博碩士論文 91324025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.14.144.229
姓名 卓永達(Yung-Da Cho)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
(Nanocrystalline LiMn2O4 Derived by HMTA-Assisted Solution Combustion Synthesi)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要探討以燃燒合成法製備奈米級LiMn2O4陰極材料之製程研究,首先利用TG/DTA分析材料熱分解性質與相轉變反應,XRD鑑定各製程所得材料之結構變化,ICP-AES分析煆燒後鋰錳氧化物之計量比,SEM、TEM及BET鑑定合成材料之表面型態、顆粒粒徑與表面積,接著測試各材料之電池性能,進而求出最佳製程條件,並以循環伏安法分析材料氧化還原行為。本製程的合成變因有煆燒溫度、煆燒時間、鋰計量,及總金屬離子與燃料比例等。
首先以硝酸鋰及硝酸錳為起始物,以硝酸銨(Ammonium nitrate)為製孔劑,環六亞甲基四胺(Hexamethylenetetramine)為燃料,改變不同煆燒溫度(500~900℃)與持溫時間(5~20小時),探討最佳煆燒溫度與時間。接著,針對LixMn2-xO4中x為1.03進行研究。最後,改變不同金屬離子對燃料之莫爾比,分別為1比1、1比2與1比4等條件。本實驗最佳製程條件為煆燒溫度700℃,煆燒時間10小時,鋰計量x為1.00,總金屬離子對燃料之莫爾比例為1比1。上述合成條件下所得出的材料,在充放電速率0.1 C-rate及充放電截止電壓分別為4.3及3.0伏特時,其初次放電電容量為113 mAh/g,經過200個循環之後,其放電電容量為88mAh/g,電荷維持率為80%,雖其電容量不高,卻具有穩定之電池性能。
由TG/DTA材料熱穩定性分析發現,當溫度於室溫與120℃間,產生第一段熱重損失,吾人認為是Mn(NO3)2‧4H2O在溫度高於100℃時,發生分解與揮發,另外,在255℃有一熱解峰,此為LiNO3發生融化所造成。在溫度300℃以上,為反應主要熱重損失區。由XRD分析圖譜中可發現在煆燒溫度500℃以上之條件均可合成出尖晶石相產物。經由TEM鑑定結果,以總金屬離子與燃料之比例為1比1,於500℃下煆燒10小時所得LiMn2O4陰極材料,其顆粒粒徑約在25至40 nm之間,而於700℃下煆燒10小時所得之材料,其顆粒粒徑約在150至200 nm之間;由此可知,採用燃燒法可製備出奈米級且具優異循環穩定性之LiMn2O4陰極材料。
摘要(英) This dissertation covers the synthesis and lithium-intercalating properties of LiMn2O4 prepared by a combustion process with ammonium nitrate as a porogenic agent and Hexamethylenetetraamine (HMTA) as a fuel. The synthesis parameters, temperature and duration of calcination and lithium stoichiometry, as well as metal ion:fuel mole ratio, were optimized in order to obtain products with the best electrochemical activity. The phase transitions of the products were investigated by thermogravimetric and differential thermal analyses, Structural properties of the products were investigated by X-ray diffraction, surface morphology by scanning electron microscopy and transmission electron microscopy, and surface area by the BET method. Lithium intercalation properties were studied by galvanostatic charge-discharge studies for different rate windows. The various redox regions and phase changes occurring during the charge-discharge processes were studied by cyclic voltammetry.
The precursors for the synthesis of LiMn2O4 were metal nitrates dissolved in an aqueous solution of ammonium nitrate and HMTA in various mole ratios of total metal ion to fuel and the products were obtained by calcination at different temperatures and times. The optimal synthesis conditions were found to be 10h calcination at 700°C with lithium stoichiometry and mole ratio of total metal ion to fuel at 1.00. At a 0.1 C rate between 3.0 and 4.3 V, the product gave a first-cycle discharge capacity of 113 mAh/g, which faded to 88 mAh/g in the 200th cycle, with charge retention of 80%.
The weight loss that occurs in the range from room temperature to about 120°C is ascribed to superficial water loss, as well as water loss from the hydration of manganese nitrate tetrahydrate, which begins to decompose at temperatures above 100°C. The sharp endotherm at 255°C is due to the melting of LiNO3. The main decomposition and product formation begin around 300°C. All the diffractograms show patterns corresponding to the cubic spinel structure in the Fd3m space group, suggesting that LiMn2O4 was formed during the initial decomposition of the mixture at 500°C itself. The particles were crystalline and had an average particle size of 10 ~ 40 nm, and a BET surface area of about 3.0361 m2/g. The good electrochemical behavior of the product was attributed to the nanocrystalline LiMn2O4 cathode particles by a modified solution combustion process.
關鍵字(中) ★ 燃燒法
★ 鋰錳氧
★ 鋰離子電池
★ 奈米材料
關鍵字(英) ★ LiMn2O4
★ lithium-ion batteries
★ Nanocrystalline materials
★ combustion synthesis
論文目次 摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
符號說明 XIII
第一章 緒論 1
1-1 前言 1
1-2 鋰離子電池的發展背景簡介 2
1-3 鋰離子電池的工作原理與特性 4
1-4 鋰離子電池陰極材料之簡介 8
1-5 研究目的與大綱 11
第二章 文獻回顧 15
2-1 鋰錳氧化物之特性 15
2-1-1 鋰錳氧化物高溫電池性能不佳 16
2-1-2 相變化所造成電容量快速衰退 18
2-1-3 錳溶解造成電容量快速衰退 19
2-2 傳統鋰錳氧化物製備方法 20
2-2-1 高溫固態法之製程機制與特色 20
2-2-2 共沈澱法之製程機制與特色 21
2-2-3 溶膠凝膠法之製程機制與特色 23
2-2-4 高溫自蔓延法之製程機制與特色 28
2-2-4-1 高溫自蔓延法之變革 28
2-2-4-2 高溫自蔓延法的種類 29
2-3 奈米級LiMn2O4陰極材料發展現況 37
第三章 實驗方法 49
3-1 實驗藥品器材 49
3-2 實驗儀器及設備 50
3-3 實驗步驟 51
3-3-1 以燃燒法合成LiMn2O4陰極材料 51
3-3-1-1 材料合成 51
3-3-2 材料鑑定分析 55
3-3-2-1 X光繞射分析 55
3-3-2-2 熱分析 56
3-3-2-3 掃瞄式電子顯微鏡分析 56
3-3-2-4 穿透式電子顯微鏡測試 56
3-3-2-5 表面積測試 56
3-3-2-6 感應耦合電漿原子放射光譜分析儀分析 57
3-3-2-7 鋰錳材料錳平均價數鑑定 58
3-3-3 材料電化學特性分析 63
3-3-3-1 電池性能測試 63
3-3-3-2 慢速循環伏安分析 65
第四章 結果與討論 67
4-1 鑑定分析 67
4-1-1 TG/DTA材料熱穩定性分析 67
4-1-2 XRD材料結構分析 70
4-1-2-1 煆燒溫度變因 70
4-1-2-2 煆燒時間變因 75
4-1-2-3 鋰計量變因 77
4-1-2-4 金屬離子對燃料之莫爾比例變因 78
4-1-3 SEM材料表面型態分析 79
4-1-3-1 煆燒溫度變因 79
4-1-3-2 煆燒時間變因 82
4-1-3-3 鋰計量變因 82
4-1-3-4 金屬離子與燃料之莫爾比例變因 82
4-1-4 TEM顆粒粒徑測試 86
4-1-5 BET材料表面積鑑定 87
4-1-6 ICP-AES元素計量分析 89
4-2 電化學特性分析 90
4-2-1 電池性能測試 90
4-2-1-1 煆燒溫度變因 90
4-2-1-2 煆燒時間變因 93
4-2-1-3 鋰計量變因 96
4-2-1-4 金屬離子與燃料之莫爾比例變因 99
4-2-1-5 特徵曲線測試 104
4-2-1-6 高溫55℃測試 107
4-2-2 慢速循環伏安分析 109
第五章 結論與建議 113
5-1 結論 113
5-2 建議 115
第六章 參考文獻 116
參考文獻 1. J. Hajek, French Patent, 8, 10 (1949).
2. “Battery Recall Update”, Adv. Batt. Technol., 25 No 10, 4 (1989).
3. D.W. Murphy, Mat. Res. Bull., 13, 1395 (1978).
4. M. Armand, Materials for Advanced Batteries, D. W. Murphy , J. Broadhead, B. C. H. Steele, Eds, Plenum Press, New York, p.145 (1980).
5. U. S. Patents, 4,190,620 (1980).
6. U. S. Patents, 4,198,476 (1980).
7. U. S. Patents, 4,464,447 (1984).
8. S. Basu, U. S. Patent, 4,423,125 (1983).
9. M.G.S.R. Thomas, W.I.F. David, J.B. Goodenough, and P. Grover, Mat. Res. Bull., 20, 1137 (1985).
10. J.R. Dahn, U. von Sacken, M.W. Jazkow, and H.A. Janaby, J. Electrochem. Soc., 138, 2207 (1991).
11. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner, and H.W. Lin, J. Power Sources, 21, 25 (1987).
12. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Mat. Res. Bull., 15, 783 (1980).
13. A. Mendiboure, C. Delmas, and P. Hagernmuller, Mat. Res. Bull., 19, 1383 (1984).
14. A. Honders, J.M. der Kinderen, A.H. van Heeren, J.H.W. de Wit, and G.H. Braers, Solid State Ionics, 15, 265 (1985).
15. J. Molenda, A. Stoklosa, and T. Bak, Solid State Ionics, 36, 53 (1989).
16. J.M. Tarascon and D. Guyomard, J. Electrochem. Soc., 138, 2864 (1991).
17. J.M. Tarascon, D. Guyomard, and G.L. Baker, J. Power Sources, 43-44, 689 (1993).
18. A. Manthiram and J. Kim, Chem. Mater., 10, 2895 (1998).
19. 呂承璋, 碩士論文, "LixNi1-yCoyO2及LiM0.5-yM’yMn1.5O4之合成與電池性能", 國立中央大學, 中華民國臺灣 (2002).
20. P. Arora, R.E. White, and M. Doyle, J. Electrochem. Soc., 145, 3647 (1998).
21. J.M. Tarascon and D. Guyomard, Electrochimica Acta, 38, 1221 (1993).
22. Y. Xia and M. Yoshio, J. Electrochem. Soc., 144, 4186 (1997).
23. T. Ohzuku, M. Kitagawa, and T. Hirai, J. Electrochem. Soc., 137, 769 (1990).
24. A. Yamada, K. Miura, K. Hinokuma, and M. Tanaka, J. Electrochem. Soc., 142, 2149 (1995).
25. R.J. Gummow, A. de Kock, and M.M. Thackeray, Solid State Ionics, 69, 59 (1994).
26. A. Blyr, C. Sigala, G. Amatucci, D. Guyomard, Y. Chabre, and J. M. Tarascon, J. Electrochem. Soc., 145, 194 (1998).
27. D. Aurbach, M. L. Daroux, P. W. Faguy, and E. Teager, J. Electrochem. Soc., 134, 1661 (1987).
28. C.K. Jorgensen, In Atoms and molecules (Academic Press, London), p.80 (1962).
29. J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mckinoon, and S. Colson, J. Electrochem. Soc., 138, 2859 (1991).
30. J. Pierre and P. Ramos, J. Power Sources, 54, 120 (1995).
31. F. Liu, Q. Feng and K. Ooi, Journal of Colloid and Interface Science, 163, 130 (1994).
32. A.R. Naghash and J.Y. Lee, J. Power Sources, 85, 284 (2000).
33. M.A. Aegerter, Sol-Gel: Science and Technology: Proceedings of the Winter School on Glasses and Ceramics from Gels, Brazil, World Scientific, Singapore, (1989).
34. A.C. Pierre, Introduction to Sol-Gel Processing, Kluwer Acadmic Publishers, 4 (1998).
35. Z.S. Peng, C.R. Wan, and C.Y. Jiang, J. Power Sources, 72, 215 (1998).
36. S. Bach, M. Henry, N. Baffier, and J. Livage, J. Solid State Chem., 88, 325 (1990).
37. P. Barboux, J.M. Tarascon, and F.K. Shokoohi, J. Solid State Chem., 94, 185 (1991).
38. W. Liu, G.C. Farrington, F. Chaput, and B. Dunn, J. Electrochem. Soc., 143, 879 (1996).
39. Y.K. Sun, Solid State Ionics, 100, 115 (1997).
40. L. Hernan, J. Morales, L. Sanchez, and J. Santos, Solid State Ionics 104, 205 (1997).
41. Y.S. Lee, Y.K. Sun, and K.S. Nahm, Solid State Ionics, 109, 285 (1998).
42. W. Yang, Q. Liu, W. Qiu, S. Lu, and L. Yang, Solid State Ionics, 121, 79 (1999).
43. B.J. Hwang, R. Santhanam, and D.G. Liu, J. Power Sources, 97, 443 (2001)
44. 陳俊宏, 碩士論文, “燃燒合成法氮化鋁基板材料研究”, 國立成功大學, 中華民國台灣 (2001).
45. J.J. Berzelius, Prog. Ann., 4, 126 (1825).
46. M. Goldschmid, Liebigs Ann. Chem., 70, 240 (1885).
47. W. Muthmann and K. Kraft, Liebigs Ann. Chem., 325, 261 (1902).
48. P.P. Alexander, U. S. Pat. No. 2372168 (1943), No. 2425711 (1944), No. 2467647 (1949).
49. M. Koizumi and Y. Miyamoto, Combustion and Plasma Synthesis of High-Temperature Materials p.54, VCH, Weinheim (1984).
50. Y. Miyamoto, M. Koizumi, and O. Yamada, J. Am. Ceram. Soc., 67, 224 (1984).
51. J.J. Moore and H.J. Feng, Prog. Mater. Sci., 39, 243 (1995).
52. J.J. Moore and H.J. Feng, Prog. Mater. Sci., 39, 275 (1995).
53. J.D. Walton and N.E. Poulos, J. Am. Ceram. Soc., 42, 40 (1959).
54. O. Odawara and J. Ikeuchi, J. Jpn. Inst. Metals, 45, 316 (1981).
55. K.V. Logan and J.D. Walton, Ceram. Engng Sci. Proc., 5, 725 (1984).
56. R.A. Cutler, A.V. Virkar, and J.B. Holt. Ceram. Engng Sci. Proc., 6, 715 (1985).
57. L.L. Wang, Z.A. Munir, and J.B. Holt, Combustion and Plasma Synthesis of High-Temperature Materials p.204. VCH, Weinheim. (1990).
58. I.M. Low, J. Mater. Sci. Lett., 11, 715 (1992).
59. S.A. Karataskov, V.I. Yuhkvid, and A.G. Merzhanov, Combust. Explos. Shock Waves, 21, 687 (1985).
60. V.I. Yukhvid, S.A. Karataskov et al., Proceeding of the First US-Japanese Workshop on Combustion Synthesis p.7, National Research Institute for Metals, Tokyo, Japan (1990).
61. M. Eslamloo-Grami and Z.A. Munir, Mater. Sci. Report, 3, 227 (1989).
62. J.P. Leberat and A. Varma, Physica, C184, 220 (1991).
63. J.P. Leberat and A. Varma, Combust. Sci. Tech., 88, 177 (1992).
64. A.G. Merzhanov and A.S. Rogachev. Pure Appl. Chem., 64, 941 (1992).
65. K.C. Patil, S.T. Aruna, and S. Ekambaram, Curr. Opinion Solid State Mater. Sci., 2, 158 (1997).
66. R.E. Treece, E.G. Gillan, and R.B. Kaner, Comment Inorganic Chem, 16, 313 (1995).
67. E.G. Gillan and R.B. Kaner, Chem Mater, 8, 333 (1996).
68. I. Glassman, K.A. Davis, and K. Brezinsky, Twenty-Fourth Symposium on Combustion/ The Combustion Institute, 1877 (1992).
69. M.S. Wooldridge, S.A. Danczyk, and J. Wu, Nanostructured Materials, 11, 955 (1999).
70. K.C. Patil and R. Soundararajan, Ind. J. Chem Edn., 6, 29 (1979).
71. J.J. Kingsley and KC. Patil, Mater. Lett., 6, 427 (1988).
72. K.C. Patil, Bull Mater Sci., 16, 533 (1993).
73. S. Ramesh, S.S. Manoharan, M.S. Hegde, and K.C. Patil, J. Catal., 157, 749 (1995).
74. S.T. Aruna and K.C. Patil, J. Mater Synth Processing, 4, 175 (1996).
75. S. Ekambaram and K.C. Patil, Bull Mater Sci., 18, 921 (1995).
76. M. Kottaisamy, D. Jeyakumar, R. Jagannathan, and M.R. Mohan, Mater Res. Bull, 31, 1013 (1996).
77. S. Ekambaram and K.C. Patil, J. Alloys Compounds, 1997, in press.
78. K.C. Patil, S. Ghosh, S.T. Aruna, and S. Ekambaram, The Indian Potter, 34, 1 (1996).
79. M. Muthuraman, N.A. Dhas, and K.C. Patil, J. Mater Synth Processing, 4, 115 (1996).
80. S. Ekambaram, N.A. Dhas, and K.C. Patil, Int. J. Self-Propag High-Temp Synth, 4, 85 (1995).
81. R.G. Chandran, B.K. Chandrashekar, C.Ganguly, and K.C. Patil, J. Eur. Ceram Soc., 16, 843 (1996).
82. M. Muthuraman, K.C. Patil, S. Senbagaraman, and A.M. Umarji, Mater Res Bull, 31, 1375 (1996).
83. W. Yang, G. Zhang, X. Jingying, L. Yang, and Q. Liu, J. Power Sources, 81, 412 (1999).
84. Y.K. Sun, I.H. Oh, and K.Y. Kim, Ind. Eng. Chem. Res., 36, 4839 (1997).
85. J. Kim and A. Manthiram, Electrochemical and Solid-State Letters, 1 (5), 207, (1998).
86. P. Lucas and C.A. Angellz, J. Electrochem. Soc., 147 (12), 4459 (2000).
87. C.H. Lu and S.K. Saha, Materials Science and Engineering, B79, 247 (2001).
88. Y.M. Hon, S.P. Lin, K.Z. Fung, and M.H. Hon, J. of the European Ceramic Society, 22, 653 (2002).
89. D. Kovacheva, H. Gadjov, K. Petrov, S. Mandal, M.G. Lazarraga, L. Pascual, J.M. Amarilla, R.M. Rojas, P. Herrero, and J.M. Rojo, J. Mater. Chem., 12, 1184 (2002).
90. P. Rousseau, Handbook of Manhanese Dioxides, Battery Grade, D. Glover, B. Schumm, Jr. and A. Kozawa, Editors, Chap. 3, p. 25-32, International Battery Material Association, Inc., Las Vegas, NV (1989).
91. D.N. Arul and K.C. Patil, Ceramic Int., 20, 57 (1994).
92. I.P. Parkin, Q.A. Pankhurst, L. Affleck, M.D. Aguas, and M.V. Kuznetsov, J. Mater. Chem., 11, 193 (2001).
93. A.C. McLaren, Rev. Pure Appl. Chem., 12, 54 (1962).
94. J.S. Ingman, G.J. Kearley, and S.F. A. Kettle, J. Chem. Soc., Faraday Trans. I, 78, 1817 (1982).
95. C. Oommen and S.R. Jain, J. Hazardous Mater., A67, 253 (1999).
96. J.C. Oxley, J.L. Smith, E. Rogers, and M. Yu, Thermochim. Acta, 384, 23 (2002).
97. K.R. Brower, J.C. Oxley, and M.P. Tewari, J. Phys. Chem., 93, 4029 (1989).
98. J.C. Oxley, S.M. Kaushik, and N.S. Gilson, Thermochim. Acta, 153, 269 (1989).
99. K.C. Patil and M.M.A. Sekar, Int. J. Self-Propag. High-Temp. Synth., 3, 181 (1994).
100. K.C. Patil, S.T. Aruna, and S. Ekambaram, Curr. Opinion in Solid State Mater. Sci., 2, 158 (1997).
101. Y. Gao and J.R. Dahn, J. Electrochem. Soc., 143, 100 (1996).
102. C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, and J.B. Goodenough, J. Solid State Chem., 123, 255 (1996).
103. W. Borchardt-Ott, Crystallography, Springer, New York (1993).
104. Y.K. Sun, Solid State Ionics , 100, 115 (1997).
105. T. Ohzuku and A. Ueda, Solid State Ionics, 69, 201 (1994).
106. T. Ozhuku, S. Kitano, M. Iwanaga, H. Matsuno, and A. Ueda, J. Power Sources, 68, 646 (1997).
107. T. Ohzuku, K. Ariyoshi, S. Takeda, and Y. Sakai, Electrochim. Acta, 46, 2327 (2001).
108. M.M. Thackeray, J. Electrochem. Soc., 144, L100 (1997).
109. Y. Xia, H. Takeshige, H. Noguchi, and M. Yoshio, J. Power Sources, 56, 61 (1995).
110. R.J. Gummow, A. de Kock, and M.M. Thackeray, Solid State Ionics, 69, 59 (1994).
111. D. Guyomard and J.M. Tarascon, Solid State Ionics, 69, 222 (1994).
112. Z. Jiang and K.M. Abraham, J. Electrochem. Soc., 143, 1591 (1996).
113. T. Ohzuku, M. Kitagawa, and T. Hirai, J. Electrochem. Soc., 137, 769 (1990).
114. W. Liu, G.C. Farrington, F. Chaput, and B. Dunn, J. Electrochem. Soc., 143, 879 (1996).
115. M.H. Roussouw, A. Kock, L.A. Picciotto, M.M. Thackeray, W.I.F. David, and R.M. Ibberson, Mater. Res. Bull., 25, 173 (1990).
116. J.M. Tarascon, F. Coowar, G.G. Amatucci, F.K. Shokoohi, and D. Guyomard, J. Power Sources, 54, 103 (1995).
117. Y.S. Han and H.G. Kim, J. Power Sources, 88, 161 (2000).
指導教授 費定國˙(G. Ting-Kuo Fey) 審核日期 2004-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明