以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:82 、訪客IP:18.217.237.169
姓名 黃鐘瑩(Chung-Yin Huang) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
(Preparation of Amorphous Nano-sized Nickel Catalysts and its Application for p-Chloronitrobenzene Hydrogenation Reaction)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 奈米非晶態物質結合了非晶結構與奈米尺寸的優點,它們含有較多的表面原子及高度配位不飽和鍵;此外奈米非晶態合金粒子因為具有特殊的化學催化性質,而引起廣泛的注意。本研究以化學還原法,改變各種製備條件,製備一系列的Ni-P-B、Ni-B 與Pt-NiB 奈米非晶合金觸媒。觸媒的製備是以0.1M 的醋酸鎳為先驅鹽類,混和次磷酸鈉水溶液(1 M),再將硼氫化鈉水溶液(1 M)緩慢的加入金屬鹽水溶液中,並在溫度為298 K下以磁石攪拌混合,此時即有黑色顆粒狀的鎳觸媒沈澱。其製備變數包含:(1) 觸媒還原溫度:273 K與298 K、(2) 攪拌混合母液速度:500 rpm 與100 rpm、(3) 觸媒製備溶劑:50 vol. %乙醇水溶液、50 vol. %甲醇水溶液與99.9 %甲醇溶液、(4) 製備氣氛:氮氣與空氣、(5) 不同量的白金添加劑。將此一系列所製備而成的Ni-P-B、Ni-B 與Pt-NiB 奈米鎳觸媒,以氮氣吸附儀、X-光繞射儀、穿透式電子顯微鏡、X-光光電子能譜儀等儀器鑑定其物理與表面性質。由物性鑑定結果,可以得知所合成出來的金屬鎳觸媒粒徑大小皆為奈米尺寸且均為長程無序、短程有序的非結晶型態。不同的製備條件,會影響硼、磷與鎳的結合比例,進而引發其表面積、粒子大小與氫化反應活性等觸媒性質的變化。由XPS 結果可知,硼會將一部份電子給鎳,而磷會部分拉鎳的電子,鎳觸媒經過磷或硼的修飾後,穩定性變佳,不像商用倫尼鎳觸媒一樣,一旦暴露到空氣中就會著火,且對於主要產物對氯苯胺有良好的選擇性。在氮氣流下製備的鎳觸媒,可以有效地避免被溶液中的溶氧與空氣中的氧氣氧化,如此一來,經氮氣沖流下所還原出來的金屬觸媒中即含有較多元素態的鎳。在298 K下通氮氣,製備溶劑為50 vol. %乙醇水溶液,且使用攪拌速度500 rpm混合所生成的Ni-P-B 超細合金觸媒是一系列Ni-P-B 觸媒中粒徑最小的(約7-20 nm);而在相同參數條件下,所還原而得的Ni-B 超細合金觸媒其粒徑為8-15 nm,此Ni-B 觸媒雖然沒有上述Ni-P-B 觸媒的粒徑小,但其粒徑分佈範圍較窄,也就是此Ni-B 觸媒大小較均勻;也就是說在相同製備條件下所合成出來的Ni-B 觸媒,其粒徑分佈會較Ni-P-B 均勻。將對氯硝基苯的選擇性氫化反應作為鎳金屬觸媒的反應活性測試,探討Ni-P-B、Ni-B 與Pt-NiB 奈米非晶合金觸媒間之催化性質的差異。最後結果發現:在298 K下使用劇烈磁石攪拌(500 rpm)通以氮氣,製備溶劑為50 vol. %甲醇水溶液的條件下所製備的Ni-B 觸媒擁有最佳的反應活性而且對於主要產物(對氯苯胺)的選擇率>99 % (此氫化反應條件為:反應溶劑99.9 %甲醇、反應溫度373K,反應氫氣壓力1.2 MPa )。於此種觸媒中再添加3 wt. %的白金,可使對氯硝基苯在反應溫度 333 K下,一小時內轉化完畢且對於對氯苯胺的選擇率>99 %。另外,在氫化反應溶劑部分發現,使用絕對甲醇代替絕對乙醇作為反應溶劑可以大幅提昇對氯硝基苯氫化反應活性。 摘要(英) The nanomaterials, combining the features of amorphous and nanometer powers, have more surface atoms and a higher concentration of coordinately highly unsaturated sites. Nanometer amorphous alloy powders have attracted extensive attention due to their unique isotropic structural and chemical properties. A series of ultrafine Ni-P-B, Ni-B and Pt-NiB amorphous alloy catalysts with various conditions were prepared by the chemical reduction method. The following parameters were studied: (1) reduction temperature (273 K and 298 K), (2) stirring speed (vigorous magnetic stirring 500 rpm and mild agitation 100 rpm), (3) gas atmosphere (nitrogen stream and air), (4) preparation medium and (5) additives. A series of nickel catalysts were prepared by mixing nickel acetate and sodium hypophosphite in preparation medium. The solution of sodium borohydride in excess amount was then added dropwise into the mixture to ensure full reduction of nickel cations. The solutions of nickel salt (0.1 M) and sodium hypophosphite (1 M) were mixed first and the solution of sodium borohydride (1 M) was then added dropwise into the mixture to prepared Ni-P-B materials. Similar method was used to synthesize Ni-B and Pt-NiB samples. These catalysts were characterized by N2 sorption, powder X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The catalysts were tested by liquid phase hydrogenation of p-chloronitrobenzene at 1.2 MPa hydrogen pressure in a batch reactor. The effects of preparation conditions such as temperature, stirring speed and sheltering gas on the particle size, surface compositions, electronic states of surface atoms and catalytic activities of the nickel catalysts were studied. The XRD patterns of these Ni-P-B, Ni-B and Pt-NiB materials reveal an amorphous state. Raney nickel catalyst was included for comparison. The preparation conditions had significant influence on the particle size and surface compositions of the catalyst. All of the catalysts prepared in this study had nanosized particles and were much more active than Raney nickel catalyst. Boron combined with nickel metal in the samples was found to donate electrons to the nickel metal and phosphorus was found to accept electrons from the nickel metal. The catalysts prepared under sheltering gas (N2 flow) could prevent from the oxidation of Ni by the soluble oxygen in water and had metallic state of nickel. The Ni-P-B catalyst prepared at 298 K with vigorous stir had a smaller particle size than that prepared at 273 K. The catalyst prepared with vigorous stir at 298 K under N2 stream yielded the smallest particles and resulted in the highest activity. This activity of Ni-B catalysts is superior to Ni-P-B catalysts in the same preparation conditions and the particle sizes of Ni-B catalysts are more uniform than Ni-P-B catalysts. Sample 3Pt-NiB-MeOH (1/2)-298-500-N2 can fully convert p-chloronitrobenzene to p-chloroaniline within 50 minutes when the reaction temperature was 333 K. Three weight percent of platinum additives is more suitable in the hydrogenation reaction of p-chloronitrobenzene. The reaction condition also has pronounced effect on the catalytic activity. Using methanol as the reaction medium significantly increased the conversion of p-chloronitrobenzene, compared to that using ethanol as the reaction medium. The selectivity of p-chloroaniline was greater than 99% in each of the cases. 關鍵字(中) ★ 液相氫化
★ 鎳
★ 奈米觸媒
★ 對氯硝基苯氫化反應關鍵字(英) ★ liquid phase hydrogenation
★ nickel
★ nanocatalyst
★ hydrogenation of p-chloronitrobenzene論文目次 Table of Contents…………………………………………………………………Ⅰ
List of Tables…………………………………………………………………………Ⅳ
List of Figures………………………………………………………………………Ⅵ
Chapter 1. Introduction………………………………………………………………1
Chapter 2. Literature review………………………………………………………4
2.1 Preparation and fundamental properties of amorphous alloy materials…4
2.2 Catalytic properties of Ni-B, Ni-P and Ni-P-B……………………………7
2.3 Liquid phase selective hydrogenation of p-chloronitrobenzene…………10
Chapter 3. Experimental.……………………………………………………………16
3.1 Materials…………………………………………………………………16
3.2 Catalyst preparation……………………………………………………16
3.2.1 Ni-P-B catalysts preparation……………………………………16
3.2.2 Ni-B catalysts preparation………………………………………17
3.2.3 Ni-P catalysts preparation………………………………20
3.3 Catalyst characterization……………………………………………………20
3.3.1 Nitrogen sorption…………………………………………20
3.3.2 X-ray diffraction ……………………………………………………20
3.3.3 Transmission electron microscopy…………………………………21
3.3.4 X-ray photoelectron spectroscopy……………………………21
3.4 Catalytic activity measurement…………………………………………21
Chapter 4. Hydrogenation of p-chloronitrobenzene on Ni-P-B catalysts………23
4.1 Effect of preparation conditions of catalysts……………………………23
4.1.1 Effect of stirring speed ……………………………………………23
4.1.1.1 Nitrogen sorption………………………………………………23
4.1.1.2 X-ray diffraction………………………………………………25
4.1.1.3 Transmission electron microscopy……………………………25
4.1.1.4 X-ray photoelectron spectroscopy………………………………30
4.1.2 Effect of gas atmosphere……………………………………………32
4.1.2.1 Nitrogen sorption………………………………………………32
4.1.2.2 X-ray diffraction………………………………………………35
4.1.2.3 Transmission electron microscopy……………………………35
4.1.2.4 X-ray photoelectron spectroscopy………………………………39
4.1.2.5 Catalytic activity measurement…………………………………47
4.1.3 Effect of preparation temperature……………………………………48
4.1.3.1 Nitrogen sorption………………………………………………50
4.1.3.2 X-ray diffraction………………………………………………50
4.1.3.3 Transmission electron microscopy……………………………53
4.1.3.4 X-ray photoelectron spectroscopy………………………………56
4.2 Effect of reaction medium………………………………………………58
4.3 Conclusion………………………………………………………………67
Chapter 5. Hydrogenation of p-chloronitrobenzene on Ni-B catalysts…………68
5.1 Effect of preparation conditions of catalysts……………………………68
5.1.1 Effect of stirring speed, gas atmosphere and preparation
temperature………………………………………………………68
5.1.1.1 Nitrogen sorption………………………………………………69
5.1.1.2 X-ray diffraction………………………………………………69
5.1.1.3 Transmission electron microscopy……………………………72
5.1.1.4 X-ray photoelectron spectroscopy………………………………74
5.1.2 Effect of preparation solvent………………………………………78
5.1.2.1 Nitrogen sorption………………………………………………78
5.1.2.2 X-ray diffraction………………………………………………78
5.1.2.3 Transmission electron microscopy……………………………79
5.1.2.4 X-ray photoelectron spectroscopy………………………………86
5.1.2.5 Catalytic activity measurement…………………………………90
5.2 Effect of reaction conditions……………………………………………95
5.2.1 Effect of reaction medium…………………………………………95
5.2.2 Effect of reaction temperature ………………………………………99
5.3 Conclusion………………………………………………………………101
Chapter 6. Hydrogenation of p-chloronitrobenzene on Ni-P-B and Ni-B catalysts……103
6.1 Nitrogen sorption………………………………………………………103
6.2 X-ray diffraction………………………………………………………105
6.3 Transmission electron microscopy……………………………………105
6.4 X-ray photoelectron spectroscopy………………………………………107
6.5 Catalytic activity measurement…………………………………………111
6.6 Conclusion ……………………………………………………………120
Chapter 7. Hydrogenation of p-chloronitrobenzene on Pt-NiB catalysts…………121
7.1 X-ray diffraction………………………………………………………121
7.2 Transmission electron microscopy……………………………………122
7.3 X-ray photoelectron spectroscopy………………………………………125
7.4 Catalytic activity measurement…………………………………………136
7.5 Conclusion………………………………………………………………138
Chapter 8. Summary………………………………………………………………143
References…………………………………………………………………………146參考文獻 Chen, Y., “Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles”, Catal. Today 44 (1998) 3-16.
Chen, Y. Z. and Chen, Y. C., “Hydrogenation of para-chloronitrobenzene over nickel borides”, Appl. Catal., A 115 (1994) 45-47.
Dai, W. L., Qiao, M. H. and Deng, J. F., “XPS studies on a novel amorphous Ni-Co-W-B alloy powder”, Appl. Surf. Sci. 120 (1997) 119-124.
Deng, J. F. and Zhang X. P., “Amorphous nickel-phosphorus alloy deposited on a support and its hydrogenation activity”, Appl. Catal. 37 (1988) 339-343.
Deng J. F., Yang, J., Sheng, S. h., Chen, H., and Xing, G., “The study of ultrafine Ni-B and Ni-P amorphous alloy powders as catalysts”, J. Catal. 150 (1994) 434-438.
Fogler, H. S., “Elements of Chemical Reaction Engineering, Prentice-Hall Englewood Cliffs”, New Jersey, US, (1992) p. 670.
Han, X., Zhou R., Lai, G., Yue, B. and Zheng, X., “Influence of rare earth (Ce, Sm, Nd, La, and Pr) on the hydrogenation properties of chloronitrobenzene over Pt/ZrO2 catalyst”, Catal. Lett. 89 (2003) 255-259.
Han, X., Zhou, R., Zheng, X. and Jiang, H., “Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts”, J. Mol. Catal. A: Chem. 193 (2003) 103-108.
Hou, Y., Wang Y., Mi, W., Li, Z., Han, S., Mi, Z., Wu, W. and Min, E., “Effects of lanthanum addition on Ni-B amorphous alloy catalysts used in anthraquinone hydrogenation”, React. Kinet. Catal. Lett. 80 (2003) 233-239.
Lee, S. P. and Chen, Y. W., “Selective hydrogenation of furfural on Ni-P, Ni-B, and Ni-P-B ultrafine materials”, Ind. Eng. Chem. Res. 38 (1999) 2548-2556.
Lee, S. P. and Chen, Y. W., “Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B
ultrafine materials”, J. Mol. Catal. A: Chem. 152 (2000) 213-223.
Lee, S. P. and Chen, Y. W., “Catalytic properties of Ni–B and Ni–P ultrafine materials”, J. Chem. Technol. Biotechnol. 75 (2000) 1073-1079.
Lee, S. P. and Chen, Y. W., “Effects of preparation on the catalytic properties of Ni-P-B ultrafine materials”, Ind. Eng. Chem. Res. 40 (2001) 1495-1499.
Li, H., Li, H., Dai, W. and Qiao, M., “Preparation of the Ni-B amorphous alloys with variable boron content and its correlation to the hydrogenation activity”, Appl. Catal., A 238 (2003) 119-130.
Li, H., Wang W., Chen, H. and Deng, J. F., “Surface morphology and electronic state characterization of Ni-P amorphous alloy films”, J. Non-Cryst. Solids 281 (2001) 31-38.
Liaw, B. J., Chiang, S. J., Tsai, C. H. and Chen, Y. Z., ” Preparation and catalysis of polymer-stabilized NiB catalysts on hydrogenation of carbonyl and olefinic groups”, Appl. Catal., A 284 (2005) 239-246.
Linderoth, S. and MØrup, S., “Amorphous TM1-xBx Alloy Particles by Chemical Reduction (invited)”, J. Appl. Phys. 69 (1991) 5256-5261.
Liu, M., Yu, W., Liu, H. and Zheng, J., “Preparation and Characterization of Polymer-Stabilized Ruthenium–Platinum and Ruthenium–Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene”, J. Colloid Interface Sci. 214 (1999) 231-237.
Liu, Q., Takemura, F. and Yabe, A., “Solubility of Hydrogen in Liquid Methanol and Methyl Formate at 20 °C to 140 °C”, J. Chem. Eng. Data 41 (1996) 1141-1143.
Liu, Q., Takemura, F. and Yabe, A., “Solubility of Hydrogen, Carbon Monoxide, and 1-Octene in Various Solvents and Solvent Mixtures”, J. Chem. Eng. Data 41 (1996) 1414-1417.
Okamoto, Y., Nitta, Y., Imanaka, T. and Teranishi, S., “Surface Characterization of
Nickel Boride and Nickel Phosphide Catalysts by Xray Photoelectron Spectroscopy”,
J. Chem. Soc. Faraday Trans. I. 75 (1973) p.2027.
Pei, G. W., Zhong, S. B. and Yue, S. B., X-ray Diffraction of Single, Crystalline and Amorphous Materials, Shandong Univ. Press, Jinan, 1989, p. 453.
Rajadhyaksha, R. A. and Karwa, S. L., “Solvent effects in catalytic hydrogenation”, Chem. Eng. Sci. 41 (1986) 1765-1770.
Ramachandran, P. A. and Chaudhari, R.V., “Three Phase Catalytic Reactors”, Gordon and Breach Science Publishers, New York, (1983), p. 15.
Schreifels, J. A., Maybury, P. C. and Swartz, W. E., “X-ray photoelectron spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with Reaction Products in the Hydrogenation of Acrylonitrile”, J. Catal. 65 (1980) 195-206.
Shen, J., Hu, Z., Zhang, H., Li, Z. and Chen, Y., “The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction”, Appl. Phys. Lett. 59 (1991) 3545-3546.
Shen, J., Hu, Z., Zhang, Q., Zhang, L. and Chen, Y., “Investigation of Ni-P-B ultrafine amorphous alloy particles produced by chemical reduction”, J. Appl. Phys. 71 (1992) 5217-5221.
Tijani, A., Coq, B. and Figueras, F., “Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts”, Appl. Catal. 76 (1991) 255-266.
Tu, W., Liu, H. and Tang Y., “The metal complex effect on the selective hydrogenation of m- and p-chloronitrobenzene over PVP-stabilized platinum colloidal catalysts”, J. Mol. Catal. A: Chem. 159 (2000) 115-120.
Xie, S., Li H., Li, H. and Deng, J. F., “Selective hydrogenation of stearonitrile over Ni–B/SiO2 amorphous catalysts in comparison with other Ni-based catalysts”, Appl. Catal., A 189 (1999) 45-52.
Yamashita, H., Yoshikawa, H., Funabiki, T. and Yoshida, S., “Catalysis by Amorphous Metal Alloy”, J. Chem. Soc. Faraday Trans.I. 82 (1986) 1771.
Yan, X., Liu, M., Liu, H. and Liew, K. Y., “Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Mol. Catal. A: Chem. 169 (2001) 225-233.
Yan, X., Liu, M., Liu, H., Liew, K. Y. and Zhao, N., “Metal complex effect on the hydrogenation of o-chloronitrobenzene over polymer-stabilized colloidal ruthenium clusters”, J. Mol. Catal. A: Chem. 170 (2001) 203-208.
Yang, X. and Liu, H., “Influence of metal ions on hydrogenation of o-chloronitrobenzene over platinum colloidal clusters”, Appl. Catal., A 164 (1997) 197-203.
Yang, X., Deng, Z. and Liu H., “Modification of metal complex on hydrogenation of o-chloronitrobenzene over polymer-stabilized platinum colloidal clusters”, J. Mol. Catal. A: Chem. 144 (1999) 123-127.
Yang, X., Liu H. and Zhong H., “Hydrogenation of o-chloronitrobenzene over polymer-stabilized palladium–platinum bimetallic colloidal clusters”, J. Mol. Catal. A: Chem. 147 (1999) 55-62.
Yao, H. C. and Emmett, P. H., “Kinetics of catalytic liquid phase hydrogenation. I. The hydrogenation of aromatic nitrocompounds over colloidal rhodium and palladium”, J. Am. Chem. Soc. 81 (1959) 4125-4132.
Yu, Z., Liao, S., Xu, Y., Yang, B. and Yu, D., “A Remarkable Synergic Effect of Polymer-anchored Bimetallic Palladium-Ruthenium Catalysts in the Selective Hydrogenation of p-Chloronitrobenzene ”, J. Chem. Soc., Chem. Commun. (1995) 1155-1156.
Yu, Z. B., Qiao M. H., Li, H. X. And Deng, J. F., “Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation activity”, Appl. Catal., A 163 (1997) 1-13.指導教授 陳郁文(Yu-Wen Chen) 審核日期 2005-5-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare