博碩士論文 91344006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.135.202.38
姓名 黃泳彬(Yung-Pin Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 界面活性劑的濕潤能力對紡絲上油及纖維物性的影響
(Effect of surface treatment and wetting behavior on fiber surface and resulted yarn property.)
相關論文
★ PU橡膠血液相容性之探討★ PU發泡體的結構與性質
★ POLY IP發泡體結構與性質之探討★ 非極性式poly-ip based PU軟質段末端改質的影響
★ 高韌性環氧樹脂底膠之開發★ 水性PU之流變性質研究
★ 完全相分離PU之完整形態研究★ 含矽膠PU之合成與血液相容性研究
★ 奈米級嵌段式PU之動態機械性質 與微結構型態研究★ Hydroxyl Terminated Polyisoprene(HTIP)陰離子型水性PU合成與性質研究
★ 陰離子型水性PU/有機蒙特納土奈米複合材料之製備與分析★ 非極性式poly-ip based PU 之軟質段末端改質對形態的影響
★ 硬質鏈段不規則性對PU奈米形態之影響(II)★ 苦楝油對於水性PU膨潤效應的性質研究
★ 硬質鏈段不規則性對PU奈米形態之影響★ 尼龍表面親疏水性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文藉由在紡絲油劑的主配方中添加了不同種類的界面活性劑來製備一系列具有不同濕潤性(wetting ability)的紡絲油劑乳化液 (emulsion),然後上油在聚酯紡絲紗線上,實驗發現,油劑乳化液之動態表面張力(dynamic surface tension)及其在聚酯薄膜上之動態接觸角(dynamic contact angle)會分別對聚酯紡絲紗線的質量均勻度變異(UCV%)及紗線延伸 60% 之拉力(BE60)造成明顯的影響,並同時對紡絲上油均勻性變異(Rossa SD)產生明顯的關聯性。實驗結果顯示,紗線的 BE60 會隨著油劑之動態接觸角的降低(高濕潤性)及/或紡絲上油均勻性變異(Rossa SD)的增加而降低,並發現油劑會滲入纖維內部然後造成 BE60 拉伸力的降低(亦即紗線被塑化了)。經比較 Rossa SD 之後發現,油劑的動態接觸角才是造成 BE60 拉伸力下降的主因。另外,在量測經過上油點之後的不同距離之 Rossa SD 發現,在距上油點之後的120 公分以內,紗線的 Rossa SD 會隨著經過上油點之後的距離增加而降低。研究又發現紗線的質量均勻度變異(UCV%)將隨著 Rossa SD 及/或油劑動態表面張力差值(汽泡頻率 6Hz 與 1Hz 的動態表面張力差值,Δγd)的增加而增加,但是當油劑的 Δγd 增加到1.7 以上時,會發生油劑飛濺(造成油劑萃取量降低),此後紗線的質量均勻度將不再繼續變得更差。經比較紗線的摩擦係數及其表面介電性質之後發現,油劑的 Δγd 才是影響紗線的質量均勻度變異的主因。
本文另外也探討藉由聚酯與二氧化鈦(TiO2)奈米微粒之參混(blending)來製造出具有含 TiO2 之功能性聚酯及纖維。實驗發現,隨著纖維之 TiO2 含量的增加,浮現在纖維表面之 TiO2 聚集顆粒會更明顯,此將造成纖維表面之不平整及紗線之摩擦接觸面積下降,並因而導致紗線摩擦力的降低。由 ESCA 及 SEM/EDX 實驗結果得知,纖維之 TiO2 會比較喜歡分布在纖維/空氣的界面。另外,由實驗得知摩擦力愈小之紗線所對應之織物的摩擦力也將愈低,這代表可藉由 TiO2 含量的調控來製造出不同摩擦力範圍的纖維及其織物,並因此具有一些在紡織工業之潛在應用機會。
摘要(英) Spin finishes with various wetting properties were prepared by incorporating different wetting agents into the formulated basic spin finish master batches. They were then applied to PET high-speed melt spinning yarns. Variations of the tensile strength at 60% elongation (BE60) and the variation in mass per unit length along the yarn (yarn evenness) of the yarns were evaluated together with the corresponding dynamic contact angles of the PET film、dynamic surface tension of the spin finish emulsion and on-line spin finish distribution (Rossa SD) on the PET yarn. A decreased BE60 was found when the dynamic contact angles decreased. This indicates that spin finishes had diffused into the fiber core and, therefore, reduced the fiber strength. Comparing with the spin finish distribution, we concluded that the dynamic contact angle was the dominant factor for the plasticization of the PET yarn. The wetting behavior of the fiber surface was evaluated by measuring the on-line spin finish distribution at various distances from the spin finish applicator. It showed that the spin finish continued to spread rapidly on the yarn surface at distances smaller than 120cm. The yarn evenness was decreased, with a poor on-line spin finish distribution, and with an increased difference between the dynamic surface tensions, Δγd, for bubbling rates of 1Hz (γ1Hz) and 6Hz (γ6Hz). The on-line spin finish distribution increases with Δγd to a Δγd value of 1.7 dyne/cm. Thereafter, further increasing Δγd caused spin finish splashing from the yarn, reducing the extraction weight of the spin finish from the PET yarn. However, yarn evenness initially decreased as Δγd increased, but leveled off when Δγd exceeded 1.7 dyne/cm. Comparing with the surface friction and the surface dielectric property, we concluded that the dynamic surface tension of the spin finish emulsion played a dominant effect on the PET high-speed melt spinning.
In addition, poly (ethylene terephthalate) (PET) was blended with different amount of TiO2 nanoparticle, and then spun into fibers at different diameters. The TiO2 nanoparticles showed aggregations on the fiber surface. The aggregates became larger as the content of TiO2 nanoparticle increased and/or the diameter of spun fiber decreased, which led to an increased C1s/O1s ratio calculated from the ESCA survey scan spectra. Results also showed that the TiO2 nanoparticles showed a preference to distribute on the fiber surface, which caused unevenness of the fiber surface and led to a greatly reduced frictional force on the fiber surface. By the way, based on different amount of TiO2, a broad range of yarn friction could be made, which would provide promise to potential performance in fiber industry.
關鍵字(中) ★ 濕潤行為
★ 表面處理
★ 纖維
關鍵字(英) ★ Surface treatment
★ Fiber
★ Wettiing behavior
論文目次 中文摘要 I
英文摘要 III
目錄V
圖目錄IX
表目錄XII
第一章 緒論1
第二章 文獻回顧3
第三章 實驗12
第四章 聚酯纖維物性與油劑動態接觸角之關係20
第五章 油劑動態表面張力對纖維之濕潤行為
及其物性探討43
第六章 融熔紡絲效應對 TiO2 奈米微粒聚集6
及其纖維摩擦力之影響74
第七章 總結102
附錄104
參考文獻 [1] A. A. Vaidya, The Chemistry and Technology of Spin Finishes, Synthetic Fibers, October/December, p.24 (1982)
[2] J. P. Redston, W. F. Bernholz and C. Schlatter, Chemicals Used as Spin Finishes for Man-Made Fibers, Textile Research Journal, 43, 325 (1973)
[3] J. P. Redston, W. F. Bernholz and R.C. Nahta,Emulsifier Choice in Design of Finishes for Man-Made Fibers, J. Amer. Oil Chem. Soc., 48, 344 (1971)
[4] W. F. Bernholz, J. P. Redston and C. Schlatter, Spin Finish Usage and Compounding for Man-Made Fibers in Emulsion and Emulsion Technology, Part III, Lissant K. J. Ed., Marcel Dekker, New York, pp. 215 - 239
[5] P. E. Slade, Handbook of Fiber Finish Technology, Marcel Dekker, Inc., NY, 1998.
[6] T. Fujimoto, New Introduction to Surface Active Agents, Sanyo Chemical Industries Ltd. Publication, Japan, 1985, pp. 156-174.
[7] M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley, New York, 1989, pp. 260.
[8] T. Crutcher, K. R. Smith, J. E. Sauer, J.W. Perine, J. Am. Oil Chem. Soc. 69 (1992) 682.
[9] S.-C. Tsou et al., in: Proceedings of 16th Symposium on Fiber and Textile Science and Technology. Taipei, 2000 (in Chinese).
[10] ATSM D3825-90. Dynamic Surface Tension by Fast-Bubble Technique; ASTM: West Conshohocken, PA, 1998, vol. 0502, pp. 579-586.
[11] A. W. Adamason, Physical Chemistry of Surfaces, Wiley, New York, 1997, pp. 17.
[12] R. L. Bendure, J. Colloid Interface Sci. 35 (2) (1971) 238.
[13] R. E. Smith, Ind. Eng. Chem. Prod. Res. Develop. 22 (1983) 67.
[14] M. Tagawa, A. Yasukawa, K. Gotoh, M. Tagawa, N. Ohmae, M. Umeno, J. Adhesion Sci. Technol. 6 (6) (1992) 763–776.
[15] F.J. Carrion-Fite, Textile Res. J. 64 (1) (1994) 49–55.
[160] M. Youan, J. Appl. Polym. Sci. 50 (1993) 851–853. Dekker, New York, 1993.
[17] M. Tagawa, K. Gotoh, A. Yasukawa, M. Ikuta, Colloid Polym. Sci. 268 (1990) 589–594.
[18] P. Commercon, J.P. Wightman, J. Adhesion 38 (1992) 55–78.
[19] J. Mayer, S. Giorgetta, B. Koch, E. Wintermantel, J. Patscheider, G. Spescha, Composites 25 (7) (1994) 763– 769.
[20] M. Morra, E. Occhiello, F. Garbassi, Polymer 34 (4) (1993) 736–739.
[21] G. Giannotta, M. Morra, E. Occhiello, F. Garbassi, L. Nicolais, A. D’Amore, Polymer Compos. 14 (3) (1993) 224–228.
[22] F.Y. Lewandowski, D. Dupuis, J. Non-Newtonian Fluid Mech. 52 (1994) 233–248.
[23] G. Giannotta, M. Morra, E. Occhiello, F. Garbassi, L. Nicolais, A. D’Amore, J. Colloid Interface Sci. 148 (2) (1992) 571–578.
[24] D. Quere, J.M. DiMeglio, Adv. Colloid Interface Sci. 48 (1994) 141–150.
[25] F.J. Holly, M.F. Refojo, J. Biomed. Mater. Res. 9 (1975) 315–326.
[26] A. Kinloch, Adhesion and Adhesives, Chapman and Hall, New York,1987.
[27] S. Wu, Polymer Interface and Adhesioin, Marcel Dekker, New York,1992.
[28] E. Tomasetti, R. Daousti, P. Legrasi, Rouxhet, J. Colloid. Interf. Sci.
238 (2001) 43–53.
[29] A. Mirabedini, H. Rahimi, Sh. Hamdifar, M. Mosheni, Int. J. Adhes.
Adhes. 24 (2004) 163–170.
[30] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis, Fundamental and Applications, Bkc Inc., Tokyo, 1999.
[31] M. Kaneko, I. Okura (Eds.), Photocatalysis Science and Technology,
Kodasha/Springer, Tokyo, 2002.
[32] H. Imai, H. Hirashima, J. Am. Ceram. Soc. 82 (1999) 2301–2306.
[33] W. Daoud, J. Xin, J. Am. Ceram. Soc. 87 (2004) 953–955.
[34] R.H. Wang, J.H. Xin, X.M. Tao, W.A. Daoud, Chem. Phys. Lett. 398(2004) 250.
[35] R.H. Wang, J.H. Xin, X.M. Tao, Inorg. Chem. 44 (2005) 3926.
[36] W. Udomkichdecha, S. Kittinaovarat, U. Thanasoonthornroek, P. Potiyaraj, P. Likitbanakorn, Text. Res. J. 73 (2003) 401.
[37] J.H. Xin, W.A. Daoud, Y.Y. Kong, Text. Res. J. 74 (2004) 97.
[38] Haifeng Lu, Bin Fei, John H. Xin ., Ronghua Wang, Li Li, Fabrication of UV-blocking nanohybrid coating via miniemulsion polymerization, Journal of Colloid and Interface Science 300 (2006) 111–116
[39] A. Bozzi, T. Yuranova, J. Kiwi., Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature, Journal of Photochemistry and Photobiology A: Chemistry 172 (2005) 27–34
指導教授 陳登科(Teng-Ko Chen) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明