博碩士論文 92324003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.118.146.180
姓名 黃智楷(Chih-Kai Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用氟系高分子材料製備超疏水薄膜之研究
(Fabricate the super-hydrophobic film by polymer materials.)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究可製得接觸角大於160°以及可視光穿透度高達80%以上之超疏水薄膜。超疏水薄膜是由疏水材料高分子溶液與造成粗糙面之無機或有機顆粒所組成。疏水高分子溶液可由含氟之單體與其他單體經溶液共聚合而得,並在適當的無機粉體添加比率下可得超疏水薄膜。
首先探討共聚合所得之疏水高分子材料之基本物性,再探討無機或有機顆粒添加於高分子溶液中,塗佈於基材上所得之薄膜特性。
本研究製備超疏水薄膜,由造成粗糙面之無機或有機顆粒加入高分子溶液時間點的不同,分為將顆粒直接添加於高分子溶液之一步驟法以及將顆粒添加於單體溶液之後,再行聚合反應之二步驟法等兩種方法。也就是在一步驟法的部份,是將有機或無機顆粒直接添加在高分子溶液中,並以超音波震盪使其均勻混合成一分散液。而在二步驟法部份,則是導入有機單體、有機溶劑以及無機顆粒,並經聚合反應後,而得粉體均勻分散於高分子溶液中之分散液。
實驗所得之高分子聚合物或共聚物藉由微差掃描熱分析儀(DSC)、熱重分析儀(TGA)以及凝膠滲透儀(GPC)來分析高分子的基本物性。實驗所得之薄膜材料則藉由接觸角測定儀、掃描式電子顯微鏡(SEM)以及原子力顯微鏡(AFM)等儀器進行分析。
結果顯示在疏水性高分子溶液之製備中,當含氟單體(HFA)加入達14%以上,即可得接觸角為117.2°之疏水薄膜,適合繼續進行超疏水薄膜之製備。
另外不論是一步驟法或是二步驟法,都可以藉由高分子溶液添加適當的二氧化矽粉體以旋轉塗佈的方式得到超疏水薄膜(CA > 150°)。
一步驟法所製得之超疏水薄膜,於無機粉體添加比率為37.6 ~ 49.7%時所得之接觸角皆大於150°,添加達57.9 ~ 66.4%甚至可得接觸角大於160°之超疏水薄膜,其可視光穿透度約為20%。
二步驟法所得之超疏水薄膜,於無機粉體添加比率為20 ~ 40%時所得之接觸角皆大於150°,添加達40%則可得接觸角大於160°之超疏水薄膜,其可視光穿透度可大幅的提升至80%。
如果將疏水的高分子材料(HM33)改為親水高分子材料(POA),在無機粉體添加比例為37.6%以上,則可以得接觸角小於5°之超親水薄膜。
關鍵字(中) ★ 分散聚合
★ 超親水
★ 溶液聚合
★ 蓮花效應
★ 超疏水
關鍵字(英) ★ super-hydrophobic
★ Lotus-effect
★ super-hydrophil
論文目次 目錄
目錄 ……………………………………………………………………….I
表目錄 …………………………………………………………………..III
圖目錄 …………………………………………………………………...V
一、前言…………………………………………………………………..1
二、實驗…………………………………………………………………50
2-1 實驗藥品……………………………………………………...51
2-2 實驗儀器…………………………………………………...…54
2-3超疏水薄膜材料製備………………………………………...56
2-3-1 高分子溶液之製備………………………………………...56
2-3-2 一步驟法製備超疏水薄膜材料…………………...………56
2-3-3 二步驟法製備超疏水薄膜材料……………..…….………59
2-3-4 分散聚合法製備高分子顆粒………………………….…..59
2-3-5 利用高分子顆粒以一步驟法製備超疏水薄膜材料……...62
2-4 超疏水薄膜材料之物性測試………………………………...62
2-4-1 接觸角測量……………..…………………………..……...62
2-4-2 熱重量損失測試……………..………………..…………...64
2-4-3 低溫微差掃描熱分析儀測試…………………..……..…...64
2-4-4 以SEM進行表面微結構分析……………………….……64
2-4-5 以AFM進行表面為結構分析…………………….………64
2-4-6 可視光穿透度測試………………………..……………….64
三、結果與討論…………………………………………………………68
3-1 疏水薄膜之製備與其基本物性之探討……………………...69
3-1-1 起始劑的選擇……………………………………………...69
3-1-2 高分子薄膜之接觸角……………………………………...74
3-1-3 不同乾燥溫度對薄膜接觸角之影響……………….……..79
3-1-4 高分子薄膜之熱性質………………………….….……….79
3-2 以無機粉體製備超疏水薄膜………………………………...82
3-2-1 一步驟法製備PS疏水薄膜………………………………...85
3-2-2 一步驟法製備HM33疏水薄膜…………………..………...97
3-2-3 一步驟法製備其他高分子薄膜……………………...…...111
3-2-4 二步驟法製備HM33疏水薄膜…………..………..……...118
3-3 以有機顆粒製備超疏水薄膜…………………...…………..131
3-3-1 DVB單體濃度對顆粒的影響…………………..…………131
3-3-2 共單體MMA添加對顆粒的影響…………………...……134
3-3-3 以高分子顆粒製備HM33疏水薄膜……………….……..137
四、結論………………………………………………………………145
參考文獻………………………………………………………………147
List of Tables
Table 1-1: Measurements of the solid fraction φs, the advancing and receding contact angles. These contact angles are compared with the contact angles given by Cassie’s equation………..………….17
Table 1-2. Reactivities of alkanes and perfluoroalkanes…………..……38
Table 1-3. The segmental polarizabilities for various structures at optical frequencies………………………………………………….……38
Table 1-4. Critical surface tension of low-energy surface………………44
Table 2-1 The roughness from the AFM measurement…………………67
Table 3-1 The preparation conditions and contact angle of HM33 copolymer. …………………………………………………….…71
Table 3-2 The contact angle of different polymer film…………….……75
Table 3-3 The contact angle of different copolymer film………….……76
Table 3-4 The contact angle of different copolymer film under different drying temperature.…………………………………….………..80
Table 3-5 The contact angle of different A200 content added in PS solution by single step method.……………..……………….…..86
Table 3-6 The optimization for contact angel of different A200 content added in PS solution by single step method.…………..………...87
Table 3-7 The contact angel of different content of H70 added in PS solution by single step method.……………………..…………..92
Table 3-8 The optimization for contact angel of different content of H70 added in PS solution by single step method…….………………93
Table 3-9 The UV-Vis data (T%) of different film coated by different suspension by single step method………………………...……..98
Table 3-10 The contact angle of different content of A200 added in HM33 solution by single step method…………………………….……99
Table 3-11 The optimization for contact angle of different content of A200 added in HM33 solution by single step method………….100
Table 3-12 The contact angle of different content of H70 added in HM33 solution by single step method………………………………….104
Table 3-13 The optimization for contact angle of different content of H70 added in HM33 solution by single step method………….……..106
Table 3-14 The UV-Vis data (T%) of different film coated by different suspension by single step method………………………………110
Table 3-15 The contact angle of different content of H70 added in HM05 solution by single step method……………………………...…..114
Table 3-16 The contact angle of different content of H70 added in POA solution by single step method……………………………….…119
Table 3-17 The contact angle of different content of A200 or H70 added in HM33 solution by couple steps method…………...…………124
Table 3-18 The UV-Vis data (T%) of different film coated by different suspension by couple steps method………………………..……130
Table 3-19 The preparation conditions and results of polymer microspheres…………………………………………………….132
Table 3-20 The preparation conditions and results of copolymer microspheres…………………………………………..……...…135
Table 3-21 The contact angle of film preparation by different PDVB content in HM33 solution by single step method…………....….142
List of Figures
Figure 1-1 Forces acting on a liquid droplet on a solid ( hydrophobic and hydrophilic solid)………………….………………………………5
Figure 1-2 The lotus and a droplet on a lotus leaf…………………….….5
Figure 1-3 SEM-image of lotus leaf. The micro structural epidermal cells are covered with nanoscopic wax crystals………………...………5
Figure 1-4 Water droplets on the lotus leaf and take up the dust covering a lotus leaf, also called “self-cleaning”……………………….……..8
Figure 1-5 Contaminating particle on a regularly sculptured wing surface of Cicada orni (a surface structure similar to lotus plant). The Lotus-effect: contaminating particles adhere to the droplet and are removed when the droplet rolls off the surface................................8
Figure 1-6 Surface roughness and self-cleaning by rinsing with water...10
Figure 1-7 Surface roughness and air cushion affect the contact angle..10
Figure 1-8 Water droplets on the wings of a butterfly and the nano structure of the wings………………………………………...…..10
Figure 1-9 (a) Drop on a rough surface in Wenzel’s model: the drop fills the grooves. (b) The apparent contact angle as predicted by Wenzel plotted against the angle according to Young’s Law……………..13
Figure 1-10 (a) Drop on a rough surface in Cassie’s model: the drop sits on the spikes. (b) The apparent contact angle as predicted by Cassie plotted against Young’s angle……………………………….……13
Figure 1-11 SEM images of the fractal AKD surface: (a, left) top view, (b, right) cross section……………………………………………….15
Figure 1-12 (a) Schematic illustration for vs heoretically predicted by Onda. (b) The apparent contact angle as predicted by Onda plotted against the angle according to Young’s Law………15
Figure 1-13 SEM images of micro-structured hydrophobic surfaces designed for quantifying the influence of the surface pattern on the contact angle. The three different surfaces (left: spikes, middle: shallow cavities and left: stripes) are crenellated on a micrometer scale……………………………………………………….……...17
Figure 1-14 (a, left) Filled-up grooves just before the liquid-solid contact is formed in the valleys. (b, right) Filled-up grooves after the liquid-solid contact is formed………………………………...…..18
Figure 1-15 The top view and side viewof one period of the roughness geometry of square pillars. The pillar cross-sectional size is a × a. A quarter of the pillar cross section is shown at each corner of the figure above………………………………………………..……..18
Figure 1-16 The scheme for the fabrication of transparent super- hydrophobic film…………………………………………………22
Figure 1-17 The SEM image of an inverse opal film with a center-to-center distance between neighboring holes of 275 nm...22
Figure 1-18 SEM images of carbon nanotube forests and an essentially spherical water droplet suspended on the PTFE-coated forest…..24
Figure 1-19 SEM pictures of film deposited with a ‘ribbon-like’ surface at two different magnifications…………………………………..24
Figure 1-20: SEM pictures of structured hydrophobic surfaces. Left: Microline pattern, Middle: Micropost pattern, and Right: Nanopost pattern…………………………………………………………….26
Figure 1-21 Schematic outline of the heat- and pressure-driven nano- imprint pattern transfer process for nanofabricating the surface of the thick polymer substrate………………………………………26
Figure 1-22 SEM images of the replication templates………………….26
Figure 1-23 Formation models of an FAS hydrophobic layer on the nano textured and hydrophilic polymer surface by low-temperature CVD……………………………………………………….……..29
Figure 1-24 SEM images of AKD surface at different magnification….29
Figure 1-25 SEM image of left the substrate and right a) as viewed from above; b) cross-sectional SEM image of the PVA nano-fibers.….31
Figure 1-26 Thermally responsive for a flat PNIPAAm-modified surface. a) Change of water drop profile when temperature was elevated from 25℃to 40℃respectively. b) Diagram of reversible formation of intermolecular hydrogen bonding……………………………..31
Figure 1-27 Scheme for fabricating metallic half-shells………………..33
Figure 1-28 SEM images of the size-reduced polystyrene beads and the water contact angle measurement on the corresponding modified surfaces……………………………………………………...……33
Figure 1-29 Concept of surface tension…………………………………40
Figure 1-30 Concept of a contact angle…………………………...…….40
Figure 1-31 Space-filling models of (A)–CH3 and (B)–CF3 groups……42
Figure 1-32 Space-filling models of (A)polyethylene and (B)PTFE chains…………………………………………………………..…42
Figure 1-33 Orientation of chains at the air/material interface…………42
Figure 34: Theoretical water (-) and hexadecane (- -) contact angles on PTFE, FAs, and nylon-6,6 surfaces…………………...………….43
Figure 1-35 Stages in the formation of random graft stabilizers in dispersion polymerization: (a)Radical formation (initiation); (b)radical transfer; (c) random grafting; (d)aggregation; (e)particle growth; (…) soluble chain; (—) insoluble chain;‧, free radical; M, monomer………………………………………………………….48
Figure 2-1 The scheme for the preparation of polymer solution.……….57
Figure 2-2 The scheme for the preparation of hydrophobic film by single step method.…………………………………………...…….…...58
Figure 2-3 The scheme for the preparation of hydrophobic film by couple steps method.……………………………………………...……..60
Figure 2-4 The scheme for the preparation of polymer microspheres by dispersion polymerization.……………………………….…...…61
Figure 2-5 The scheme for the preparation the hydrophobic film of polymer microspheres in single step method.……………………63
Figure 2-6 The schematic diagram of Atomic Force Microscopy…..….66
Figure 2-7 The specific plane of Atomic Force Microscopy…………...66
Figure 3-1 TGA diagram of HM33 copolymer prepared with different type of initiator.………………………………..……………..…..72
Figure 3-2 The DSC diagram of HM33 copolymer prepared with different type of initiator and homopolymer……………..………….…..…73
Figure 3-3 The relationship between the contact angle and HFA content of various copolymers and homopolymers.……………………....…77
Figure 3-4 The molecule model of various copolymer and homopolymers(A)PHFA(B)HM33(C)HM14(D)HM05(E)PMMA …..78
Figure 3-5 The TGA diagram of PHFA、PMMA and HM copolymers…81
Figure 3-6 The DSC diagram of PHFA、PMMA and HM copolymers…83
Figure 3-7 The plot drawn from the Onda’s equation…………......……84
Figure 3-8 The contact angle of different A200 content added in PS solution by single step method.……………………………..……88
Figure 3-9 The SEM of the film coated by suspension (A200 added in PS solution) in different ratio of A200/PS by single step method (A)0.72%、(B)7.2%、(C)28.8%、(D)50.8%、(E)75.2%、(F)150.4%.............................................................................…....89
Figure 3-10 The surface analysis of AFM:(A)A200/PS =14.4%;Ra = 160.4nm (B) A200/PS =75.2%;Ra = 229.5nm (C) A200/PS =150.4%;Ra = 171.3nm……………………………………….91
Figure 3-11 The contact angle of different content of H70 added in PS solution by single step method………………………………...…94
Figure 3-12 The SEM of the film coated by suspension (H70 added in PS solution) in different ratio of H70/PS by single step method (A)0.72%、(B)7.2%、(C)28.8%、(D)50.8%、(E)75.2%、(F)150.4%...........................................................................………95
Figure 3-13 The surface analysis of AFM: (A)H70/PS =14.4%;Ra = 173.4nm (B) H70/PS =75.2%;Ra = 194.8nm (C) H70/PS =150.4%;Ra = 180.6nm………………………………………..96
Figure 3-14 The contact angle of different content of H70 added in HM33 solution by single step method…………………..……………...101
Figure 3-15 The SEM of the film coated by suspension (A200 added in HM33 solution) in different ratio of A200/HM33 by single step method (A)0.72%、(B)14.4%、(C)28.8%、(D)37.6%、(E)75.2%、(F)150.4%.................................................................................…102
Figure 3-16 The surface analysis of AFM: (A)A200/HM33 =14.4%;Ra = 130.3nm (B)A200/ HM33 =37.6%;Ra = 287.7nm (C) A200/HM33 =75.2%;Ra = 135.3nm…………………………………………103
Figure 3-17 The contact angle of different content of H70 added in HM33 solution by single step method…………….……………………107
Figure 3-18 The SEM of the film coated by suspension (H70 added in HM33 solution) in different ratio of H70/HM33 by single step method (A)0.72%、(B)14.4%、(C)28.8%、(D)37.6%、(E)75.2%、(F)150.4%.................................................................................…108
Figure 3-19 The surface analysis of AFM: (A)H70/HM33 =14.4%;Ra = 190.6nm (B)H70/ HM33 =37.6%;Ra = 311.4nm (C)H70/HM33 =75.2%;Ra = 186.5nm…………………………………………109
Figure 3-20 The DLS diagram of A200 and H70 dispersed in MEK….112
Figure 3-21 The photographs of the water drop type on (A)glass、(B)HM33 film;(C)super-hydrophobic film by single step method, water-repellency. ……………………………………………….113
Figure 3-22 The contact angel of different content of H70 added in HM05 solution by single step method………………………………….115
Figure 3-23 The SEM of the film coated by suspension (H70 added in HM05 solution) in different ratio of H70/HM05 by single step method (A)14.4%、(B)28.8%、(C)37.6%、(D)75.2%、(E)150.4%.....................................................................................116
Figure 3-24 The surface analysis of AFM: (A)H70/HM05 =28.8%;Ra = 180.4nm (B)H70/ HM05 =75.2%;Ra = 367.7nm (C)H70/HM05 =150.4%;Ra = 119.8nm………………………………………117
Figure 3-25 The contact angel of different content of H70 added in POA solution by single step method…………………………………120
Figure 3-26 The SEM of the film coated by suspension (H70 added in POA solution) in different ratio of H70/POA by single step method (A)14.4%、(B)28.8%、(C)37.6%、 (D)75.2%、(E)150.4%……121
Figure 3-27 The photographs of the water drop type on (A)glass、(B)POA film、(C)super-hydrophilic film by single step method, complete wetting…………………………………………………………122
Figure 3-28 The contact angel of different content of A200 or H70 added in HM33 solution by two steps method…….……………….125
Figure 3-29 The SEM of the film coated by suspension (A200 added in HM33 solution) in different ratio of A200/HM33 by two steps method (A)5%、(B)20%、(C)80%;and coated by suspension (H70 added in HM33 solution) in different ratio of H70/HM33 by two steps method (D)5%、(E)20%、(F)80%.……………………....126
Figure 3-30 The surface analysis of AFM: (A)A200/HM33 =2.5%;Ra = 125.9nm (B)A200/HM33 =20%;Ra = 188nm (C) A200/HM33 =40%;Ra = 241.9nm (D) A200/HM33 =80%;Ra = 143.7nm…127
Figure 3-31The surface analysis of AFM: (A)H70/HM33 =2.5%;Ra = 121.9nm (B) H70/HM33 =20%;Ra = 180.9nm (C) H70/HM33 =40%;Ra = 193.2nm (D) H70/HM33 =80%;Ra = 152.9nm...128
Figure 3-32 The photographs of the water drop type on (A)glass、(B)HM33 film、(C)super-hydrophobic film by two steps method, water-repellency…………………………………………..…….129
Figure 3-33 The SEM of different monomer concentration in MeOH:(A)1%、(B)2%、(C)3.3%、(D)4%、(E)5%、(F)6.7%......................133
Figure 3-34 The SEM of different monomer concentration in MeOH and the MMA ratio in monomer:(A)3.3%、2%、(B)3.3%、10%、(C)5%、10%、(D)5.9%、44.1%(E)6.7%、39.5%(F)7.1%、35.7%..136
Figure 3-35 The DSL of monomer concentration =3.3% in MeOH..….138
Figure 3-36 The SEM of different rate of spin-coating:(A)4500rpm、(B)3500rpm、(C)2500rpm、(D)1500rpm、(E)1000rpm、(F)750rpm、(G)500rpm、(H)250rpm…………………………….139
Figure 3-37 The SEM of different concentration of PDVB in MeOH at 2500rpm:(A)conc.×1、(B)conc.×2、(C)conc.×3、(D)conc.×4….140
Figure 3-38 The contact angel of different content of PDVB in HM33 solution by single step method……………………………..…...143
Figure 3-39 The SEM of different ratio of PDVB/HM33 coated by single step method:(A)240%、(B)120%、(C)60%、(D)30%、(E)20%、(F)15%..........................................................................................144
參考文獻 參考文獻
1. K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Angew. Chem. 1997, 109, 1042.
2. A. Nakajima, A. Fujishima, K. Hashimoto, T.Watanabe, Adv. Mater. 1999, 11, 1365.
3. M. Morra, E. Occhiello, F. Garbassi, Langmuir 1989 ,5, 872.
4. Y. Kunigi, T. Nonaka, Y.-B. Chong, N. Watanabe, J. Elec- troanal. Chem. 1993, 353, 209.
5. A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Thin Solid Films. 2000, 376, 140.
6. B.S. Hong, J.H.Han, S.T. Kim, Y.J. Cho, M.S. Park, T. Dolukhanyan, C. Sung, Thin Solid Films 1999, 351, 274.
7. H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Angew. Chem. 2001, 113, 1793.
8. K. Tadanaga, N. Katata, T. Minami, J. Am. Ceram. Soc. 1997, 80, 3213.
9. A. Hozumi, O. Takai, Thin Solid Films 1997, 303, 222.
10. W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Kner, J. Youngblood, T. J.
McCarthy, Langmuir 1999, 15, 3395.
11. M. Miwa, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir 2000, 16, 5754.
12. A. Nakajima; K. Hashimoto, T. Watanabe, Langmuir 2000, 16, 7044 .
13.黃定加 物理化學 高立圖書有限公司
14. W. Barthlott, C. Neinhuis, Planta. 1997, 202, 1.
15. R. N.Wenzel, Ind. Eng. Chem. 1936, 28, 988.
16. M. Baumann, G. Sakoske, L. Poth, G. Tűnker, Ferro Color Glass & Performance Materials. 2003, 330.
17. J. Gorman, Science News, 2003, 163, 9.
18. S. Yoshioka, S. Kinoshita, Proc. R. Soc. Lond. B 2004, 271, 581.
19. A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546.
20. T. Onda, N. Shibuichi, N.Satoh, K. Tsuji, Langmuir 1996, 12 (9), 2125.
21. J. Bico, C. Marzolin, D. Quere, Europhys. Lett. 1999, 47 (2), 220.
22. N. A. Patankar, Langmuir 2003, 19, 1249.
23. N. A. Patankar, Langmuir 2004, 20, 7097.
24. A. V. Rao, M. M. Kulkarni, D. P. Amalnerkar, T. Seth, Journal of Non-crystalline Solids. 2003, 330, 187.
25. N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, Langmuir 2003, 19, 5626.
26. 李坤穆“溶膠-凝膠法製備超疏水性薄膜材料”國立中央大學化學工程與材料工程研究所 碩士論文 (2004)
27. K. Tadanaga, J. Morinaga, T. Minami, Journal of Sol-Gel Science and Technology. 2000, 19, 211.
28. K. Tadanaga, K. Kitamuro, A. Matsuda, T. Minami, Journal of Sol-Gel Science and Technology. 2000, 19, 211.
29. K. Satoh, H. Nakazumi, Journal of Sol-Gel Science and Technology. 2003, 27, 327.
30. Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem. Int. Ed. 2003, 42, 8, 894
31. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, K. K. Gleason, Nano Lett. 2003, 3, 12, 1701.
32. P. Favia, G. Cicala, A. Milella, F. Palumbo, P. Rossini, R. d’Agostino, Surface and Coatings Technology. 2003, 169, 609.
33. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu, J. Phys. Chem. B 2003, 107, 9954.
34. J. Kim, C. J. Kim, IEEE 2002.
35. W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee, Langmuir 2004. 20, 7665.
36. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, Langmuir 2003. 19, 10624.
37. T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 1996. 12, 9, 2125.
38. S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem. 1996, 100, 19512.
39. H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert, SCIENCE 2003, 299, 1377.
40. L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2003, 42, 7, 800
41. Q. Fu, V. R. Rao, S. B. Basame, D. J. Keller, K. Artyushkova, J. E. Fulghum, G. P. Lpóez, J. Am. Chem. Soc. 2004, 126, 8904.
42. T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2004, 43, 357.
43. L. Zhai, F. C. Cebeci, R. E. Cohen, M. F. Rubuner, Nano Lett. 2004, 4, 7, 1349.
44. J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, G. M. Whitesides, Nano Lett. 2002, 2, 8, 891.
45. L. Feng, Z. Yang, J. Zhai, Y. Song, B. Liu, Y. Ma, Z. Yang, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2003, 42, 4217.
46. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, M. Anpo, Nuclear Instruments and Methods in Physics Research B 2003, 206, 898.
47. J. Y. Shiu, C. W. Kuo, P. Chen, C. Y. Mou, Chemistry of Materials 2004, 16, 4.
48. Brown, LeMay, Bursten, Chemistry edition 7th PHIPE, PRENTICE HALL
49. T. Nakajima, B. Žemva, A. Tressand. Advanced Inorganic Fluorides : Synthesis, Characterization and Applications. ELSEVIER 2000.
50. John Scheirs. Modern Fluoropolymers-High Performance Polymers for Diverse Applications. JOHN WILEY & SONS
51. G. Hougham, P. E. Cassidy, K. Johns, T. Davidson, Topics in Applied Chemistry: Fluoropolymer 2-Properities.
52. Stephen J. Clarson, J. Anthony Semlyen. Siloxane Polymers. PTR, PRENTICE HALL
53. 楊嘉崑 “均一粒徑聚苯乙烯微粒子之合成研究” 國立中央大學化學工程學系碩士論文(1996)
54. 呂誌原 “溶脹法製備微米級均一粒徑高分子微粒子之研究” 國立中央大學化學工程學系碩士論文(1997)
55. 李仲軒 “溶脹法製備具交聯結構之高分子均一粒徑微粒子” 國立中央大學化學工程研究所碩士論文(1998)
56. 林明賢 “甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究” 國立中央大學化學工程研究所博士論文(1999)
57. 歐進祿 “均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子” 國立中央大學化學工程研究所博士論文(2000)
58. 陳立人 “分散聚合法製備聚苯乙烯” 中原大學化學工程研究所碩士論文(1988)
59. 陳炳輝 “單一散度高分子粒分散聚合反應動力之研究” 中原大學化學工程研究所碩士論文(1988)
60. 曾永山 “聚苯乙烯粒種之分散聚合研究” 中原大學化學工程研究所碩士論文(1989)
61. 陳信宏 “苯乙烯之分散聚合法反應動力學與機構研究” 中原大學化學工程研究所碩士論文(1991)
62. 林美斐 “分散聚合法製備聚甲基丙烯醯胺” 中原大學化學工程研究所碩士論文(1994)
63. 戴煜書 “分散聚合法製備親水性丙烯醯銨-甲基丙烯酸” 中原大學化學工程研究所碩士論文(1996)
64. K.E.J. Barrett Dispersion Polymerization in Organic Media. JOHN WILEY & SONS
指導教授 陳暉(Hui Chen) 審核日期 2005-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明