博碩士論文 93324009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.226.181.89
姓名 孫紹倫(Shao-Lun Sun)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 單一電解質水溶液之汽化熱,凝固點下降,沸點上升之預測
(The prediction of the enthalpy of vaporization, depression of freezing point, and elevation of boiling point of single electrolyte solutions.)
相關論文
★ 高速旋轉填充床應用於分離異丙醇-水共沸混合物之研究★ 水-醋酸-對位二甲苯-乙酸甲酯-乙酸異丁酯之汽液平衡
★ 進料不純物作為系統內自體共沸劑模擬回收醋酸之醋酸脫水程序及其效益分析★ 單電解水溶液離子活性係數與溫度之關係
★ 在超臨界CO2之溶解度量測及Poynting factor之探討★ 矽酸乙酯與乙醇在不同壓力之相平衡
★ 水-酚-對甲酚-鄰甲酚四成份系統之液液相平衡研究★ 單電解質水溶液離子活性係數之探討
★ 高速旋轉填充床於分離共沸混合物之研究★ 乙烯在甲苯、冰片烯及COC混合溶液之溶解度量測與關聯
★ 間氯酚與對氯酚之固液相平衡研究★ 高速旋轉填充床於分離乙醇-水共沸混合物之研究
★ 二價單電解質水溶液之個別離子活性係數 量測與關聯★ 雙參數個別離子活性係數模式應用於雙電解質水溶液蒸汽壓之估算
★ β-胡蘿蔔素-二丁基羥基甲苯於超臨界二氧化碳之溶解度量測與關聯★ 共溶劑對β-胡蘿蔔素於超臨界二氧化碳溶解度影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電解質水溶液在化工製程,環境工程,醫學工程,石油工業,石化工業等,都是常遭遇到的混合物。因為電解質的加入,使得原本只含有溶劑的液體,會因此而改變其原有的熱力學性質,也使得溶液偏離了理想性。為了描述溶液偏離理想溶液的程度,通常引入活性係數作為考慮。而Lin and Lee (2003)在其發表的論文中提出電解質水溶液中,離子活性係數肇因於離子水合作用之部分,即是電解質水溶液中離子與溶劑分子之間短距離作用力,以媒合參數(solvation parameter)表示,而肇因於離子與離子之間的長距離作用力之部分則以趨近參數(approaching parameter)表示。相對於非電解質的熱力學性質,電解質水溶液的熱力學性質的文獻數據較少,所以本研究便應用Lin and Lee (2003)所提出之個別離子活性係數模式,使用已經求得之趨近參數以及媒合參數並搭配熱力學之方程式,來對11種單一電解質水溶液之汽化熱(enthalpy of vaporization)、18種單一電解質水溶液之凝固點下降(depression of Freezing point)、以及13種單一電解質水溶液之沸點上升(elevation of Boiling point)進行預估,並將預估的結果與文獻值進行比較,並得到了不錯的結果。
摘要(英) Electrolyte solutions are always met in the process of chemical engineering, environment engineering, biomedical engineering, the petroleum industry, and petrifaction industry. Because of adding the electrolytes, the thermodynamic properties of the original solvent were changed, and were made deviation from ideality. In order to describe the degree of the solution deviating from the ideal solution, we usually take activity coefficient for consideration. In the study of Lin and Lee (2003), it was proposed that, in the electrolyte solution, the ion activity coefficient is contributed by two parts: one is salvation which is expressed by salvation parameter which is the short-range interaction between ion and water molecule, the other is the long-range interaction between ions which is expressed by approaching parameter. In this study, we use the ion activity coefficient model of Lin and Lee (2003), the known salvation parameter and approaching parameter, and using some thermodynamic equations to calculate the enthalpies of vaporization of 11 kinds of single electrolyte solutions, freezing point depressions of 18 kinds of single electrolyte solutions, and boiling point elevations of 13 kinds of the single electrolyte solutions then compare them with the literature data, and the results were predicted successfully.
關鍵字(中) ★ 電解質水溶液
★ 活性係數
★ 凝固點下降
★ 沸點上升
★ 汽化熱
關鍵字(英) ★ enthalpy of vaporization
★ epression of freezing point
★ elevation of boiling point
★ electrolyte solution
★ activity coefficient
論文目次 中文摘要 I
英文摘要 II
目錄 III
表目錄 V
圖目錄 VI
符號說明 VII
第一章 緒論 1
第二章 文獻回顧 3
第三章 熱力學理論 12
3.1電解質溶液之濃度單位 12
3.1.1 重量莫耳濃度 12
3.1.2 離子強度 12
3.1.3 莫耳分率 12
3.2 Lin and Lee模式 13
第四章 電解質水溶液熱力學性質預測 18
4.1 汽化熱之預測 18
4.2 凝固點下降之預測 22
4.3 沸點上升之預測 25
第五章 預估結果與討論 28
第六章 結論與未來展望 31
參考文獻 33
表 37
圖 41
參考文獻 Angell, C. A.; Ogunl, M.; SlChlna, W. J., Heat Capacity of Water at Extremes of Supercooling and Superheating. J. Phys. Chem. 86(1982) 998-1002.
Apelblat, A.; Korin, E., The Vapour Pressures of Saturated Aqueous Solutions of Sodium Chloride, Sodium Bromide, Sodium Nitrate, Potassium Iodate, and Rubidium Chloride at Temperatures from 227 K to 323 K. J. Chem. Thermodynamics 30(1998) 59-71.
Apelblat, A., Vapour Pressures of H216O and H218O, and Saturated Aqueous Solutions of KCl from T=298 K to T=318 K by the isoteniscopic method. J. Chem. Thermodynamics 30(1998) 1191-1198.
Apelblat, A.; Korin, E., The Vapour Pressures of Saturated Aqueous Solutions of Ammonium Iodide, Potassium Iodide, Potassium Nitrate, Strontium Chloride, Lithium Sulphate, Sodium Thiosulphate, Magnesium Nitrate, and Uranyl Nitrate from T=(278 to 323) K. J. Chem. Thermodynamics 30(1998) 459-471.
Apelblat, A.; Korin, E., The Molar Enthalpies of Solution and Vapour Pressures of Saturated Aqueous Solutions of Some Cesium Salts. J. Chem. Thermodynamics 38(2006) 152-157.
Apelblat, A.; Manzurola, E., Solubilities and Vapour Pressures of Saturated Aqueous Solutions of Sodium Tetraborate, Sodium Carbonate, and Magnesium Sulfate and Freezing-Temperature Lowerings of Sodium Tetraborate and Sodium Carbonate Solutions. J. Chem. Thermodynamics 35(2003) 221-238.
Bahe, L. W., Structure in Concentrated Solutions of Electrolytes. Field Dielectric Gradient Forces and Energies. J. Phys. Chem. 76(1972) 1062-1071.
Bancroft, W. D.; Davis, H.L., The Boiling-Points of Aqueous Solutions. J. Phys. Chem. 33(1929) 591-604.
Bromely, L. A., Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions. AIChE J. 19(1973) 313-320.
De Coppet, L. C., On the Molecular Depression of the Freezing-Point of Water Produced by Some Very Concentrated Saline Solutions. J. Phys. Chem. 8(1904) 531-538.
Ghosh, S.; Patwardhan, V. S., Aqueous Solutions of Single Electrolytes: A Correlation Based on Ionic Hydration. Chem. Eng. Sci. 45(1990) 79-87.
Guggenheim, E. A.; Stokes, R. H., Equilibrium Properties of Aqueous Solutions of
Single Strong Electrolytes, Pergamon, Oxford, 1969.
Haghtalab, A.; Vera, J. H., A Nonrandom Factor Model for the Excess Gibbs Energy
of Electrolyte Solutions. AIChE J. 34(1988) 803-813.
Hamer, W. J.; Wu, Y. C., Osmotic Coefficients and Mean Activity Coefficients of
Uni-Univalent Electrolytes in Water at 25℃. J. phys. Chem. Ref. Data. 1(1972)
1047-1054.
Hunter, J. B.; Bliss, H., Thermodynamics Properties of Aqueous Salt Solutions. Ind.
Eng. Chem. 36(1944) 945-953.
Jin, G.; Donohue, M. D., An Equation of State for Electrolyte Solutions.1. Aqueous Systems Containing Strong Electrolytes. Ind. Eng. Chem. Res. 27(1988) 1073-1084.
Lanier, R. D., Activity Coefficients of Sodium Chloride in Aqueous Three Component
Solutions by Cation-Sensitive Glass Electrodes. J. Phy. Chem. 69(1965 ) 3992-3998.
Lin, C. L.; Tseng, H. C.; Lee, L. S., A Three Characteristic Parameter Correlation
Model for Strong Electrolyte Solutions. Fluid Phase Equilibria. 152(1998) 169-185.
Lin, C. L.; Lee, L. S., A Two-Ionic-Parameter Approach for Ion Activity Coefficients
of Aqueous Electrolyte Solutions. Fluid Phase Equilivria. 205(2003) 69-88.
Lin, H. Y.; Lee, L. S., Estimations of Activity Coefficients of Constituent Ions in
Aqueous Electrolyte Solutions with Two-Ionic-Parameter Approach. Fluid Phase
Equilibria 237(2005) 1-8.
Lu, X.; Zhang, L., Prediction of Activity Coefficients of Electrolytes in Aqueous Solutions at High Temperatures. Ind. Eng. Chem. Res. 35(1996) 1777-1784.
Murphy, D. M.; Koop, T., Review of the Vapour Pressures of Ice and Supercooled Water for Atmospheric Applications. Q. J. R. Meteorol. Soc. 131(2005) 1539-1565.
Pan, C. F., Activity and Osmotic Coefficients in Dilute Aqueous Solutions of Bi-Univalent Electrolytes at 25℃. J. Chem. Eng. Data 22(1977) 234-237.
Pitzer, K. S., Thermodynamics of Electrolytes. I. Theoretical Basis and General
Equations. J. Phys. Chem. 77(1973) 268-277.
Pitzer, K. S.; Mayorga, G., Thermodynamic of Electrolytes. II. Activity and Osmotic
Coefficients for Strong Electrolytes with One or Both Ions Univalent. J. Phys. Chem.
77(1973) 2300-2307.
Pitzer, K. S.; Kim, J. J., Thermodynamics of Electrolytes. IV. Activity and Osmotic
Coefficients for Mixed Electrolytes. J. Am. Chem. Soc.96(1974) 5701-5707.
Prem, P. S., A Model for Ionic Behavior in Aqueous Solution. Activity Coefficients of
Electrolytes at 298.15 K. J. Am. Chem. Soc. 99(1977) 1312-1315.
Rodebush, H. W., The Freezing Points of Concentrated Solutions and The Free
Energy of Solution of Salts. J. Am. Chem. Soc. 40(1918) 1204-1213.
Rysselberghe P. V.; Eisenberg S., Activity Coefficients in Concentrated Aqueous Solutions of Strong Electrolytes Described by a Formula Containing the Mean Ionic Diameter as Single Parameter. J. Am. Chem. Soc. 61(1939) 3030-3037.
Saxton, B.; Smith, R. P., The Activity Coefficient of Potassium Chloride in Aqueous Solution from Boiling Point Data. J. Am. Chem. Soc. 54(1932) 2626-2636.
Stokes, R. H.; Robinson, R. A., Ionic Hydration and Activity in Electrolyte Solutions.
J. Am. Chem. Soc. 70(1948) 1870-1878.
Verma, M. P., Steam Tables for Pure Water as An ActiveX Component in Visual Basic
6.0, Computers Geosci. 29(2003) 1155-1163.
Weast, R. C., Ed, CRC Handbook of Chemistry and Physics, 81st ed. pp 8-58 – 8-84.
Zaytsev, I. D.; Aseyev, G. G., Properties of Aqueous Solutions of Electrolytes, CRC
Press, Boca Raton, FL(1992).
指導教授 李亮三(Liang-Sun Lee) 審核日期 2006-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明