博碩士論文 92324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:52.15.72.229
姓名 廖麗美(Li-Mei Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究
(Partial oxidation of methanol over Au/Fe2O3 and Au/Fe2O3-MOX catalyst)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 擔載銅觸媒和金觸媒之製備與應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分別以Fe2O3及Fe2O3-MOX(M=Al、Zr及Zn)為擔體,利用逆向共沉澱法製備氧化鐵擔體奈米金觸媒(簡稱為Au/Fe2O3觸媒),以含浸和沉澱固著法製備複合擔體奈米金觸媒(簡稱Au/Fe2O3-MOX觸媒,M=Al、Zr及Zn);同時利用感應耦合電漿原子放射光譜儀(ICP-AES)、BET氮吸附法、熱重分析(TGA)、X射線繞射分析儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)和X-射線光電子光譜儀(XPS)等儀器進行擔體及觸媒特性分析,並利用甲醇部份氧化反應(POM)進行催化活性測試以產製高純度氫氣,藉以評估金觸媒應用於燃料電池的可行性。
在氧化鐵擔載奈米金觸媒(Au/Fe2O3)方面,實驗結果發現:由氮吸附分析指出,煅燒溫度增加會使Au/Fe2O3觸媒孔道崩解,使BET比表面積下降。XRD圖譜顯示,Au/Fe2O3觸媒僅在高載量、極高煅燒溫度才能發現金的繞射峰。TEM分析結果發現Au/Fe2O3觸媒在高載量時金晶粒有聚集的現象,使用不同沉澱劑也會影響金粒大小,以Na2CO3為沉澱劑可形成最小金晶粒約4 nm,且均勻分散在擔體表面上。而XPS分析結果可發現,Au/Fe2O3觸媒,表面存在不同的金價態,且隨著煅燒溫度的增加,會逐漸熱解成金屬態的金。經過反應活性的測試,我們發現Au/Fe2O3觸媒最佳的操作參數為金載量1 wt%、以Na2CO3為沉澱劑、煅燒溫度在673 K。以此條件所製備出的觸媒,於523 K下進行甲醇部份氧化反應,能得到最高的甲醇轉化率與氫氣選擇率,Au/Fe2O3觸媒雖然催化活性高,卻仍然有CO氣體的產生。
在氧化鐵-金屬氧化物擔載奈米金觸媒(Au/Fe2O3-Al2O3)方面,實驗結果發現:Au/Fe2O3-MOX(M=Al、Zr及Zn)觸媒因使用二元氧化物為擔體,穩定度高,因此增加煅燒溫度其比表面積變化不大。XRD圖譜顯示,複合擔體金觸媒因為金顆粒小於XRD偵測極限(5nm),所以無法看到金。從TEM分析結果,發現Au/Fe2O3-MOX(M=Al、Zr及Zn)觸媒因為添加另一氧化物而改變擔體特性,可得較小的金顆粒(3nm)附著於擔體上。XPS分析結果可發現,Au/Fe2O3-MOX(M=Al、Zr及Zn)觸媒因沉澱固著法,表面形成氫氧化金,同樣因為煅燒使其轉變成氧化態金。經過反應活性的測試,最佳二元氧化物擔載奈米金觸媒為Au/Fe2O3-Al2O3,且煅燒前觸媒可得最佳催化活性。以此條件所製備出的觸媒,於523 K下進行甲醇部份氧化反應,能得到最高的甲醇轉化率與氫氣選擇率。與文獻上銅觸媒、鈀觸媒的催化結果做比較, Au/Fe2O3-Al2O3不但具有極高的催化活性,CO的產量大幅降低(小於2%)。由此結果可看出奈米金觸媒對於催化甲醇部份氧化反應,能夠選擇性的抑制CO的產生,相信可應用在燃料電池的氫氣源供應。
摘要(英) Fe2O3-supported Au catalysts (Au/Fe2O3) were prepared by the inverse co-precipitation method and Fe2O3-MOX composite oxides supported Au catalysts (Au/Fe2O3-MOX) were prepared by the deposition precipitation method. Gold on supported catalysts have been characterized by thermogravimetric analyzer (TGA), X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), nitrogen adsorption method (BET) and inductively coupled plasma-atomic emission spectrometer (ICP-AES). In this work Au catalysts have been studied for the partial oxidation of methanol (POM) with oxygen to produce hydrogen.
For the Fe2O3-supported Au catalysts (Au/Fe2O3) system, XRD reveals an ultra fine crystallite structure and at 673 K calcined samples, the possibility of metallic Au incorporation into the α- Fe2O3 phase. From the image of TEM, Au/Fe2O3 exhibit the Au crystallites clearly and good dispersion. In BET analysis, the surface area of Au/Fe2O3 decreases with an increase in calcination temperature. XPS analyses demonstrate that in uncalcined catalysts gold existed in two different states i.e. metallic gold (Au0), non-metallic gold (Auδ+), in catalysts calcined at 673 K only in metallic state. In this work Au/Fe2O3 catalysts have been studied for the partial oxidation of methanol (POM) with oxygen to produce hydrogen at 483-563 K. The results indicate that the optimal preparation method and operating conditions are 0.82 wt% in Au loading, 673 K in calcination temperature, and 523 K in reaction temperature.
For the Fe2O3-MOX composite oxides supported Au catalysts (Au/Fe2O3-MOX) system, the peaks of metallic gold are not detected in XRD since Au particle size is too small. The image of TEM shows an acceptable homogeneous size distribution of Au. All the observed gold particles are very small, most of them in the range of 2-4 nm. The XPS results of Au/Fe2O3-Al2O3 catalyst show that partially oxidized gold species have the best catalytic performance. Measured activities in POM over Au/Fe2O3-MOX decrease in the following order: Al2O3 > ZrO2 > ZnO. It could be concluded that the catalytic activity of the gold/metal oxide catalysts depends strongly not only on the dispersion of the gold particles but also on the state of the gold and the structure of the supports. Both hydrogen selectivity and methanol conversion increases with increasing the reaction temperature. The reaction pathway is suggested to consist of consecutive methanol partial oxidation and methanol steam reforming. Comparing in Au, Cu and Pd catalysts in POM reaction, Au/Fe2O3-Al2O3 catalyst have the higher methanol conversion. Although the hydrogen selectivity is lower than above two, but only 2% CO present, regarding applied still has its feasibility to the proton exchange membrane fuel cell(PEMFC).
關鍵字(中) ★ 金觸媒
★ 氧化鐵
關鍵字(英) ★ Composite oxides support
★ Gold catalyst
★ Partial
論文目次 目錄
內容 頁數
摘要…………………………………………………………………. Ⅰ
Abstract………………………………………………………….….. Ⅲ
目錄…………………………………………………………………. Ⅵ
圖索引……………………………………………………………….ⅩⅠ
表索引…………………………………………………………… ⅩⅦ
第一章 緒論……………………………………………………… 1
1.1 前言……………………………………………………….. 1
1.2 燃料電池…………………………………………………… 1
1.3 金觸媒與甲醇製氫反應………………………………….... 4
1.4 研究內容與論文架構……………………………………… 5
第二章 文獻回顧…………………………………………………. 7
2.1 金的物性與化性…………………………………………… 7
2.2 金觸媒的製備方法………………………………………… 8
2.3 金的活性位置……………………………………………… 10
2.4 擔體效應…………………………………………………… 11
2.5 金觸媒的應用……………………………………………… 13
 2.5.1 一氧化碳氧化反應……………………………………. 14
 2.5.2 有機揮發物質氧化反應………………………………. 16
 2.5.3 水氣轉移反應…………………………………………. 16
  2.5.4 碳氫化合物選擇性氧化反應…………………………. 17
  2.5.5 甲醇部分氧化反應……………………………………. 18
第三章 實驗方法與裝置…………………………………………. 20
 3.1 金觸媒的製備……………………………………………… 20
  3.1.1 單一擔體金觸媒製備程序……………………………. 20
   3.1.1-1 逆向共沉澱法…………………………………….. 20
   3.1.1-2 觸媒代號說明…………………………………….. 21
  3.1.2 複合擔體金觸媒製備程序……………………………. 23
   3.1.2-1 含浸法…………………………………………….. 23
   3.1.2-2 沉澱固著法……………………………………….. 23
   3.1.2-3 觸媒代號說明…………………………………….. 24
 3.2 擔體金觸媒的鑑定分析……………………………………. 25
  3.2.1 感應耦合電漿原子放射光譜儀(ICP-AES)分析……… 26
  3.2.2 BET比表面積、孔隙體積及孔徑大小分佈的分析…. 26
  3.2.3 X-射線繞射分析(XRD)……………………………….. 28
  3.2.4 熱重分析(TGA)………………………………………... 30
  3.2.5 掃描式電子顯微鏡(SEM)……………………………... 33
  3.2.6 穿透式電子顯微鏡(TEM)……………………………... 33
  3. 2. 7 X-Ray 光電子光譜儀(XPS)…………………………. 35
 3.3 觸媒的活性測試-甲醇部分氧化………………………….... 38
 3.4 實驗流程與操作變數………………………………………. 40
  3.4.1 擔體金觸媒理論載量的定義與計算………………….. 41
  3.4.2 轉化率與選擇率的定義與計算……………………….. 43
 3. 5 藥品、氣體及儀器設備………………………………….... 48
  3.5.1 藥品…………………………………………………….. 48
  3.5.2 氣體…………………………………………………….. 48
  3.5.3 儀器設備……………………………………………….. 48
第四章 氧化鐵擔載奈米金觸媒的結果與討論………………… 51
 4.1 物性分析……………………………………………………. 51
  4.1.1 煅燒條件的選擇……………………………………….. 51
  4.1.2 觸媒表面性質………………………………………….. 53
  4.1.3 X-射線繞射(XRD)的分析結果………………………... 53
  4.1.4 穿透式電子顯微鏡(TEM)的分析結果………………... 58
  4.1.5 掃描式電子顯微鏡(SEM)及元素影像分析
  (EDS-mapping)………………………………………… 60
  4.1.6 X-射線光電子分析(XPS)……………………………... 60
 4.2 Au/Fe2O3觸媒的化性分析…………………………………. 64
  4.2.1 金屬載量對金觸媒活性的影響………….……………. 66
  4.2.2 沈澱劑對金觸媒活性的影響…………….……………. 66
  4.2.3 煅燒溫度對觸媒活性的影響…………….……………. 71
  4.2.4 反應溫度對甲醇部份氧化反應的影響….……………. 74
第五章 氧化鐵-金屬氧化物擔載奈米金觸媒的結果與討論…… 79
 5.1 物性分析……………………………………………………. 79
5.1.1 煅燒條件的選擇……………………………………….. 79
  5.1.2 觸媒表面性質………………………………………….. 79
  5.1.3 X-射線繞射(XRD)的分析結果………………………... 82
  5.1.4 穿透式電子顯微鏡(TEM)的分析結果………………... 84
  5.1.5 掃描式電子顯微鏡(SEM)……………………………… 87
  5.1.6 X-射線光電子分析(XPS)……………………………... 87
 5.2 Au/Fe2O3-MOX觸媒的化性分析…………….……….……. 90
  5.2.1 複合擔體對金觸媒活性的影響………………………… 90
  5.2.2 煅燒溫度對觸媒活性的影響…………………………… 93
  5.2.3 反應溫度對甲醇部份氧化反應的影響………………… 93
  5.2.4 金觸媒與銅、鈀觸媒對甲醇部分氧化反應活性分析   
     比較………………………………………………….. 98
第六章 結論…………………………………………………….. 102
第七章 參考文獻……………………………………………….. 105
參考文獻 Agrell, J., Germani, G., Järås, S. G., Boutonnet, M.,” Production of hydrogen by partial oxidation of methanolover ZnO supported palladium catalysts preparedby microemulsion technique”, Applied Catalysis A: General , Vol 242, 233–245, (2003).
Alejo, L., Lago, R., Pena, M. A., Fierro, J. L. G., “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalysts”, Applied Catalysis A: General , Vol 162, 281-297, (1997).
Andreev, D., Idakiev, V., Tabakova, T., Andreev, A., “Low-temperature water-gas shift reaction over Au/Alpha-Fe2O3”, Journal of Catalysis, Vol 158, 354 –355, (1996).
Andreev, D., Tabakova, T., Idakiev, V., Christov, P., Giovanoli, R., “Au/Alpha-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation”, Applied Catalysis A:General, Vol 169, 9-14, (1998).
Bond, G. C., Thompson, D. T., Gold Bull. Vol 33, 41-51,(2000).
Bond, G. C., “Gold - a relatively new catalyst”, Catasis Today, Vol 72, 5-9, (2002).
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Ichikana, S. and Haruta, M. “Au/TiO2 nanosized samples - a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation”, Journal of Catalysis, Vol 202, 256, (2001).
Claus, P., Bruckner, A., Mohr, C., Hofmeister, H., “Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups ”, Journal of the American Chemical Society, Vol 122, 11430-11439, (2000).
Cubeiro, M. L. and Fierro, J. L. G., “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Applied Catalysis A: General,Vol 168, 307-322, (1998).
Date, M., Yamashita, Chiorino, Boccuzzi, and Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catalysis Today, Vol 72, Iss 1-2 , 89-94, (2002).
Goodman, D, W., Valden, M., Lai, X.,” Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties”, Science , Vol 281, Iss 5383, 1647-1650, (1998).
Grisel, R. J. H., Weststrate, Goossens, Craje, Vanderkraan, and Nieuwenhuys, “Oxidation of CO over Au/MOX/Al2O3 multicomponent catalysts in a hydrogen-Rich environment”, Cataysis Today, Vol 72 ,123-132 (2002).
Gardner, S. D., Hoflund, G. B., Upchurch, B. T., Schryer, D. R., Kielen, E. J. and Schryer, J., “Comparison of the performance-characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation”, Journal of Catalysis, Vol 129, Iss 1, 114 –120,(1991).
Hodge, N. A., Kiely, C. J., Whyman, R., Siddiqui, M. R. H., Hutchings, G. J., Pankhurst, Q. A., Wangner, F. E., Rajaram, R. R., Golunski, S. E., “Microstructural comparison of calacined and uncalined gold/iron-oxide catalysts for low-temperature CO oxidation”, Catalysis Today, Vol 72, 133-144, (2002).
Haruta, M., Ueda, A., Tsubota, S., Sanchez, T., “Low temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts”, Catalysis Today , Vol 29 , 443-447,(1996).
Haruta, M., Ueda, A., “ Reduction of nitrogen monoxide with propene overAu/Al2O3 mixed mechanically with Mn2O3”, Applied Catalysis B: Environmental ,Vol 18,115-121, (1998).
Haruta, M., “Size and support dependency in the catalysis of gold”, Catalysis Today, Vol 36, 153-166, (1997).
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, Alpha-Fe2O3, and Co3O4”, Journal of Catalysis, Vol 144, 175, (1993).
Haruta, M., “Nanoparticulate Gold Catalysis for Low-Tempertaure CO oxidation”, J. New. Mat. Electrochem., Systems 7, 163-172 (2004).
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., “Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon-Monoxide”, Journal of Catalysis , Vol 115, Iss2, 301-309,(1989).
Hcyashi , T. and Haruta, M. “Effect of an loading on selectivity in the reaction of propylene on Au/TiO2 catalyst”, Shokubai, Vol 37, 75, (1995).
Hodge, N. A., Kiely, C. J., Whyman, R., Siddiqui, M. R. H., Hutchings, G. J., Pankhurst, Q. A., Wangner, F. E., Rajaram, R. R., Golunski, S. E., “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation”, Catalsis Today, Vol 72, 133-144, (2002).
Katz, Journal of the American Chemical Society, Vol 54, 531, (1971).
Kung , M. C., Costello, C. K., Oh, H. S., Wang, Y., Kung, H. H., ” Nature of the active site for CO oxidation on highly active Au/-Al2O3”, Applied Catalysis A: General., Vol 232, 159-168, (2002).
Kang, Y. M. and Wan, B. Z., ” Pretreatment Effect of Gold Iron Zeolite-Y on Carbon-Monoxide Oxidation” , Catalysis Today, Vol 26, Iss 1, 59-69, (1995).
Klabunde, K. J., “Nanoscale Materials in Chemistry” John Wiley &Sons Inc. New York, Chapter 2 ,(2001).
Lewis, L. J., Jensan, P., Barrat, J. L.,” Melting, Freezing, and Coalescence of Gold Nanoclusters”, Physical Review B-Condensed Matter , Vol 56,Iss 4, 2248-2257,(1997).
Minico, S., Scire, S., Crisafulli, C., Galvagno, S., “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide”, Applied Catalysis B:Environmental, Vol 34, 277-285, (2001).
Mavrikakis, M., Stoltze, P., Norskov, J. K., “Making gold less noble”, Reaction Kinetics and Catalysis Letters, 64:104-106 (2000).
Neri, G., Visco, A. M., Galvagno, S., Donato, A., Panzalorto, M., “Au/iron oxide catalysts:temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta, Vol 329, 39-46, (1999).
Okumura, M., Tsubota, S., Iwamoto, M., Haruta, M., “Hemical-vapor-deposition of gold nanoparticles on Mcm-41 and their catalytic activities for the low-temperature oxidation of CO and of H-2”, Reaction Kinetics and Catalysis Letters, 315 (1998).
Park, E. D., Lee, J. S., ” Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts”, Journal of Catalysis, Vol 186, Iss 1, 1-11,(1999).
Sze, C., Gulari, E., Demczyk, B. G., “Structure of coprecipitated gold-iron oxide catalyst materials”, Materials Letters, Vol 36, 11-16, (1998).
Tabakova, T., Idakiev, V., Andreeva, D., Mitov. I., “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction”, Applied Catalysis A:General, Vol 202, 91-97, (2000).
Wang, D., Hao, Z., Cheng, D., Shi, X., Shi, X., Hu, C., “Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOX/Al2O3 catalysts”, Journal of Molecular Catalysis A:Chemical, Vol 200, 229-238, (2003).
Wagner, F. E., Galvagno, S., Milone, C., Visco, A. M., “Mössbauer characterization of gold/iron oxide cataltsts”, Journal of the Chemical Society. Faraday Transactions, Vol 93, 3403-3409, (1997).
Wang, Z., Xi, J., Wang, W., Lu, G., “Selective production of hydrogen by partial oxidation of methanol over Cu-/Cr catalysts”, Journal of Molecular Catalysis A: Chemical , Vol 191, 123-134,(2003).
Wolf ,A. and Schüth. F., ” A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Applied Catalysis A: General ,Vol 226, 1–13, (2002).
Yeh, C. T. and Y. J. Chen , “Deposition of Highly Dispersed Gold on Alumina Support” , Journal of Catalysis ,Vol 200, 59-68,(2001).
洪華聖, “甲醇在支撐性銅及銀觸媒上的部份氧化反應”,國立清華大學化學研究所碩士論文(2001).
陳永杰,國立清華大學化學研究所碩士論文(1998).
謝文祥,“氧化鋯擔載奈米金觸媒之製備與應用研究”, 國立中央大學化學與材料工程研究所碩士論文(2004).
廖建達,“氧化鋁擔載奈米金觸媒之製備與應用研究”國立中央大學化學與材料工程研究所碩士論文(2004).
指導教授 張奉文(Feg-Wen Chang) 審核日期 2005-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明