparticles Protected by
Water-Soluble Homoplymers and Random Copolymer”, Eur. Polym. J., 34 (1998)
103.
64. T. Teranishi, and M. Miyake, “Size Control of Palladium Nanoparticles and their
Crystal Structure’’, Chem. Mater., 10 (1998)594.
65. T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake. “Size Control of
Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophporetic
Deposition”, J . Phy . Chem . B , 103(1999) 3818.
66. H.P. Choo, K.Y. Liew, and H. Liu, “Factors Affecting the Size of Polymer
Stabilized Pd Nanoparticles ”, J. Mater. Chem., 12 (2002)934.
67. W. Yu, M. Liu, H. Liu, X. Ma, and Z. Liu, “Preparation, Characterization, and
Catalytic Properties of Polymer-Stabilized Ruthenium Collioids”, J. Colloid Interf. Sci., 208 (1998) 439.
68. Yang, X., Liu H. and Zhong H., “Hydrogenation of o-chloronitrobenzene over
polymer-stabilized palladium–platinum bimetallic colloidal clusters”, J. Mol.
Catal. A: Chem. 147 (1999) 55-62.
69. King,D.L., J.Catal. , 51(1978)386.
70. Satterfield, C. N., In Heterogeneous Catalysis in Practice, McGraw-Hill Co. 1980,
pp.94-97
71. Pelavin, M.; Hendrickson, D. N.; Hollander, J. M.; Jolly W. L., 1970. “Phosphorus
2p Electron Binding Energies Correlation with Extended Huckel Charges”, J.Phys. Chem. 74, 1116.
72. Ramachandran, P. A. and Chaudhari, R.V., 1983. “Three Phase Catalytic
Reactors”, Gordon and Breach Science Publishers, New York, p. 15.
73. Carberry, J. J., 1987. “Physico-Chemical Aspects of Mass and Heat Transfer in Heterogeneous Catalysis. In Catalysis, Science and Technology”; Anderson, J. R.; Boudart, M., Eds.; Springer Verlag: Berlin, Vol. 8, p 131.
74. Wheeler, A., 1951. “Reaction Rates and Selectivity in Catalyst Pores. In Advances in Catalysis”; Academic Press: New York, Vol. 3, p 249.
75. Weisz, P. B.; Prater, D. C.,1954. “Interpretation of Measurements in Experimental Catalysis. In Advances in Catalysis”, Academic Press: New York, Vol. 6, p 143.
76.Fogler, H. S., 1992. “Elements of Chemical Reaction Engineering, Prentice-Hall Englewood Cliffs”, New Jersey, US, p. 670.
77. Hu, S. C.; Chen Y. W., 1997. “Partial Hydrogenation of Benzene to Cyclohexene on Ruthenium Catalysts Supported on La2O3-ZnO Binary Oxides”, Ind. Eng. Chem. Res. 36, 5153.
78. Rajadhyaksha, R. A. and Karwa, S. L., “Solvent effects in catalytic
hydrogenation”, Chem. Eng. Sci. 41 (1986) 1765-1770.
79. Liu, Q.; Takemura, F.; Yabe, A. Solubility of Hydrogen in Liquid Methanol and Methyl Formate at 20℃ to 140 ℃. J. Chem. Eng. Data 1996, 41, 1141.
80. Liu, Q.; Takemura, F.; Yabe, A. Solubility of Hydrogen, Carbon Monoxide, and 1-Octene in Various Solvents and Solvent Mixtures. J. Chem. Eng. Data 1996, 41, 1414.
指導教授 陳郁文(yu-wen chen) 審核日期 2005-10-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明