博碩士論文 92324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.134.81.206
姓名 張哲銘(Jer-Min Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 共鍍鎳銅合金與錫銀銲料界面反應之研究
(Interfacial reaction between NiCu alloyand Sn3Ag solder)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 金濃度對球矩陣構裝銲點剪力強度影響之研究
★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討
★ 錫銅無鉛銲料與Ni基材界面反應之研究★ 電遷移效應對錫微結構影響之探討
★ 先進半導體封裝技術中之金脆效應及其有效抑制方法★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究
★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用★ 覆晶封裝中電遷移效應導致之銅溶解現象
★ 一種兼具低消耗速率及抗氧化作用之銲點墊層材料★ 覆晶接點與錫電路之電遷移微結構變化模式研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中 文 摘 要
在銲接過程當中,擴散阻障層扮演著一個相當重要的角色,它的功用主要是防止銲料與Cu層快速反應,除了低消耗速率的Ni以及Pt之外,NiCu合金是未來有可能用來使用的擴散阻障層之一。之前本實驗室的何政恩學長探討了錫銀銅無鉛銲料與Ni基材的液態反應,發現銲料中添加微量的Cu可大幅降低Ni基材的消耗,另外界面所生成的介金屬型態也會隨著銲料中Cu濃度不同而有所改變。
而本論文則是利用電鍍方式,在Cu層上電鍍NiCu合金作為擴散阻障層,並探討不同濃度的鍍層與Sn3Ag銲料間的反應情形。除了液態反應之外,本研究也深入探討固態反應時的反應行為,由結果發現當Cu濃度改變時,將會改變界面生成物的種類、型態以及反應過程的消耗行為。
本研究所採用的NiCu合金濃度為Ni-15 at.%Cu、Ni-40 at.%Cu、Ni-54 at.%Cu,另外也做了純Cu、純Ni作為比較組。在120 sec液態反應實驗中發現當鍍層為Ni-15 at.%Cu、Ni-40 at.%Cu時,與銲料反應後所生成的介金屬為(Ni1-xCux)3Sn4;鍍層為Ni-54 at.%Cu時,所生成的介金屬為(Ni1-xCux)3Sn4、(Cu1-xNix)6Sn5兩相共存;另外純Ni與銲料反應生成Ni3Sn4;純Cu則生成Cu6Sn5。在固態反應實驗中發現隨著熱處理溫度的增高以及時間的增長,鍍層為Ni-15 at.%Cu時界面的介金屬依然只以(Ni1-xCux)3Sn4存在;鍍層為Ni-40 at.%Cu時所生成的介金屬為(Ni1-xCux)3Sn4以及(Cu1-xNix)6Sn5兩相共存;然而鍍層為Ni-54 at.%Cu時介金屬則是以(Cu1-xNix)6Sn5為主。
在120 sec液態反應後發現,NiCu合金的消耗隨著Cu濃度的增加而增加;300 sec液態反應後,NiCu合金的消耗隨著Cu濃度的增加而增加,然而令人意外的是Ni-54 at.%Cu的消耗會比純Cu還快。而且在固態反應之後Ni-40 at.%Cu 、Ni-54 at.%Cu的消耗均會比純Cu還快。
由本研究結果發現,在電鍍液當中添加少量的硫酸銅,便會讓鍍層的Cu含量大幅提升,並使NiCu合金的消耗、界面的介金屬種類以及型態大幅的改變。
摘要(英) ABSTRACT
Diffusion barrier plays an important role in soldering, it can prevent fast reaction between tin and copper. Beside nickel and platinum, nickel-copper alloy is a possible diffusion barrier in the future. In the past, our labortoary investigated liquid/solid reaction between SnAgCu solder and nickel, it found that little copper added in solder can reduce consumption of nickel. Additionally, intermetallic compound at interface can also changed with copper added in solder.
In the experiment, we electroplated nickel-copper alloy on copper and investigated reaction between Sn3Ag solder and different concentration nickel-copper alloy. Beside liquid/solid reaction, we also investigated solid/solid reaction. According to the result, change of concentration in nickel-copper alloy will affect intermetallic compound phase and consumption.
Beside copper and nickel,we also electroplated Ni-15 at.%Cu,Ni-40 at.%Cu and Ni-54 at.%Cu. After 120 sec liquid/solid reaction, intermetallic compound between tin and Ni-15 at.%Cu is (Ni1-xCux)3Sn4;intermetallic compound between tin and Ni-40 at.%Cu is (Ni1-xCux)3Sn4;intermetallic compound between tin and Ni-54 at.%Cu is (Ni1-xCux)3Sn4 and (Cu1-xNix)6Sn5.After solid/solid reaction, intermetallic compound between tin and Ni-15 at.%Cu is (Ni1-xCux)3Sn4;intermetallic compound between tin and Ni-40 at.%Cu is (Ni1-xCux)3Sn4 and (Cu1-xNix)6Sn5;main intermetallic compound between tin and Ni-54 at.%Cu is (Cu1-xNix)6Sn5.
After 120 sec liquid/solid reaction, consumption of nickel-copper alloy will increase with copper concentration in alloy.Surprisingly, consumption of Ni-54 at.%Cu is faster than copper after 300 sec liquid-state reaction. After solid/solid reaction, consumption of Ni-40 at.%Cu and Ni-54 at.%Cu is even faster than copper.
In the research, we found that a little sulfur copper added in electrolyte will great affect copper concentration in nickel-copper alloy, intermetallic compound phase and consumption.
關鍵字(中) ★ 界面反應
★ 鎳銅合金
★ 電鍍
★ 無鉛銲料
★ 電子封裝
關鍵字(英) ★ lead-free solder
★ electronic package
★ electroplate
★ NiCu alloy
★ interfacial reaction
論文目次 目 錄 頁數
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅴ
圖目錄………………………………………………………………..Ⅷ
表目錄…………………………………………………………………
第一章 緒論………………………………………………………….1
1.1電子構裝…………..…………………………………………...1
1.1.1電子構裝的功能…………………………………...........1
1.1.2電子構裝四層次…………………………………….........3
1.1.3連線技術…………………………………………….........5
1.1.4銲錫凸塊結構與製程技術………………………….........7
1.2電子構裝之趨勢……………………………………………....10
1.2.1覆晶封裝的廣泛使用……………………………..........11
1.2.2無鉛銲料取代鉛錫銲料……………………………........12
1.3擴散阻障層的重要性………………………………………....15
1.4研究目的……………………………………………………....18
第二章 文獻回顧……………………………………………………19
2.1 Sn/Ni、Sn/Cu反應文獻回顧………………………………...19
2.1.1 Sn/Cu反應文獻回顧………………………………........19
2.1.2 Sn/Ni反應文獻回顧……………………………..........21
2.2 SnAgCu solder/Ni反應文獻回顧……………………….....22
2.3 Sn/NiCu Alloy反應文獻回顧……………………………....29
第三章 實驗方法及步驟……………………………………………39
3.1 NiCu合金製備…………………………………………….....39
3.2 NiCu 合金元素組成分析…………………………………....41
3.3 NiCu 合金XRD繞射分析……………………………….......42
3.4 Sn3Ag銲料與NiCu合金液固界面反應………………........43
3.5 Sn3Ag銲料與NiCu合金固固界面反應…………………......45
第四章 NiCu合金組成分析之實驗結果與討論……………………48
4.1 NiCu合金元素組成分析………………………………….....48
4.2 NiCu合金表面型態……………………………………….....52
4.3 NiCu合金XRD繞射分析…………………………………......53
第五章Sn3Ag銲料與NiCu合金液固界面反應之實驗結果與討論..55
5.1 Sn3Ag銲料與NiCu合金液固界面反應…………………......55
5.1.1 Sn/Ni之液固界面反應……………………………........55
5.1.2 Sn/Ni-15 at.%Cu之液固界面反應………………........56
5.1.3 Sn/Ni-40 at.%Cu之液固界面反應……………..........56
5.1.4 Sn/Ni-54 at.%Cu之液固界面反應………………........57
5.1.5 Sn/Cu之液固界面反應……………………………........59
5.2 液固界面反應介金屬種類比較………………………….....60
5.3 液固界面反應墊層消耗比較…………………………….....61
第六章Sn3Ag銲料與NiCu合金固固界面反應之實驗結果與討論..62
6.1 Sn3Ag銲料與NiCu合金固固界面反應…………………......62
6.1.1 200 ℃之固固界面反應………………………….........62
6.1.2 190 ℃之固固界面反應………………………….........65
6.1.3 180 ℃之固固界面反應………………………….........67
6.1.4 160 ℃之固固界面反應………………………….........69
6.2 Sn3Ag銲料與NiCu合金反應過程示意圖………………......71
6.2.1 Sn3Ag/Ni銲料反應示意圖……………………….........71
6.2.2 Sn3Ag/Ni-15 at.%Cu銲料反應示意圖………….........71
6.2.3 Sn3Ag/Ni-40 at.%Cu銲料反應示意圖………….........72
6.2.4 Sn3Ag/Ni-54 at.%Cu銲料反應示意圖………….........72
6.2.5 Sn3Ag/Cu銲料反應示意圖……………………….........73
6.3固固界面反應介金屬種類比較……………………………....74
6.4固固界面反應墊層消耗比較………………………………....77
6.4.1.200 ℃固固界面反應墊層消耗比較…………….........77
6.4.2 190 ℃固固界面反應墊層消耗比較…………….........78
6.4.3 180 ℃固固界面反應墊層消耗比較…………….........79
6.4.4 160 ℃固固界面反應墊層消耗比較…………….........80
6.5墊層與介金屬之質量平衡關係……………………………....82
6.5.1介金屬與Ni-14.2 at.%Cu墊層之質量平衡關係…........82
6.5.2介金屬與Ni-46.5 at.%Cu墊層之質量平衡關係…........84
6.5.3介金屬與Ni-58.2 at.%Cu墊層之質量平衡關係…........87
第七章 結論…………………………………………………………89
7.1 NiCu合金組成及XRD分析………………………………......89
7.2 Sn3Ag銲料與NiCu合金之液固界面反應………………......90
7.3 Sn3Ag銲料與NiCu合金之固固界面反應………………......91
參考文獻…………………………………………………………….92
參考文獻 參 考 文 獻
[CHE]S. W. Chen, S. H. Wu, and S. W. Lee, “Interfacial Reactions in the Sn-(Cu)/Ni, Sn-(Ni)/Cu, and Sn/(Cu,Ni) Systems”, Journal of Electronic Materials, Vol. 32, No. 11, 2003
[CHO1]W. K. Choi, S. K. Kang, Y. C. Sohn and D. Y. Shih “Study of IMC Morphologies and Phase Characteristics Affected by the Reactions of Ni and Cu Metallurgies with Pb-Free Solder Joints”,Electronic Components and Technology Conference, p.1190, 2003
[CHO2]W. K. Choi and H. M. Lee, “Effect of Ni Layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface between Molten Sn-3.5Ag and Ni/Cu Substrate”, Journal of Electronic Materials”, Vol. 28, No. 11, 1999
[HO1]C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni”, Journal of Electronic Materials, Vol. 31, No. 6, 2002
[HO2]C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao,“Strong Effect of Cu Concentration on the Reaction between Lead-Free Microelectronic Solders and Ni”, Chemistry of Materials, Vol. 14, No. 3, 2002
[JEO]Y. D. Jeon, K. W. Paik, A. Ostmann, and Herbert Reichel,“Effect of Cu Contents in Pb-Free Solder Alloys on Interfacial Reactions and Bump Reliability of Pb-Free Solder Bumps on Electroless Ni-P Under-Bump Metallurgy”, Journal of Electronic Materials, Vol. 34, No. 1, 2005
[KAN]S. K. Kang, “Interfacial Reaction Studies on Lead(Pb)-Free Solder Alloys”, IEEE Transactions on Electronics Packing Manufacturing, Vol. 25, No. 3, 2002
[KIM]S. H. Kim, J. Y. Kim, J. Yu and T. Y. Lee, “Residual Stress and Interfacial Reaction of the Electroplated Ni-Cu Alloy Under Bump Metallurgy in the Flip-Chip Solder Joint”, Journal of Electronic Materials, Vol.33, No.9, 2004
[KOR1]T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C. Y. Li, “Development of Under Bump Metallizations for Flip Chip Bonding to Organic Substrate”, Journal of Electronic Materials”, Vol. 28, No. 11, 1999
[KOR2]T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C. Y. Li,“Reactions of Lead-Free Solders with CuNi Metallizations”, Journal of Electronic Materials, Vol. 29, No.10, 2000
[KAN]S. K. Kang, D. Y. Shih, and K. Fogel, “Interfacial Reaction Studies on Lead-Free Solder Alloys”,Transactions on Electronics Packaging Manufacturing, Vol. 25, No.3, 2003
[KOR3]T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C. Y. Li,“Under Bump Metallizations for Lead Free Solders”, Electronic Components and Technology Conference, p1106-1110, 2000
[LIN]C. H. Lin, S. W. Chen, and C. H. Wang, “Phase Equilibria and Solidification Properties of Sn-Cu-Ni alloya”, Journal of Electronic Materials, Vol. 31, No.9, 2002
[NIC]M. A . Nicolet and M. Bartur, J. Vac. Sci. Thchnol, p786- 793,1981
[RAH]A. Rahn, “The Basics of Soldering”, John Wiely&Son, New York, 1993
[SHA]A. Sharif, Y. C. Chan, “Dissolution kinetics of BGA Sn-Pb and Sn-Ag
solders with Cu substrates during reflow”, Materials Science and Engineering B106, p126-131, 2004
[SU]P. Su, T. Korhonen, M. Korhonen, and C. Y. Li, “Intermetallic Phase Formation and Growth Kinetics at the Interface between Molten Solder and Ni-Containing Under Bump Metallization”, Electronic Components and Technology Conference, p1712- 1718, 2000
[WAS]R. J. Wassink, “Soldering in Electronics”, Electrochemical Pub. Ltd, p99, 1984
[YIN]R. Y. Ying,“Electrodeposition of Copper-Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode”, Journal of the Electrochemical Society, Vol. 135, No.12, 1988
[田福助] 田福助,電化學理論與應用,高立圖書有限公司,1987。
[方景禮] 方景禮,電鍍添加劑總論,表面技術雜誌第161期,1996。
[呂宗興] 呂宗興,電子構裝技術的發展歷程,工業材料115期,p49,1996。
[高振宏] 高振宏,TPCA教育訓練課程,Solder Bump Technologies,2002
[莊東漢] 莊東漢,電子月刊第八卷第三期,p226-236。
[蕭本俐] 蕭本俐碩士論文,國立中央大學化工所,2000。
[劉家明] 劉家明碩士論文,國立中央大學化工所,2000。
[陳文泰] 陳文泰碩士論文,國立中央大學化工所,2002。
[蕭麗娟] 蕭麗娟碩士論文,國立中央大學化工所,2002。
[李明勳] 李明勳碩士論文,國立中央大學化工所,2002。
[李守維] 李守維碩士論文,國立清華大學化工所,1998。
[林志豪] 林志豪碩士論文,國立清華大學化工所,2001。
指導教授 高振宏(C. R. Kao) 審核日期 2005-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明