博碩士論文 92324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.222.20.3
姓名 蔡佩璇(Pei-Hsun Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用恆溫吸附曲線及恆溫滴定微卡計探討單股及雙股DNA與Hydroxyapatite間交互作用之機制與熱力學
(Isotherm and Isothermal Titration Microcalorimetric Studies of Interaction Mechanism and Thermodynamics between ssDNA and dsDNA with Hydroxyapatite)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Hydroxyapatite(HA) chromatography 已經廣泛的被利用來分離單股DNA和雙股DNA,此技術是利用單股DNA對HA之吸附親和力較其雙股DNA小的原理來做分離,但是之間的交互作用與分離機制目前並無完整的研究討論。因此本研究主要是利用等溫吸附線與恆溫滴定微卡計(ITC)來探討HA與單股DNA和雙股DNA的吸附機制與熱力學分析。在實驗之部分,我們設計不同的條件,包括不同的環境因子(溫度、鹽濃度和pH)以及DNA組成(GC content、length、GC stacking rich & CG stacking rich)等來探討各種不同的效應對吸附行為的影響。
由實驗結果顯示,在等溫吸附線的分析部分,發現對於雙股DNA而言,對HA的交互作用主要是以靜電作用力為主,因此疏水作用力或結構之改變並不會對其造成太大的影響;而對於單股DNA,因為其鹼基是暴露在外,所以與HA之交互作用會受較多因素之影響,例如靜電作用力、疏水作用力與結構之穩定性等,因此在不同的環境因子或是DNA組成的不同,都會造成單股DNA與HA之親和力改變。而且我們也發現單股DNA有多層吸附(multi-layer adsorption)之現象,尤其是在高鹽的環境中,這也說明了單股DNA在吸附過程中受到多重作用力的影響。
而在熱力學分析的部分,發現在不同的鹽濃度下,雙股DNA及單股DNA皆為吸熱的反應,所以此吸附過程為entropy driven,表示去水合在此貢獻中相當重要。並且發現單股DNA之吸附焓皆大於雙股DNA,表示對於單股DNA,疏水作用力之貢獻較大,然而對於雙股DNA,則是靜電作用力貢獻較大。
藉由等溫吸附線與熱力學分析,我們可以清楚了解不同環境因子對於雙股DNA和單股DNA與HA之鍵結行為和機制的影響,此研究結果可提供生物辨識作用方面的基礎資訊。
摘要(英) Hydroxyapatite(HA) chromatography has been used extensively for the separation of single-strand DNA and double-strand DNA. This technique is based on the fact that ssDNA have less affinity for hydroxylapatite than their dsDNA. But the details of the mechanism of the separation of ssDNA and dsDNA by hydroxyapatite are still not clear. In this study, we discussed the effects of environmental factors (i.e. salt concentration, temperature and pH) and different kinds of ssDNA and dsDNA (i.e. GC content, length, secondary structure effects and GC or CG stacking rich…) on the binding behavior. By equilibrium batch analysis, we measure the adsorption isotherm to evaluate the affinity ssDNA and dsDNA with HA, while isothermal titration microcalorimetric was used to measure the adsorption enthalpy. By the kinetics and thermodynamics analysis, we established an interaction mechanism to explain the ssDNA and dsDNA with HA interaction behavior.
By isotherm analysis, we realized that dsDNA mainly use electrostatic force to bind with HA. So in high salt concentration, the phosphate of dsDNA interaction was shielded Na+ and the affinity would be decreased. Because the surface of ssDNA molecule contains hydrophobic bases and negative charge phosphate backbone, so both of the hydrophobic and electrostatic interactions affect the affinity of ssDNA for HA. In addition, stability of structure is also important for ssDNA, so increasing in the structural order of ssDNA would increase the binding affinity of ssDNA with HA. However, for oligo ssDNAs (15mer and 60mer) in this study, the hydrophobic interaction is more revealed and multi- layers adsorption were observed.
By thermodynamics analysis, we found that the adsorption enthalpies of ssDNA and dsDNA are all endothermic in this study and the dehydration step in the binding process plays a key role. This investigation offers useful knowledge of ssDNA and dsDNA with HA binding behavior and fundamental thermodynamics information in biorecognition system.
關鍵字(中) ★ 恆溫滴定微卡計
★ 恆溫吸附曲線
★ Hydroxyapatite(HA)
★ 雙股去氧核醣核酸
★ 單股去氧核醣核酸
關鍵字(英) ★ binding isotherm
★ ssDNA
★ Hydroxyapatite(HA)
★ dsDNA
★ ITC
論文目次 第一章 緒論 1
第二章 文獻回顧與應用 3
2.1 核酸介紹 3
2.1.1 核酸研究歷史 3
2.1.2 去氧核糖核酸結構 6
2.1.3影響DNA結構穩定性之因子 14
2.1 Hydroxyapatite的介紹 18
2.3核酸在HA管柱的層析行為 20
2.3.1 HA管柱層析之發展 20
2.3.2 影響核酸分子與HA交互作用之因子 21
2.3.2.1 核酸長度之影響 21
2.3.2.2 核酸鹼基組成之影響 22
2.3.2.3 溫度效應以及對SNP分離之影響 24
2.3.2.4 環境pH值之影響 30
2.3.2.5 不同的HA種類對DNA分離效果之探討 33
2.4 鍵結模式的討論 35
2.5 恆溫滴定微卡計 37
2.5.1 卡計之基本介紹 37
2.5.2 恆溫滴定微卡計之基本介紹 38
2.5.3 利用恆溫滴定微卡計研究吸附行為 40
第三章 實驗藥品、儀器及方法 43
3.1 實驗藥品 43
3.2 實驗儀器設備 45
3.3實驗方法 46
3.3.1 等溫吸附線的量測 46
3.3.2 恆溫微卡計量測鍵結焓 47
3.3.2.1恆溫滴定微卡計之操作步驟 48
第四章 實驗結果與討論 50
4.1 Mfold模擬核酸序列之結果 50
4.2 單股和雙股DNA與HA間之交互作用研究 55
4.2.1 鹽類效應 55
4.2.2 溫度效應 61
4.2.3 pH效應 64
4.2.4 DNA之不同GC content之影響 66
4.2.5 具明顯與不明顯二級結構之影響 71
4.2.6 不同長度DNA之影響 73
4.2.7 DNA之GC stacking rich與CG stacking rich 之影響 75
4.3 DNA與HA吸附行為的動力學探討 78
4.4 利用恆溫微卡計探討DNA與HA之間的熱力學 82
4.4.1 鹽類效應 83
4.4.2 不同GC content之DNA的影響 87
第五章 結論 90
第六章 參考文獻 94
圖 目 錄
圖2.1 核苷酸化學結構 7
圖2.2胸腺嘧啶(thymine)、胞嘧啶(cytosine)、腺嘌呤(adenine)與 7
鳥糞嘌呤(guanine)之化學結構 7
圖2.3 去氧核醣核苷酸結構 7
圖2.4 聚核苷酸鏈(polynucleotide)的鹼基序列 8
圖2.5 DNA雙股螺旋結構 9
圖2.6 DNA的鹼基排列配對 10
圖2.7 A-T鹼基對與G-C鹼基對間之距離 10
圖2.9 雙股DNA之三級結構 13
圖2.10 鹼基芳香環的π-π stacking 14
圖2.11 單股DNA之二級結構 15
圖2.11 DNA分子變性及復性之示意圖 17
圖2.12 DNA的溶解曲線(melting curve) 17
圖2.13 DNA與HA結合之示意圖 20
圖2.14 AMP與ATP之溶析曲線 21
圖2.15 雙股DNA之GC content與elution molarity (ME)之關係 22
圖2.16 不同GC content之單股DNA在HA管柱中之行為 23
圖2.17 雙股DNA及單股DNA之溶析曲線與溫度之關係 25
圖2.18 SNP之示意圖 26
圖2.19 HA管柱分析Homoduplexes以及Heteroduplexes之方法 26
圖2.20 Homoduplexes與Hetroduplexes的溶析曲線 27
圖2.21 吸附點數目(number of binding site)的概念 28
圖2.22 溫度對Homoduplexes和Hetroduplexes之吸附點數目影響 29
圖2.23 溫度對Homoduplexes和Hetroduplexes之溶析鹽濃度影響 29
圖2.24 溫度對Homoduplexes和Hetroduplexes之溶析位置VR之影響 30
圖2.25 在不同的pH值之下,雙股DNA與HA結合的能力不同 31
圖2.26 吸附點數目(number of binding site)與pH之關係 32
圖2.27 溶析鹽濃度IR與pH之關係 32
圖2.28比較HA typeI 和HA typeII的層析實驗中,DNA的滯留(retention)行為。 34
圖2.29 在不同溫度下燒結而成的HA,其分離效果的比較 34
圖2.30 恆溫滴定微卡計 37
圖2.31 恆溫滴定微卡計之恆溫部分 39
圖2.32 恆溫滴定微卡計之注射與反應部份 39
圖2.33 ITC典型放熱圖譜 42
圖2.34 ITC典型吸熱圖譜 42
圖3.1 測量等溫吸附線之步驟圖示 47
圖3.2 恆溫滴定微卡計實驗步驟之圖示 49
圖4.1 以Mfold預測核酸序列s60_2nd於25℃及20℃,不同濃度下之hairpin構造及計算之△G (a) s60_2nd於0.03M SPB buffer、25℃(b) s60_2nd於0.12M SPB buffer、25℃(c)s60_2nd於0.03M SPB buffer、20℃(d) s60_2nd於0.12M SPB buffer、20℃ 52
圖4.2 以Mfold預測核酸序列s60_non於25℃及20℃,不同濃度下之hairpin構造及計算之△G。(a) s60_non於0.03M SPB buffer、25℃ (b) s60_non於0.12M SPB buffer、25℃(c)s60_non於0.03M SPB buffer、20℃ (d) s60_non於0.12M SPB buffer、20℃ 52
圖4.3 以Mfold預測核酸序列編號s15_GC33於25℃,不同濃度下之hairpin構造及計算之△G。(a) s15_GC33於0.03M SPB buffer (b) s15_GC33於0.12M SPB buffer 53
圖4.4 以Mfold預測核酸序列編號s15_GC53於25℃,不同濃度下之hairpin構造及計算之△G。(a) s15_GC53於0.03M SPB buffer (b) s15_GC53於0.12M SPB buffer 53
圖4.5 以Mfold預測核酸序列編號s15_GC67於25℃,不同濃度下之hairpin構造及計算之△G。(a) s15_GC67於0.03M SPB buffer (b) s15_GC67於0.12M SPB buffer 53
圖4.6 以Mfold預測核酸序列編號s15_CG33於25℃,不同濃度下之hairpin構造及計算之△G。 (a) s15_CG33於0.03M SPB buffer (b) s15_CG33於0.12M SPB buffer 54
圖4.7 以Mfold預測核酸序列編號s15_CG53於25℃,不同濃度下之hairpin構造及計算之△G。 (a) s15_CG53於0.03M SPB buffer (b) s15_CG53於0.12M SPB buffer 54
圖4.8 以Mfold預測核酸序列編號s15_CG67於25℃,不同濃度下之hairpin構造及計算之△G。 (a) s15_CG67於0.03M SPB buffer (b) s15_CG67於0.12M SPB buffer 54
圖 4.9 33% GC且長度為15mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 57
圖 4.10 53% GC且長度為15mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 57
圖 4.11 67% GC且長度為15mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 57
圖 4.12 33% CG且長度為15mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 58
圖 4.13 53% CG且長度為15mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 58
圖 4.14 67% CG且長度為15mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 58
圖 4.15 具明顯二級結構且長度為60mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 59
圖 4.16 不明顯二級結構且長度為60mer的單股DNA及雙股DNA在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之等溫吸附線 59
圖4.17 單股DNA吸附於HA上之雙層吸附示意圖 60
圖4.18 33% CG且長度為15mer的單股DNA在不同溫度(25℃和20℃)在鹽濃度為0.03M和0.12M,pH6.8的SPB buffer下之等溫吸附線 62
圖4.19 53% CG且長度為15mer的單股DNA在不同溫度(25℃和20℃)在鹽濃度為0.03M和0.12M,pH6.8的SPB buffer下之等溫吸附線 62
圖4.20 67% CG且長度為15mer的單股DNA在不同溫度(25℃和20℃)在鹽濃度為0.03M和0.12M,pH6.8的SPB buffer下之等溫吸附線 62
圖 4.21 具明顯二級結構且長度為60mer的單股DNA在不同溫度(25℃和20℃)在鹽濃度為0.03M和0.12M,pH6.8的SPB buffer下之等溫吸附線 63
圖 4.22 不明顯二級結構且長度為60mer的單股DNA在不同溫度(25℃和20℃)在鹽濃度為0.03M和0.12M,pH6.8的SPB buffer下之等溫吸附線 63
圖 4.23 具明顯二級結構且長度為60mer的單股DNA在不同pH值(pH=6.8和pH=8.0)在鹽濃度為0.03M的SPB buffer及溫度為20℃下之等溫吸附線 65
圖 4.24不明顯二級結構且長度為60mer的單股DNA在不同pH值(pH=6.8和pH=8.0)在鹽濃度為0.03M的SPB buffer及溫度為20℃下之等溫吸附線 65
圖4.25 不同GC content(33%、53%、67%)的單股DNA在溫度為25℃時之等溫吸附線。(a)GC stacking rich之單股DNA, pH 6.8的0.03M SPB buffer(b)CG stacking rich之單股DNA, pH 6.8的0.03M SPB buffer(c)GC stacking rich之單股DNA, pH 6.8的0.12M SPB buffer(d)CG stacking rich之單股DNA, pH 6.8的0.12M SPB buffer 68
圖4.26 不同CG content(33%、53%、67%)的單股DNA在溫度為25℃時之等溫吸附線。(a)CG stacking rich之單股DNA, pH 6.8的0.03M SPB buffer(b)CG stacking rich之單股DNA, pH 6.8的0.12M SPB buffer 69
圖4.27 不同GC content(33%、53%、67%)的雙股DNA在溫度為25℃時之等溫吸附線。(a)GC stacking rich之雙股DNA, pH 6.8的0.03M SPB buffer(b)CG stacking rich之雙股DNA, pH 6.8的0.03M SPB buffer(c)GC stacking rich之雙股DNA, pH 6.8的0.12M SPB buffer(d)CG stacking rich之雙股DNA, pH 6.8的0.12M SPB buffer 70
圖 4.28 具明顯二級結構及不明顯二級結構的單股DNA在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為25℃下之等溫吸附線 72
圖 4.29 具明顯二級結構及不明顯二級結構的單股DNA在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為20℃下之等溫吸附線 72
圖 4.30 不同長度之單股DNA(15mer與60mer)的比較在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為25℃下之等溫吸附線 74
圖 4.31 不同長度之單股DNA(15mer與60mer)的比較在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為20℃下之等溫吸附線 74
圖 4.32 不同長度之雙股DNA(15mer與60mer)的比較在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為25℃下之等溫吸附線 75
圖 4.33 不同的序列的排列(GC stacking rich與CG stacking rich)之33%GC與33%CG雙股DNA在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為25℃下之等溫吸附線 76
圖 4.34 不同的序列的排列(GC stacking rich與CG stacking rich)之53%GC與53%CG雙股DNA在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為25℃下之等溫吸附線 76
圖 4.35 不同的序列的排列(GC stacking rich與CG stacking rich)之67%GC與67%CG雙股DNA在不同鹽濃度(0.03M和0.12M),pH6.8的SPB buffer,溫度為25℃下之等溫吸附線 77
圖 4.36 33% CG的單股DNA及雙股DNA(15mer)在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之吸附焓之變化] 85
圖 4.37 53% CG的單股DNA及雙股DNA(15mer)在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之吸附焓之變化 86
圖 4.38 67% CG的單股DNA及雙股DNA(15mer)在不同鹽濃度(0.03M,0.12M),pH6.8的SPB buffer,溫度25℃之吸附焓之變化 86
圖 4.39 不同的CG content(33%CG、53%CG、67%CG)的單股DNA(15mer)在鹽濃度為0.03M,pH6.8的SPB buffer,溫度25℃之吸附焓之變化 88
圖 4.40 不同的CG content(33%CG、53%CG、67%CG)的單股DNA(15mer)在鹽濃度為0.12M,pH6.8的SPB buffer,溫度25℃之吸附焓之變化 88
圖 4.41 不同的CG content(33%CG、53%CG、67%CG)的雙股DNA(15mer)在鹽濃度為0.03M,pH6.8的SPB buffer,溫度25℃之吸附焓之變化 89
圖 4.42 不同的CG content(33%CG、53%CG、67%CG)的雙股DNA(15mer)在鹽濃度為0.12M,pH6.8的SPB buffer,溫度25℃之吸附焓之變化 89
表 目 錄
表2.1基因及核酸之研究發展 4
表2.2 一般常見的鹼基、核苷以及核苷酸的名稱 8
表2.3 B-form、A-form和Z-form DNA雙螺旋結構比較 13
表2.3 相鄰的兩核苷酸對的Tm值 15
表3.1 實驗所使用之單股去氧核醣核酸分子序列表及其代號 44
表3.2 實驗所使用之雙股去氧核醣核酸分子序列表及其代號 44
表4.1:預測於不同濃度及溫度下計算核酸序列之自由能 51
表4.2:預測於不同濃度下計算核酸序列之自由能(25℃) 51
表4.3 利用Langmuir isotherm model 所計算出不同的單股DNA和雙股DNA(GC stacking rich)與HA在溫度為25℃且鹽濃度為0.03M和0.12M,pH6.8之SPB buffer中的平衡常數Kd 79
表4.4 利用Langmuir isotherm model 所計算出不同的單股DNA和雙股DNA(CG stacking rich)與HA在溫度為25℃且鹽濃度為0.03M和0.12M,pH6.8之SPB buffer中的平衡常數Kd 80
表4.5 利用Langmuir isotherm model 所計算出不同的單股DNA(CG stacking rich)與HA在溫度為20℃且鹽濃度為0.03M和0.12M,pH6.8之SPB buffer中的平衡常數Kd 80
表4.6 利用Langmuir isotherm model 所計算出具有明顯二級結構及非明顯二級結構之的單股DNA和雙股DNA與HA在溫度為25℃且鹽濃度為0.03M和0.12M,pH6.8之SPB buffer中的平衡常數Kd 81
表4.7 利用Langmuir isotherm model 所計算出具有明顯二級結構及非明顯二級結構之的單股DNA和雙股DNA與HA在溫度為20℃且鹽濃度為0.03M和0.12M,pH6.8及pH8.0之SPB buffer中的平衡常數Kd 81
表4.8 15mer的ssDNA和dsDNA分別在0.03M和0.12M的SPB buffer以及溫度為25℃下與HA鍵結的相關熱力學參數 87
參考文獻 1.Watanabe T., K. Makitsuru, H. Nakazawa, S. Hara, T. Suchiro, A. Yamamoto, T. Hiraide and T. Ogawa, “Separation of double-strand DNA fragment by high-performance liquid chromotagraphy using a ceramic hydroxyapatite column,” Analytica Chimica Acta , 1999, 386, 69
2.Fabrizio E.F., A. Nadim and J.D. Sterling, “Resolution of Multiple ssDNA Structures in Free Solution Electrophoresis,” Anal. Chem., 2003, 75, 5012
3.Heller M.J. and R.H. Tullis, ”Microelectrophoresis for the separation of DNA fragments,” Electrophoresis, 1992, 13, 512
4.Upcroft P. and J.A. Upcroft, “Comparison of properties of agarose for electrophoresis of DNA,“ J.Chromatogr., 1993, 618, 79
5.Cooney C.A. ” Techniques and high resolution DNA size markers for pulsed field gel electrophoresis,” Mol. Biotech., 1994, 2, 119
6.Ellegren H. and T. Laas, “Size-exclusion chromatography of DNA restriction fragments. Fragment length determinations and a comparison with the behaviour of proteins in size-exclusion chromatography,” J. Chromatogr., 1989, 467, 217
7.Yamakawa H., K.I. Higashino and O. Ohara, ” Sequence-Dependent DNA Separation by Anion-Exchange High-Performance Liquid Chromatography,” Analytical Biochemistry, 1996, 240, 242
8.Kato Y., M. Sasaki, T. Hashimoto, T. Murotsu, S. Fukushige, and K. Matsubara, “A new packing for separation of DNA restriction fragments by high performance liquid chromatography,” J Biochem., 1984, 95, 83
9.Kato Y., K.Nakamura and T. Hashimoto, ” New ion exchanger for the separation of proteins and nucleic acids, “ J. Chromatogr., 1983, 266, 385
10.Kato Y., M. Sasaki, T. Hashimoto, T. Murotsu, S. Fukushige and K. Matsubara, “Separation of DNA restriction fragments by high-performance ion-exchange chromatography,“ J. Chromatogr., 1983, 265, 342
11.Yamasaki Y., A. Yokoyama, A. Onaka, Y. Kato, T. Murotsu and K. Matsubara, ”High-performance hydroxyapatite chromatography of nucleic acids,” Journal of Chromatography, 1989, 467, 299
12.Bernardi G., “Chromatography of Nucleic Acids on Hydroxyapatite Columns,” Resolution based on nucleic acid structure, 1971, 95
13.Bernardi G., “Chromatography of Nucleic Acids on Hydroxyapatite,” Nature, 1965, 205, 779
14.Miyazawa Y. and C.A. Thomas, “Nucleotide Composition of Short Segments of DNA Molecules,” J. Mol. Biol., 1965, 11, 223
15.Main R.K. and L. Cole, ”Chromatography of deoxyribonucleic acids on calcium phosphate columns,” Arch Biochem Biophys., 1957, 68, 186
16.Main R.K., M.J. Wilkins and L.J. Cole, “Partial Chromatography Separation of Pentose- and Deoxypentosenucleic Acids,” Science, 1959, 129, 331
17.Tiselius A., S. Hjerten and O. Levin, “Protein chromatography on calcium phosphate columns,“ Arch. Biochem.Biophys., 1956, 65, 132
18.Sudarsanan K. and R.A. Young, ”Significant precision in structural detail: Holly Springs hydroxyapatite,” Acta. Crystallogr., 1969, 25, 1534
19.Campbell M. K., “Biochemistry,” 3rd edition, 偉明圖書, 2001
20.Zubay G.L., W.P. William, E.V. Dennis, ”Principles of Biochemistry,” 美商麥格羅.希爾國際股份有限公司, 2002
21.Watson J.D. and F.H.C. Crick., “Molecular Structure of Nucleic Acids,” Nature, 1953, 171,737
22.Rentzeperis D., R. Shikiya, S. Maiti, J. Ho and L.A. Marky, ”Folding of Intramolecular DNA Hairpin Loops : Enthalpy-Entropy Compensations and Hydration Contributions,” J. Phys. Chem. B, 2002, 106, 9945
23.劉安振, ”利用恆溫滴定微卡計於核酸分子雜交反應之熱力學與機制的研究,” 碩士論文,國立中央大學化學工程與材料工程研究所,2003.
24.Dickerson R.E., “Base Sequence and Helix Structure Variation in B and A DNA,” J. Mol. Biol., 1983, 166, 419
25.D.G. Alexeev, A.A. Lipanov and I.Y. Skuratovskii, ”Poly(dA) poly(dT) is a B-type double helix with a distinctively narrow minor groove,” Nature, 1987, 325, 821
26.A.H.J. Wang, G.J. Quigley, F.J. Kolpak, J.L. Crawford, J.H. Boom, G. Marel and A. Rich, ”Molecular Structure of a Left-handed Fragment at Atomic Resolution,” Nature, 1979, 282, 680.
27.Freier S.M, N. Sugimoto, A. Sinclair, D. Alkema, T. Neilson and R. Kierzek, ”Stability of XGCGCp, GCGCYp, and XGCGCYp Helixes: An Empirical Estimate of the Energetics of Hydrogen Bonds in Nucleic Acids,” Biochemistry, 1986, 25, 3214
28.Sheng Y.J., H.J. Lin, J.Z.Y. Chen and H.K. Tsao, ”Static Properties of a Stacking Chain,” Macromolecules, 2004, 37, 9631
29.Kool E.T., ”Preorganization of DNA : Design Principles for Improving Nucleic Acid Recognition by Synthetic Oligonucleotides,” Chem. Rev., 1997, 97, 1473
30.孫乃恩,孫東旭和朱德煦, “分子遺傳學”, 第八版, 南京大學出版社, 2000
31.高立安 “以表面電將共振儀研究單股去氧核醣核酸之二級結構於去氧核醣核酸雜交在動力學與反應機制的效應” 碩士論文,國立中央大學化學工程與材料工程研究所,2004
32.Martinez J.M., S.K.C. Elmroth and L. Kloo, “Influence of Sodium Ions on Dynamics and Structure of Single-Stranded DNA Oligomers: A Molecular Dynamics Study,” J. Am. Chem. Soc., 2001, 123, 12279
33.Liu A.C., L.Y. Chen, C.F. Chiou, H.R. Su, Y.C. Chan, P.H. Tasi, S.J. Chen and W.Y. Chen, “Thermodynamics and mechanism of ssDNA hybridization below the melting temperature by isothermal titration calorimetry,” Thermochimica Acta, 2005, in press.
34.Kadoya T., T. Isobe and M. Ebihara, “A new spherical hyroxyapatite for high performance liquid chromatography of proteins,” J. Liquid Chromatogr. , 1986, 9, 3543
35.Kawasaki T., “Theory of chromatography of rigid molecules on hydroxyapatite columns with small loads. IV. Estimation of the adsorption energy of nucleoside polyphosphates,” J. Chromatogr., 1978, 151, 95
36.Kato Y., ”High-performance hydroxyapatite chromatography of proteins,” J. Chromatogr., 1988, 398, 340
37.Schroder E., T. Jonsson and L. Poole, “Hydroxyapatite chromatography : altering the phosphate-dependent elution profile of protein as a function of pH,” Analytical Biochemistry, 2003, 313,176
38.Kawasaki K., M. Kambara, H. Matsumura and W. Norde, “A comparison of the adsorption of saliva proteins and some typical proteins onto the surface of hydroxyapatite,” Colloids and Surfaces B: Biointerfaces, 2003, 32, 321
39.Yin G., Z. Liu, J. Zhan, F. Ding and N. Yuan, ”Impacts of the surface charge property on protein adsorption on hydroxyapatite,” Chemical Engineering Journal, 2002, 87, 181
40.Jungbauer A., R. Hahn, K. Deinhofer and P. Luo, “Performance and Characterization of a Nanophased Porous Hydroxyapatite for Protein Chromatography,” Biotech Bioeng, 2004, 87, 364
41.Giovannini R. and R. Freitag, “Comparison of different types of ceramic hydroxyapatite for the chromatographic separation of plasmid DNA and a recombinant anti-Rhesus D antibody, “ Bioseparation, 2000, 9, 359
42.Aoyama K. and J. Chiba, ”Separation of different molecular forms of mouse IgA and IgM monoclonal antibodies by high-performance liquid chromatography on spherical hydroxyapatite beads,” J. Immunol. Methods, 1993, 162, 201
43.Juarez H., G.S. Ott, J.C. Chen, T.L. Brooks, L.H. Stanker, ” Separation of IgG idiotypes by high-performance hydroxylapatite chromatography,” Methods Enzymol., 1986, 121, 615
44.Hashizume H., K. Tanase1, K. Shiratake, H. Mori and S. Yamaki, ” Purfication and characterization of two soluble acid invertase isozymes from Japanese pear fruit,” Phytochemistry, 2003, 63, 125
45.Yu C.L., M.H. Huang, C.Y. Tsai, K.H. Sun, S.C. Hsieh, Y.Y. Tsai, S.T. Tsai, H.S. Yu and S.H. Han, ”The reactivity of sera from patients with systemic lupus erythematosus to seven different species of single and double stranded deoxyribonucleic acids,” Clin. Exp. Rheumatol., 1996, 14, 137
46.Hijerten S., “Calcium phosphate chromatography of normal human serum and of electrophoretically isolated serum proteins,” Biochim Biophys Acta., 1959, 31, 216
47.Bernardi G., “Chromatography of native deoxyribonucleic acid on calcium phosphate,” Biochem. Biophys. Res. Commun., 1961, 6, 54
48.Bernardi G. and S.N.Timasheff, “Chromatography of Ehrlich ascites tumor cell high molecular weight ribonucleic acid on calcium phosphate,” Biochem. Biophys. Res. Commun., 1961, 6, 58
49.Martinson H.G., “The Basis of fractionation of single-stranded Nucleic Acids on Hydroxyapatite,” Biochemistry, 1973, 12, 2731
50.Okazaki M., Y. Yoshida, S. Yamaguchi, M. Kaneno and J.C. Elliott, ”Affinity binding phenomena of DNA onto apatite crystals,” Biomaterials, 2001, 22, 2459
51.喜多亞矢子, 碩士論文, 日本山口大學, 2005,in press
52.Martinson H.G., “Role of the Double-Stranded Nucleic Acid Backbone Configuration in Adsorption Interaction,” Biochemistry, 1973, 12, 2737
53.Bram S. and Tougard P., “Polymorphism of natural DNA,” Nature New Biol., 1972, 239, 128
54.Ozawa S., K. Sugano, T. Sonehara, S. Fukuzono, A. Ichikawa ,N. Fukayama, M. Taylor, Y. Miyahara and T. Irie, “High Resolution for Single-Strand Conformation Polymorphism Analysis by Capillary Electrophoresis,” Anal. Chem., 2004, 76, 6122
55.Lopes P.M., H. Zhang and R. Koebner, ”Detection of Single Nucleotide Mutations in Wheat Using Single Strand Conformation Polymorphism Gels,” Plant Molecular Biology Reporter, 2001, 19, 159
56.Schwarz G., A. Sift, G. Wenzel and V. Mohler, ”DHPLC Scoring of a SNP between Promoter Sequences of HMW Glutenin x-type Alleles at the Glu-D1 Locus in Wheat,” J. Agric. Food Chem., 2003, 51, 4263
57.Tournier I., G. Raux, F.D. Fiore, I. Marechal, C. Leclerc, C. Martin, Q. Wang, M.P. Buisine, D.S. Lyonnet, S. Olschwang, T. Frebourg and M. Tosi” Analysis of the Allele-Specific Expression of the Mismatch Repair Gene MLH1Using a Simple DHPLC-Based Method” Human Mutation, 2004, 23, 379
58.Han W., S.P. Yip, J. Wang and M.K. Yap, ”Using denaturing HPLC for SNP discovery and genotyping, and establishing the linkage disequilibrium pattern for the all-trans-retinol dehydrogenase (RDH8) gene,” J. Hum. Genet., 2004, 49, 16
59.Schwonbeck S., A.K. Griep, N.G. Eichelmann, E.E. Förster, W. Meinl, H. Glatt, F.F. Bier, “Cohort analysis of a single nucleotide polymorphism on DNA chips,” Biosensors and Bioelectronics, 2004, 20, 956
60.Burmeister J., V. Bazilyanska, K. Grothe, B. Koehler, I. Dorn, B.D. Warner and E. Diessel, ”Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA,” Anal Bioanal. Chem., 2004, 379, 391
61.Michael O., ”The Invader assay for SNP genotyping,” Mutation Research, 2005, 573, 103
62.Ferreira G.N.M., J.M.S. Cabral and D.M.F. Prazeres, “Studies on the Batch Adsorption of Plasmid DNA onto Anion-Exchange Chromatographic Supports,” Biotechnol. Prog., 2000, 16, 416
63.Johnson R.D. and F.H. Arnold, ”The Temkin isotherm describes heterogeneous protein adsorption,” Biochmica et Biophysica Acta, 1995, 1247, 293
64.Tibbetts C., K. Johansson and L. Philipson, “Hydroxyapatite Chromatography and Formamide Denaturation of Adenovirus DNA,” Journal of Virology, 1973, 12, 218
65.Zuker M., “Mfold web sever for nucleic acid folding and hybridization prediction,” Nucleic Acids Res., 2003, 31, 3406
66.Michael F. and B.M. Pettitt, “Sodium and Chlorine Ions as Part of the DNA Solvation Shell,” Biophysical Journal, 1999, 77, 1769
67.Wang J. H., “The hydration of deoxyribonucleic acid,” J. Am. Chem. Soc., 1955, 77, 258
68.Kubinec M. G. and D. E. Wemmer, “NMR evidence for DNA bound water in solution,” J. Am. Chem. Soc., 1992, 114, 8739
69.Rau D.C. and A. Parsegian, “Direct measurement of the intermolecular forces between counterion-condensed DNA double helices: evidence for long range attractive hydration forces,” Biophys. J.” 1992, 61, 246
70.Urabe H., M. Kato and Y. Tominaga, ”Counterion dependence of water of hydration in DNA gel,” J. Chem. Phys., 1990, 92, 768
71.Forester T.R. and I.R. McDonald, “Molecular dynamics studies of the behaviour of water molecules and small ions in concentrated solutions of polymeric B-DNA,” Mol. Phys., 1991, 72, 643
72.Nishimura Y., C. Torigoe and M. Tsuboi, “Salt induced B-A transition of poly(dG) poly(dC) and the stabilization of A form by its methylation,” Nucleic Acids Res., 1986, 14, 2737
73.Bram S.and P. Tougard “Polymorphism of natural DNA, ”Nature New Biol., 1972, 239, 128
74.方瓊儀, ”利用微卡計對於蛋白質與離子交換樹脂觸手間親疏水作用力的研究,” 碩士論文,國立中央大學化學工程與材料工程研究所, 2002
75.黃祥鳴, “利用微卡計探討疏水作用對於蛋白質與吸附基材之交互作用機制以及蛋白質溶液行為之影響,”碩士論文, 國立中央大學化學工程與材料工程研究所, 2003
76.Lin F. Y., Chen W. Y., Hearn M. T. W., “Microcalorimetric Studies on the Interaction Mechanism between Proteins and Hydrophobic Solid Surfaces in Hydrophobic Interaction Chromatography: Effects of Salts, Hydrophobicity of the Sorbent, and Structure of the Protein,” Anal.Chem., 2001, 73, 3875
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2005-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明