博碩士論文 93324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.15.157.225
姓名 張立心(Li-Hsin Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金觸媒在選擇性一氧化碳氧化反應之應用
(Preferential Oxidation of CO in H2 Stream over Supported Gold Catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大顆粒的金一直以來都被視為穩定而不具觸媒活性的金屬,其無法應用的原因歸咎於金表面無法吸附反應物分子。然而,自從日本Haruta教授提出奈米級金擔載於氧化物擔體觸媒可在室溫下催化CO氧化的結果後,金觸媒才逐漸受到重視並應用於各種反應。近年來,金觸媒重要的應用莫過於是在富含氫氣流下進行選擇性CO氧化反應;此反應之所以受到重視的原因不外乎由於氫能源可利用在燃料電池發電,然而以甲醇或汽油重組反應產生的氫氣來源,會含有大量副產物CO,若將其直接應用於燃料電池會毒化白金電極並降低電能轉化效率,使用金觸媒於產氫反應的尾氣處理,可有效降低一氧化碳濃度至50 ppm,避免白金電極毒化。故本研究目的即為發展金觸媒具備能降低一氧化碳濃度,同時不氧化氫燃料。金觸媒擔載在二氧化鈦上具有很高的CO轉化率但同時也使氫氣反應,為了改進CO選擇率過低的問題,本文中分別也討論了兩種氧化物如:氧化鎂及氧化錳,作為促進劑,以改進單純使用Au/TiO2觸媒選擇率過低的問題。
在本研究中,二氧化鈦擔體來自德國Degussa公司(P-25),而混合物雙金屬氧化物擔體則使用初濕含浸法,將前趨物硝酸金屬溶液與二氧化鈦充分混合後煅燒製成;其後金以沉積沉澱法或光沉積法製備之。隨後金觸媒分別以感應耦合電漿質譜分析儀(ICP),X光繞射分析儀(XRD)、穿透式電子顯微鏡(TEM)、氮-吸附(BET)、X光電子能譜儀(XPS)、紫外-可見光光譜儀(UV-vis)等儀器來鑑定其物理及化學性質。反應則以固定床反應器填充0.1g觸媒,並以進料CO/O2/H2/He體積比為1.33/1.33/65.33/32.01,總流量控制在50 ml/min進行反應。
研究結果發現,在沉積沉澱法製備中,不論使用NaOH或NH4OH水溶液都可製備出具有奈米及金顆粒(< 4 nm)及高度分散性之Au/TiO2觸媒。其觸媒活性隨實際沉積之金含量遞減而遞減,其中,製備pH值由6提升至9時,沉積量遞減為pH 6的一半。最佳製備條件為pH 8 ,其觸媒具有最高CO轉化率及選擇率;然而選擇率隨反應溫度升高而降低,尤其以pH 6製備時觸媒為最明顯,其原因歸咎於氫氣與一氧化碳競爭氧化,另外,高沉積量的金觸媒容易受到反應溫度升高而聚集為大顆粒,然而對CO氧化而言金觸媒活性會明顯隨顆粒變大而下降,故導致選擇率明顯下降。
此外,本研究發展光沉積法制備Au/TiO2觸媒,可成功獲得極小金顆粒約1.5奈米;其金顆粒大小決定於照光時間、光源強度及其他製備條件。在反應活性測試中,更可穩定維持活性達8小時,其中可能的反應機制也獲得證實。
在添加劑的影響方面,吾人使用氧化錳及氧化鎂作為提升CO選擇率的促進劑,其中探討了添加劑錳/鈦與鎂/鈦的莫耳比、製備時酸鹼值對反應活性的種種影響。研究中發現,在一系列Au/MnO2-TiO2觸媒中,最佳活性的觸媒取決於適當的添加量、對金顆粒大小的影響以及對金的化學狀態的影響,發現以錳/鈦莫耳比2/98為最佳。而在Au/MgOx-TiO2觸媒中發現,在pH 9製備條件下之雙擔體金觸媒(Mg/Ti為2/8),其CO轉化率不管相較於Au/TiO2或Au/MgO觸媒都來的高,加入氧化鎂並可提升CO選擇率。此研究結果證實,適當的促進劑搭配製備時酸鹼值調整,可成功獲得一系列高分散性奈米金觸媒,並具有高CO轉化率,同時避免氫氣氧化,應用於選擇性CO氧化反應。
摘要(英) Bulk gold had been regarded as an inactive catalyst due to the surface of gold which inhibits chemisorption of reactant molecules. Since Haruta and co-workers reported that the nano-gold catalysts could achieve CO oxidation efficiently below ambient temperature, several applications for gold catalysts have been under attention recently. One of the important cases in these applications for gold catalysts is preferential CO oxidation in hydrogen-rich stream (PROX). Hydrogen has been recognized as a good energy carrier since the development of fuel cell. When hydrogen-rich fuel is produced from methanol or gasoline by partial oxidation and/or steam reforming combined with water gas shift reaction, the Pt anodes in fuel cell at these low temperatures are poisoned by CO, reducing the overall fuel cell performance. Gold catalyst has been confirmed as a catalyst to oxidize CO in hydrogen stream to reduce CO concentration less than 50 ppm. Develop a catalyst which has high CO conversion and low H2 conversion is the target of this study. Au/TiO2 has high conversion of CO and low selectivity of CO oxidation; Au/MgO and Au/MnO2 have high selectivity for CO oxidation and low conversion of CO. It was expected that by adding suitable amount of MgO or MnO2 into Au/TiO2, the catalyst may retain high CO conversion and suppress H2 conversion.
In this study, the promoter effect of various MOx-TiO2 mixed oxides was investigated and the support was prepared by incipient-wetness impregnation with aqueous solution of nitrate salt. TiO2 was supplied by Degussa Company (P-25). A series of preparation conditions of Au catalysts, prepared by deposition-precipitation (DP) method or photo-deposition (PD) method were discussed. The catalysts were characterized by inductively-coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM), high-resolution transmission microscopy (HRTEM), diffuse reflectance UV-vis spectroscopy (UV-vis DRS) and X-ray photoelectron spectroscopy (XPS). The PROX reaction was carried out in a fixed bed reactor with a feed containing 65.33% H2, 32.01% He, 1.33% CO and 1.33% O2 (vol. %) at 30000 h-1(GHSV).
A high gold dispersion and narrow size distribution was obtained by DP method with different precipitating reagents, such as NaOH and NH4OH, for Au/TiO2 catalysts. The uptake of gold on TiO2 decreased as the pH value increased from 6 to 9. Au/TiO2 prepared at pH 8 has higher CO conversion and higher selectivity of CO oxidation than those prepared at other pH values. CO selectivity decreased with increasing reaction temperature on all catalysts. This phenomenon is more significant on Au/TiO2 prepared at pH 6 due to the uptake of more gold at low preparation pH value and hence the aggregation of gold particles during reaction.
Au/TiO2 catalysts prepared by PD method had narrow particle size distribution of gold particles within a few nanometers. The catalysts prepared by this method could produce very small gold particles (1.5 nm) on the support. The size of gold nanoparticles deposited on the support depends on irradiation time and light source. We have successfully prepared very small gold particles with low power of UV light at suitable irradiation time and a possible mechanism of reaction has been proposed.
關鍵字(中) ★ 選擇性一氧化碳氧化
★ 二氧化錳
★ 金
★ 二氧化鈦
★ 光沉積法
★ 燃料電池
關鍵字(英) ★ gold
★ photo-deposition
★ PROX
★ Fuel cell
★ Selective oxidation of CO
★ TiO2
★ MgO
★ MnO2
論文目次 Table of Contents……………………………………i
List of Tables………………………………………iv
List of Figures………………………………………v
Chapter 1 Introduction……………………………1
Chapter 2 Literature review……………………3
2.1 Preparation method………………………3
2.1.1 Deposition-precipitation method…………………………3
2.1.2 Photo-deposition method……………………………………6
2.1.3 Other methods………………………………………………7
2.2 Applications in gold catalysts…………………………8
2.3 CO oxidation…………………………………………………8
2.3.1 Particle size effect…………………………………8
2.3.2 Support effect………………………………………10
2.3.3 Chemical state of gold……………………………11
2.3.4 Promoter effect………………………………………12
2.3.5 Reaction mechanism…………………………………13
2.4 Selective CO oxidation in H2 stream……………16
2.4.1 Introduce fuel cell………………16
2.4.2 Catalysts for PROX………………………………17
2.4.3 Gold catalysts for PROX………………………18
2.4.4 Promoter effect………………………………………19
2.4.5 Feed content effect (H2O and CO2)………………21
2.4.6 Reaction mechanism……………………………21
Chapter 3 Experimental…………………………………………23
3.1 Chemicals…………………………………………23
3.2. Catalyst preparation……………………………………23
3.2.1 Preparation of mixed oxide supports………23
3.2.2 Preparation of gold catalysts by deposition-precipitation method.…23
3.2.3 Preparation of gold catalysts by photo-deposition method……………24
3.3. Characterization…………………………………25
3.3.1 ICP-MS……………………………………………25
3.3.2 N2-sorption……………………………………25
3.3.3 XRD……………………………………………25
3.3.4 TEM and HRTEM…………………………………25
3.3.5 UV-Vis DRS.....................26
3.3.6 XPS…....................26
3.4 Reaction testing………………………………27
Chapter 4 Gold catalysts for selective CO oxidation on TiO2 support prepared by deposition-precipitation method..........................33
4.1 Introduction………………………………………33
4.2 Effect of base for neutralization…………………34
4.3 Effect of pH value ………………………………37
4.3.1 Au/TiO2 prepared by NaOH…………………37
4.3.2 Au/TiO2 prepared by NH4OH……………40
4.4 Summary…………………………………………47
Chapter 5 Gold catalysts for selective CO oxidation on TiO2 support prepared by photo-deposition method………………………….………………………………48
5.1 Introduction………………………………………48
5.2 The physical properties of gold catalysts…………49
5.2.1 Gold particle size determined by TEM and HRTEM50
5.2.2 Gold particle size determined by XRD…………51
5.2.3 Surface composition of gold during reaction……51
5.2.4 Color changes of Au/TiO2 catalysts (diffuse reflectance UV-vis)………….......52
5.3 Effect of precursor and pH values………………………………………………61
5.4 Effect of lamp sources……………………63
5.5 Catalytic performance on PROX reaction…………64
5.6 Comparison with DP method……………………68
5.7 Active site of Au/TiO2 prepared by PD method…70
5.8 Summary…………………………………………73
Chapter 6 Au/MnO2-TiO2 catalysts on PROX reaction…………….…..................................74
6.1 Introduction…………………………………………74
6.2 Promoter effect of MnOx………………………………75
6.2.1 Physical properties of Au/MnOx-TiO2……………75
6.2.2 Particle size determined by XRD………………76
6.2.3 Gold particle size determined by TEM………………77
6.2.4 Surface composition determined by XPS……………78
6.3 Catalytic activity at various Mn/Ti ratios………79
6.3.1 Effect of preparation pH value at fixed Mn/Ti ratio (2/98)……………....……..89
6.3.2 Effect of gold loading and calcination temperature……………….……………89
6.3.3 Effect of preparation method of mixed oxide (Mn/Ti=2/98)…………….……..90
6.4 Summary………………………………………………95
Chapter 7 Au/MgOx-TiO2 catalysts on PROX reaction………96
7.1 Introduction………………………………………96
7.2 Promoter effect of MgO support…………………97
7.2.1 Exact gold loading analyzed by ICP-MS………98
7.2.2 Particle size determined by XRD………………99
7.2.3 Gold particle size determined by TEM and HRTEM…100
7.2.4 Surface composition determined by XPS………101
7.3 Catalytic activity of Au/MgOx-TiO2………111
7.3.1 Effect of pH during DP process……………………111
7.3.2 Effect of Mg/Ti ratios of the catalysts prepared at pH 9…………….………...111
7.4 Summary……………………………………………………117
Chapter 8 Conclusion………………………………………118
Literature cited………………...............................120
Appendix Supplement data …………………………132
參考文獻 Akita, T., P. Lu, S. Ichikawa, K. Tanaka, M. Haruta, “Analytical TEM on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures” Surf. Interface. Anal. 31 (2001) 73.
Al-Sayari, S., A. F. Carley, S. H. Taylor, G. J. Hutchings, “Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation” Top. Catal. 44 (2007) 123.
Avgouropoulos, G., T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H. K. Matralis, “A comparative study of Au/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen” Catal. Today 75 (2002) 167.
Avgouropoulos, G., J. Papavasiliou, T. Tabakova, V. Idakiev, T. Ioannides, “A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction” Chem. Eng. J. 124 (2006) 41.
Azar, M., V. Caps, F. Morfin, J. L. Rousset, A. Piednoir, J. C. Bertolini, L. Piccolo, “Insights into activation, deactivation and hydrogen-induced promotion of a Au/TiO2 reference catalyst in CO oxidation” J. Catal. 239 (2006) 307.
Bamwenda, G. R., S. Tsubota, T. Nakamura, M. Haruta, “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation” Catal. Lett. 44 (1997) 83.
Boccuzzi, F., A. Chiorino, “FTIR Study of CO Oxidation on Au/TiO2 at 90 K and Room Temperature. An Insight into the Nature of the Reaction Centers” J. Phys. Chem. B 104 (2000) 5414.
Boccuzzi, F., A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta, “Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation” J. Catal. 202 (2001) 256.
Bond G. C., D. T. Thompson, and “Catalysis by gold” Catal. Rev. Sci. Eng. 41 (1999) 319.
Bond, G. C., D. T. Thomphson, “Gold-catalysed oxidation of carbon monoxide” Gold Bull. 33 (2000) 41.
Bond, G. C., C. Louis, D. T. Thomphson, “Catalysis by gold” IC Press, London, 2006.
Cameron, D., R. Holliday, D. Thompson, “Gold’s future role in fuel cell systems” J. Power Sources 118 (2003) 298.
Cant, N.W., N. J. Ossipoff, “Cobalt promotion of Au/TiO2 catalysts for the reaction of carbon monoxide with oxygen and nitrogen oxides” Catal. Today 36 (1997)125.
Casaletto, M. P., A. Longo, A. Martorana, A. Prestianni, A. M. Venezia, “XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites” Surf. Inter. Anal. 38 (2006) 215.
Casaletto, M. P., A. Longo, A. M. Venezia, A. Martorana, A. Prestianni, “Metal-support and preparation influence on the structural and electronic properties of gold catalysts” Appl. Catal. A: Gen. 302 (2006) 309.
Centeno, M. A., K. Hadjivanov, Tz. Venkov, Hr. Klimev, J. A. Odriozola, Comparative study of Au/Al2O3 and Au/CeO2-Al2O3 catalysts. J. Mol. Catal. A: Chem. 252 (2006) 142.
Chan, S. C., M. A. Barteau, “Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition” Langmuir 21 (2005) 5588.
Chang, L. H., N. Sasirekha, Y. W. Chen, W. J. Wang, “Preferential oxidation of CO in H2 stream over Au/MnO2-CeO2 catalysts” Ind. Eng. Chem. Res. 45 (2006) 4927.
Chang, L. H., N. Sasirekha, Y. W. Chen, “Au/MnO2–TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream” Catal. Commun. 8 (2007) 1702.
Chang, L. H., N. Sasirekha, B. Rajesh, Y. W. Chen, “CO oxidation on ceria- and manganese oxide-supported gold catalysts” Sep. Purif. Technol. 58 (2007) 211.
Chang, Y. F., J. G. McCarthy, “Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles” Catal. Today 30 (1996) 163.
Chen M. S., D. W. Goodman “The structure of catalytically active gold on titania” Science 306 (2004) 252.
Chen M. S., D. W. Goodman, “Structure-activity relationships in supported Au catalysts” Catal. Today 111 (2006) 22.
Chin, S. Y., O. S. Alexeev, M. D. Amiridis, “Preferential oxidation of CO under excess H2 conditions over Ru catalysts” Appl. Catal. A: Gen. 286 (2005) 157.
Choudhary, T. V., Goodman D. W., “CO-free fuel processing for fuel cell applications” Catal. Today 77 (2002) 65.
Concepción, P., S. Carrettin, A. Corma, “Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions” Appl. Catal. A: Gen. 307 (2006) 42.
Costello, C. K., J. H. Yang, H. Y. Law, Y. Wang, J. N. Lin, L. D. Marks, M. C. Kung, H. H. Kung, “On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3” Appl. Catal. A: Gen. 243 (2003) 15.
Cunningham, D. A. H., W. Vogel, M. Haruta, “Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst” Catal. Lett. 63 (1999) 43.
Daniells, S. T., M. Makkee, J. A. Moulijn, “The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts” Catal. Lett. 100 (2005) 39.
Daté, M., Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi, M. Haruta, “Performance of Au/TiO2 catalyst under ambient conditions” Catal. Today 72 (2002) 89.
Dekkers, M. A. P., M. J. Lippits, B. E. Nieuwenhuys, “CO adsorption and oxidation on Au/TiO2” Catal. Lett. 56 (1998) 195.
Delannoy, L., N. Weiher, N. Tsapatsaris, A. M. Beesley, L. Nchari, A. L. M. Schroeder, C. Louis, “Reducibility of supported gold (III) precursors: influence of the metal oxide support and consequences for CO oxidation activity” Top. Catal. 44 (2007) 263.
Deng, W., J. D. Jesus, H. Saltsburg, M. Flytzani-Stephanpoulos, “Low-content gold-ceria catalysts for the water–gas shift and preferential CO oxidation reactions” Appl. Catal. A: Gen. 291 (2005) 126.
Epling, S. W., G. B. Hoflund, J. F. Weaver, S. Tsubota, M. Haruta, “Surface characterization study of Au/α-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts” J. Phys. Chem. 100 (1996) 9929.
Fan L, N. Ichikuni, S. Shimazu, T. Uematsu, “Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation” Appl. Catal. A: Gen. 246 (2003) 87.
Fierro-Gonzalez, J. C., V. A. Bhirud, B. C. Gates, “A highly active catalyst for CO oxidation at 298 K: mononuclear AuIII complexes anchored to La2O3 nanoparticles” Chem. Commun. 42 (2005) 5275.
Fournier, V., P. Marcus, I. Olefjord, “Oxidation of magnesium” Surf. Interface Anal. 34 (2002) 494.
Fu, Q., H. Saltsburg, M. Flytzani-Stephanpoulos, “Active nonmetallic Au and Pt species on ceria–based water-gas shift catalysts” Science 301 (2003) 935.
Gardner, S. D., G. B. Hoflund, M. R. Davidson, H. A. Laitinen, D. R. Schryer, B. T. Upchurch, “Catalytic behavior of noble metal/reducible oxide materials for low-temperature carbon monoxide oxidation. 2. Surface characterization of gold/manganese oxide” Langmuir 7 (1991) 2140.
Gavril D, A. Georgaka, V. Loukopoulos, G. Karaiskakis, B. E. Nieuwenhuys, “On the mechanism of selective CO oxidation on nanosized Au/γ-Al2O3 catalysts” Gold Bull. 39 (2006)192.
Ghenciu, A. F., “Review of fuel processing catalysts for hydrogen production in PEM fuel cell system” Curr. Opin. Solid. State. Mater. Sci. 6 (2002)389.
Grisel, R. J. H. and B.E. Nieuwenhuys, “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts” Catal. Today 64 (2001) 69.
Grisel, R. J. H.; B. E. Nieuwenhuys, “Selective oxidation of CO, over supported Au catalysts” J. Catal. 199 (2001) 48.
Griesel, R. J. H., K. J. Weststrate, A. Gluhoi, B.E. Nieuwenhuys, “Catalysis by gold nanoparticles” Gold Bull. 35 (2002) 39.
Grunwaldt, J. D., A. Baiker, “Gold/Titania interfaces and their role in carbon monoxide oxidation” J. Phys. Chem. B 103 (1999) 1002.
Guzman, J., B. C. Gates, “Catalysis by supported gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold” J. Am. Chem. Soc. 126 (2004) 2672.
Guzman, J., B. C. Gates, “Simultaneous presence of cationic and reduced gold in functioning MgO-supported CO oxidation catalysts: Evidence from X-ray absorption spectroscopy” J. Phys. Chem. B 106 (2002) 7659.
Haruta, M., N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide” J. Catal. 115 (1989) 301.
Haruta, M., S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3,and Co3O4” J. Catal. 144 (1993) 175.
Haruta, M., “Size- and support-dependency in the catalysis of gold” Catal. Today 36 (1997) 153.
Haruta, M., “Nanoparticulate gold catalysts for low-temperature CO oxidation” J. New Mater. Electrochem. Sys. 7 (2004) 163.
Herrmann, J. M., J. Disdier, P. Pichat, “Photocatalytic deposition of silver on powder titania consequences for the recovery of silver” J. Catal. 113 (1988) 72.
Ho, K. Y., K. L. Yeung, “Effects of ozone pretreatment on the performance of Au/TiO2 catalyst for CO oxidation reaction” J. Catal. 242 (2006) 131.
Hodge, N. A., C. J. Kiely, R. Whymanb, M. R. H. Siddiqui, G. J. Hutchings, Q. A. Pankhurst, F. E. Wagner, R. R. Rajaram, S. E. Golunski, “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation” Catal. Today 72 (2002) 133.
Hoflund, G. B., S. D. Gardner, D. R. Schryer, B. T. Upchurch, E. J. Kielin, “Au/MnOx catalytic performance characteristics for low-temperature carbon monoxide oxidation” Appl. Catal. B: Environ. 6 (1995) 117.
Horváth, D., L. Toth, L. Guczi, “Gold nanoparticles: effect of treatment on structure and catalytic activity of Au/Fe2O3 catalyst prepared by co-precipitation” Catal. Lett. 67 (2000) 117.
Hutchings, G. J., “Gold catalysis in chemical processing” Catal. Today 72 (2002) 11.
Hutchings, G. J., M. S. Hall, A. F. Carley, P. Landon, B. E. Solsona, C. J. Kiely, A. Herzing, M. Makkee, J. A. Moulijin, A. Overweg, J. C. Fierro-Gonzalez, J. Guzman, B. C. Gates, “Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold” J. Catal. 242 (2006) 71.
Iliev, V., D. Tomova, R. Todorovska, D. Oliver, L. Petrov, D. Todorovsky, M. Uzunova-Bujnova, “Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution” Appl. Catal. A 313 (2006) 115.
Iwasea, A., H. Katoa, A. Kudo, “Nanosized Au particles as an efficient cocatalyst for photocatalytic overall water splitting” Catal. Lett. 108 (2006) 7.
Janssens, T. V. W., A. Carlsson, A. Puig-Molina, B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts” J. Catal. 240 (2006) 108.
Kapteijn, F., A. D. Langeveld, J. A. Moulijn, A. Andreïni, M. A. Vuurman, A. M. Trek, J. M. Jehng, I. E. Wachs, “Alumina-supported manganese oxide catalysts” J. Catal. 150 (1994) 94.
Kim, H. J., M. K. Han, S. M. Lee, D. K. Hwang, Y. G. Shul, “Characterization of Au/MnOx/TiO2 for photocatalytic oxidation of carbon monoxide” Top. Catal. (2008) DOI 10.1007/s11244-007-9020-9
Koningsberger, D. C., M. K. Oudenhuijzen, J. deGraaf, J. A. van Bokhoven, D. E. Ramaker, “In situ X-ray absorption spectroscopy as a unique tool for obtaining information on hydrogen binding sites and electronic structure of supported Pt catalysts: towards an understanding of the compensation relation in alkane hydrogenolysis” J. Catal. 216 (2003) 178.
Landon, P., J. Ferguson, B. E. Solsona, T. Garcia, A. F. Carley, A. A. Herzing, C. J. Kiely, S. E. Golunski, G. J. Hutchings, “Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells” Chem. Commun. 27 (2005) 3385.
Landon, P., J. Ferguson, B. E. Solsona, T. Garcia, S. Al-Sayari, A. F. Carley, A. A. Herzing, C. J. Kiely, M. Makkee, J. A. Moulijn, A. Overweg, S. E. Golunskie, G. J. Hutchings, “Selective oxidation of CO in the presence of H2, H2O and CO2 utilizing Au/α-Fe2O3 catalysts for use in fuel cells” J. Mater. Chem. 16 (2006) 199.
Lai, S. Y., Y. Qiu, S. Wang, “Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene” J. Catal. 237 (2006) 303.
Li, D., N. Ichikuni, S. Shimazu, T. Uematsu, “Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation” App. Catal. A: Gen. 172 (1998) 351.
Li, D., N. Ichikuni, S. Shimazu, T. Uematsu, “Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal–support interaction” App. Catal. A: Gen. 180 (1999) 227.
Li, W. C., M. Comotti, F. Schuth, “Highly reproducible syntheses of Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation” J. Catal. 237 (2006) 190.
Li, J., J. Chen, R. Ke, C. Luo, J. Hso, “Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts” Catal. Comm. 8 (2007) 1896.
Lopez, N., T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J. K. Nørskov, “On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation” J. Catal. 223 (2004) 232.
Luengnaruemitchaia, A., S. Osuwana, E. Gularib, “Selective catalytic oxidation of CO in the presence of H2 over gold catalyst” Int. J. Hydrogen Energy 29 (2004) 429.
Luengnaruemitchai, A., D. T. K. Thoa, S. Osuwan, E. Gulari,. “A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream” Int. J. Hydrogen Energy 30 (2005) 981.
Ma, Z., S.H. Overbury, S. Dai, “Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives” J. Mol. Catal. A: Chem. 273 (2007) 186.
Margitfalvi, J. L., A. Fási, A. M. Hegedűs, F. Lónyi, F. S. Gőbölös, S. N. Bogdanchikova, “Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation” Catal. Today 72 (2002) 157.
Mariňo, F., C. Descorme, D. Duprez, “Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX)” Appl. Catal. B: Environ. 58 (2005)175.
Milone, C., R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno, “Selective hydrogenation of α, β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported iron oxide catalysts: Role of the support” J. Catal. 236 (2005) 80.
Minicò, S., S. Scirè, C. Crisafulli, S. Galvagno, “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide” Appl. Catal. B: Environ. l34 (2001) 277.
Mohapatra, P., J. Moma, K. M. Parida, W. A. Jordaan, M. S. Scurrell, “Dramatic promotion of gold/titania for CO oxidation by sulfate ions” Chem. Commun. 10 (2007) 1044.
Molina, L. M., B. Hammer, “Active role of oxide support during CO oxidation at Au/MgO” Phys. Rev. Lett. 90 (2003) 206102.
Molina, L. M., B. Hammer, “Some recent theoretical advances in the understanding of the catalytic activity of Au” Appl. Catal. A: Gen. 291 (2005) 21.
Moreau, F., G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control pH during preparation with various gold content” J. Catal. 231 (2005) 105.
Moreau, F., G. C. Bond, “CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component” Catal. Today 114 (2006)362.
Moreau, F., G. C. Bond, “Influence of the surface area of the support on the activity of gold catalysts for CO oxidation” Catal. Today 122 (2007) 215.
Moulder, J. F., W. F. Stickle, P. E. Sobol, K. E. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics 1995.
Mul, G., A. Zwijnenburg, B. Linden, M. Makkee, J. A. Moulijin, “Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: An in situ FT-IR study” J. Catal. 201 (2001) 128.
Oh, S. E., R. M. Sinkevitch, “Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation” J. Catal. 142 (1993) 254.
Oh, H. S., J. H.Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung, M. C. Kung, “Selectivity catalytic oxidation of CO: Effect of chloride on supported Au catalysts” J. Catal. 210 (2002) 375.
Okumura, M., S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, M. Haruta, “Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2” Catal. Lett. 51 (1998) 53.
Okumura, M., S. Tsubota, M. Haruta, “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2” J. Mol. Catal. A: Chem. 199 (2003) 73.
Okumura M, Kitagawa Y, Haruta M, Yamaguchi K. “The interaction of neutral and charged Au cluster with O2, CO and H2” Appl. Catal. A: Gen. 291 (2005) 37.
Overbury, S. H. V. Schwartz, D. R. Mullins, W. Yan, S. Dai, “Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2” J. Catal. 241 (2006) 56.
Park, E. D., J. S. Lee, “Effects of pretreatment conditions on CO oxidation over supported Au catalysts” J. Catal. 186 (1999) 1.
Panzera, G., V. Modafferi, V. S. Candamano, A. Donato, F. Frusteri, P. L. Antonucci, “CO selective oxidation on ceria-supported Au catalysts for fuel cell application” J. Power Sources 135 (2004) 177.
Peña, D. A., B. S. Uphade, P. G. Smirniotis, “TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. I. Evaluation and characterization of first row transition metals” J. Catal. 221 (2004) 421.
Pansare, S. S., A. Sirijaruphan, J. G. Goodwin Jr., “Au-catalyzed selective oxidation of CO: a steady-state isotopic transient kinetic study” J. Catal. 234 (2005) 151.
Qi, G., R. T. Yang, “Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania” Appl. Catal. B: Environ. 44 (2003) 217.
Qiao, B., Y. Deng, “Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2” Chem. Commun. 17 (2003) 2192.
Remediakis, I. N., N. Lopez, J. K. Nørskov, “CO oxidation on gold nanoparticles: Theoretical studies” Appl. Catal. A: Gen. 291(2005) 13.
Rossignol, C., S. Arrii, F. Morfin, L. Piccolo, V. Caps, J. L. Rousset, “Selective oxidation of CO over model gold-based catalysts in the presence of H2” J. Catal. 230 (2005) 476.
Sanchez, R. M. T., A, Ueda, K. Tanaka, M. Haruta, “Selective oxidation of CO in hydrogen over gold supported on manganese oxides” J. Catal. 168 (1997) 125.
Schubert, M. M., S. Hackenberg, A. C. Veen, M. Muhler, V. Plzak, R. J. Behm, “CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction” J. Catal. 197 (2001) 113.
Schubert, M. M., V. Plzak, J. Garvhe, R. J. Behm, “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas” Catal. Lett. 76 (2001) 143.
Schubert, M. M., A. Venugopal, M. J. Kahlich, V. Plzak, R. J. Behm, “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3” J. Catal. 222 (2004) 32.
Schumacher, B., Y. Denkwitz, V. Plzak, M. Kinne, R. J. Behm, “Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst” J. Catal. 224 (2004) 449.
Sedmak, G., S. Hočevar, J. Levec, “Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2−y catalyst” J. Catal. 213 (2003) 135.
Segura, Y., N. López, J. Pérez-Ramírez, “Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple- versus double-bond activation” J. Catal. 247 (2007) 383.
Seker, E., E. Gulari, “Single step sol–gel made gold on alumina catalyst for selective reduction of NOx under oxidizing conditions: effect of gold precursor and reaction conditions” Appl. Catal. A: Gen. 232 (2002) 203.
Shiga, A., M. Haruta, “Simulation of pathways for CO oxidation over Au nano-clusters by paired interacting orbitals (PIO) analysis” Appl. Catal. A: Gen. 291 (2005) 6.
Soares, J. M. C., P. Morrall, A. Crossley, P. Harris, M. Bowker, “Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts” J. Catal. 219 (2003) 17.
Socaciu, L. D., J. Hagen, T. M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, “Catalytic CO oxidation by free Au2-: Experiment and theory” J. Am. Chem. Soc. 125 (2003) 10437.
Stangland, E. E., K. B. Stevens, R. P. Andres, W. N. Delgas, “Characterization of gold–titania catalysts via oxidation of propylene to propylene oxide” J. Catal. 191 (2000) 332.
Subramanian, V., E. E. Wolf, P. V. Kamat, “Influence of metal/metal ion concentration on the photocatalytic activity of TiO2-Au composite nanoparticles” Langmuir 19 (2003) 469.
Subramanian, V., E. E. Wolf, P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration” J. Am. Chem. Soc. 126 (2004) 4943.
Szabó, E. G., M. Hegedűs, Á. Szegedi, I. Sajó, J. L. Margitfalvi, “CO oxidation over Au/Al2O3 catalysts modified by MgO” React. Kinet. Catal. Lett. 86 (2005) 339.
Szabó, E. G., A. Tompos, M. Hegedűs, A. Szegedi, J. L. Margitfalvi, “The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation” Appl. Catal. A: Gen. 320 (2007) 114.
Tabakova, T., F. Boccuzzi, M. Manzoli, J. W. Sobczak, V. Idakiev, D. Andreeva, “A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction” Appl. Catal. A: Gen. 298 (2006) 27.
Tang, Z. R., J. K. Edwards, J. K. Bartley, S. H. Taylor, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, “Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts” J. Catal. 249 (2007) 208.
Tuzovskaya, I., N. Bogdanchikova, A. Pestryakov, V. Gurin, A. Simakov, M. Avalos, M. Farias, A. Datye, “Study of gold species stabilized in synthetic and natural zeolites” World Gold Council (2003).
Ueda, A., M. Haruta, “Nitric oxide reduction with hydrogen, carbon monoxide and hydrocarbons over gold catalysts” Gold Bull. 32 (1999) 3.
Valden, M., X. Lai, D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties” Science 281 (1998) 1647.
Venezia, A. M., G. Pantaleo, A. Longo, G. D. Carlo, M. P. Casaletto, F L. Liotta, G. Deganello, “Relationship between structure and CO oxidation activity of ceria-supported gold catalysts” J. Phys. Chem. B 109 (2005) 2821.
Visco, A. M., A. Bonato, C. Milone, S. Galvagno, “Catalytic oxidation of carbon monoxide over Au/Fe2O3 preparations” React. Kinet. Catal. Lett. 62 (1997) 219.
Visco, A. M., F. Neri, A. Donato, C. Milone, S. Galvagno, “X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts” Phys. Chem. Chem. Phys. 1 (1999) 2869.
Wang, C. Y., C. Y. Liu, X. Zheng, J. Chen, T. Shen, “The surface chemistry of hybrid nanometer-sized particles: I. Photochemical deposition of gold on ultrafine TiO2 particles” Colloids Surf. A 131 (1998) 271.
Wang, D., Z. Hao, D. Cheng, X. Shi, C. Hu, “Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts” J. Mol. Catal. A: Chem. 200 (2003) 229.
Yao, H. B., Y. Li, A. S. T. Wee, “An XPS investigation of the oxidation/corrosion of melt-spun Mg” Appl. Surf. Sci. 158 (2000) 112.
Yan, Z., S. Chinta, A. A. Mohamed, J. P. Fackler, Jr., D. W. Goodman, “The Role of F-Centers in Catalysis by Au Supported on MgO” J. Am. Chem. Soc. 127 (2005) 1604.
Yoon, B., H. Hakkinen, U. Landman, A. S. Norz, J.M. Antonietti, S. Abbet, K. Judai, U. Heiz, “Changing effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO” Science 307 (2005) 403.
Yu, W. Y., W. S. Lee, C. P. Yang, B. Z. Wan, “Low-temperature preferential oxidation of CO in a hydrogen rich stream (PROX) over Au/TiO2: Thermodynamic study and effect of gold-colloid pH adjustment time on catalytic activity” J. Chin. Inst. Chem. Eng. 38 (2007) 151.
Zanella, R., S. Giorgio, C. R. Henry, C. Louis, “Alternative methods for the preparation of gold nanoparicles supported on TiO2” J. Phys. Chem. B 106 (2002) 7634.
Zanella, R., S. Giorgio, C. H. Shin, C. R. Henry, C. Louis, “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea” J. Catal. 222 (2004) 357.
Zhang, F., J. Chen, W. Gao, R. Jin, N. Guan, Y. Li, “Sythesis of titania-supported platinum catalyst : the effect of pH on morphology control and valence state during photodeposition” Langmuir 20 (2004) 9329.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2008-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明