博碩士論文 93344002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.142.212.119
姓名 江淑媜(Shu-jen Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米化非晶態NiB觸媒之製備與氫化反應研究
(Preparation and hydrogenation of nano-amorphous NiB catalysts)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用三種硼氫化鈉化學還原法製備奈米均一化NiB觸媒,在傳統化學還原法製備過程中導入水溶性高分子PVP穩定劑製得PVP-NiB觸媒;以H2O/CTAB/n-hexanol逆微胞技術配合化學還原法製得ME-NiB觸媒;另以含浸法配合中溫煅燒將先驅鹽固著,再以化學還原法將NiB觸媒負載於SiO2擔體上製得NiB/SiO2觸媒。藉由丁醛液相氫化為模式反應,尋找三種奈米化NiB觸媒製備之最適條件,探討糠醛、巴豆醛及檸檬醛的選擇性氫化反應性質。
非負載式觸媒以醋酸鎳鹽為佳,負載式觸媒由於需經中溫煅燒固著,則以不易分解的氯化鎳鹽為佳。在添加硼氫化鈉的還原過程中,NiB與PVP-NiB觸媒都有一最適添加速率,可是ME-NiB與NiB/SiO2觸媒是以一次瞬間加入為佳。
PVP-NiB、ME-NiB及NiB/SiO2觸媒為非晶態結構,粒徑分布2~5 nm明顯小於NiB觸媒的7.7~40 nm。經奈米化之PVP-NiB、ME-NiB及NiB/SiO2觸媒於丁醛、巴豆醛、糠醛及檸檬醛等反應都有優越的催化活性,約為NiB觸媒的3~10倍,因此,可於較低的溫度下進行反應,其活性不但媲美貴金屬觸媒,亦可以得到較多主產物之產率。
奈米化PVP-NiB、ME-NiB與NiB/SiO2觸媒可有效應用於檸檬醛選擇性氫化反應,檸檬醛(citral)為具有一共軛C=C/C=O鍵及孤立C=C鍵之多官能基不飽和醛,可經由選擇氫化成不同的產物,奈米化NiB觸媒於檸檬醛氫化反應中,主產物是先氫化共軛C=C鍵得到香茅醛,爾後繼續氫化C=O鍵得到香茅醇,香茅醛與香茅醇都是具經濟價值的香料產物。若以環己烷為反應溶劑、80°C下,PVP-NiB觸媒活性為NiB觸媒的4.9倍,ME-NiB觸媒為9.8倍,NiB/SiO2觸媒更高達10倍以上,遠優於商用Raney Ni 觸媒。
NiB與PVP-NiB觸媒中添加鉻、釷、鉬及鎢均能促進反應活性,其中又以鉻的促進效果最佳,這些促進劑反不利ME-NiB與NiB/SiO2觸媒。反應溶劑明顯影響觸媒活性,且因觸媒而不同,NiB與PVP-NiB觸媒以極性溶劑為佳,活性大小影響依序為甲醇>乙醇>環己烷>正己烷,ME-NiB與NiB/SiO2觸媒以非極性溶劑為佳,溶劑效應則相反。若香茅醛與香茅醇同為主產物,選擇高活性觸媒與溶劑,可得98%以上的高產率。若以香茅醛為單一主產物,以PVP-NiB為觸媒,50°C下可得最大產率為92%;以ME-NiB與NiB/SiO2為觸媒,30°C下可得最大產率分別為88%與90%。
動力學探討中發現,NiB系列觸媒於檸檬醛選擇氫化成香茅醛初活性隨H2壓力上升而上升,表觀反應級數分別為0.53 (NiB)、0.2 (PVP-NiB)、0.36 (ME-NiB) 與0.41 (NiB/SiO2)。初活性亦隨檸檬醛濃度上升而上升,表觀反應級數分別為0.45 (NiB)、0.2 (ME-NiB)與0.23 (NiB/SiO2);PVP-NiB觸媒例外,初活性幾乎不受濃度影響。檸檬醛選擇氫化成香茅醛表觀活化能,NiB觸媒(70~100°C)為9.7 kJ/mol,PVP-NiB觸媒(50~100°C)為3.2 kJ/mol,ME-NiB觸媒(30~60°C)為3.1 kJ/mol,NiB/SiO2觸媒(30~50°C)為2.4 kJ/mol。
摘要(英) The PVP-stabilized NiB catalysts were prepared using the chemical reduction method with NaBH4, dissolving the water-soluble polymer of polyvinylpyrrolidone (PVP) in the precursor salt solution as a protective reagent. The PVP-NiB catalysts were characterized and examined for their catalysis on the hydrogenation of furfural, crotonaldehyde and citral. PVP polymer could adsorb on the nano-particles of NiB via a weak coordination bonding and stabilize it; the molecular weight of PVP about 10,000 was suitable, and the optimal quantity of PVP (PVP/Ni) in the salt solution for preparing catalysts was around 20. The PVP-NiB samples were characterized by XRD as an amorphous structure and by TEM with a particle size distribution in the range of 2.5–7.7 nm. On catalysis, the PVP-NiB catalyst was significantly more active and slightly more selective than NiB for hydrogenating furfural to furfuryl alcohol and crotonaldehyde to butyraldehyde. A good yield of citronellal about 92% could be obtained by reducing citral in cyclohexane at a low reaction temperature of 50ºC over the PVP-NiB catalyst.
Surfactant-stabilized NiB catalysts (ME-NiB) were prepared using the chemical reduction method in the ternary microemulsion system of water/CTAB/n-hexanol. The surfactant molecules could adsorb on the surface of the formed particles; they act as a protective agent and restrict the growth of nano-particles. The size of nano-particles was not completely determined by the size of the microemulsion droplets, but also depended on the composition of the solution. Additionally, the concentration of nickel salt, the amount and speed of addition of NaBH4, and the temperature influenced the sizes of the particles and the reactivity of the ME-NiB nano-particles. The ME-NiB catalyst was characterized and examined for its catalysis on the hydrogenation of furfural, crotonaldehyde and citral. It was thus compared with the NiB and PVP polymer-stabilized NiB catalysts. The ME-NiB sample was characterized by XRD as an amorphous structure and by TEM with a particle size distribution in the range 1.2–5.0 nm. The ME-NiB catalyst was markedly more active and slightly more selective than NiB or PVP polymer-stabilized NiB in the hydrogenation of furfural to furfuryl alcohol and crotonaldehyde to butyraldehyde. A good yield of citronellal, around 88%, was obtained by reducing citral in cyclohexane at a room temperature of 30ºC over the ME-NiB catalyst.
A super-active supported nickel catalyst-NiB/SiO2 could be obtained with chemical reduction method for liquid-phase hydrogenation. The precursor salt of nickel was mounted on SiO2 by impregnating, drying and calcination at an appropriate temperature without being decomposed, and then reduced with aqueous NaBH4 solution. The influential factors for preparation NiB/SiO2 catalysts were examined by the hydrogenation of butyraldehyde. The NiB/SiO2 catalysts were characterized as an ultrafine and amorphous structure, which are much more active than NiB and Ni/SiO2 a conventional supported nickel catalyst reduced by H2. The optimal catalyst of 5%NiB/SiO2 was used for hydrogenating citral to citronellal and cironellol, which was about fourteen times as active as NiB, but less selective than it. Nevertheless, the reaction could be performed at room temperature to promote the selectivity. A good yield of citronellal/cironellol about 90% and a yield of citronellal about 81% over 5%NiB/SiO2 could be obtained at a low temperature of 30ºC.
關鍵字(中) ★ 氫化反應
★ 奈米顆粒
★ 非晶態
★ 鎳硼觸媒
關鍵字(英) ★ nanoparticle
★ hydrogenation
★ amorphous
★ NiB catalyst
論文目次 中文摘要 I
英文摘要 III
誌 謝 V
目 錄 VII
圖 目 錄 XII
表 目 錄 XVII
第一章 緒論 1
第二章 文獻回顧 3
2-1 奈米非晶態金屬-硼觸媒 3
2-1-1 非負載式NiB觸媒 3
2-1-1-A 物理性質 4
2-1-1-B 催化性質 11
2-1-2 負載式金屬-硼觸媒 14
2-1-2-A 物理性質 14
2-1-2-B 催化性質 16
2-2 金屬奈米微粒的製備技術 19
2-2-1 逆微胞技術製備金屬奈米微粒 19
Part A 19
A-1 微胞與微乳液的形成 19
A-1-1 界面活性劑的基本結構 20
A-1-2 微胞與逆微胞 22
A-1-3 微乳液 24
A-2 水/界面活性劑/油三成份系統之微胞形狀分子堆疊模型 27
A-3 油包水型微乳液(w/o)之動態行為 29
A-4 微乳液性質的主要影響因素 29
A-4-1 ωo值對微乳液性質之影響 29
A-4-2 溫度效應 31
A-4-3 水相鹽類效應 33
A-4-5 油相種類的影響 33
Part B 34
B-1 逆微胞系統於奈米粒子之製備 34
B-2 奈米粒子生成過程 35
B-3 製備粒徑之主要影響變因 38
B-3-1 ωo值(Nwater/Nsurfactant)對奈米粒子的影響 38
B-3-2 油相的影響 38
B-3-3 界面活性劑的影響 39
B-3-4 鹽類濃度的影響 40
B-3-5 還原劑濃度的影響 40
B-3-6 溫度的影響 40
2-2-2 PVP高分子穩定法製備金屬奈米微粒 42
Part A 製備奈米微粒粒徑之影響變因 42
A-1 還原劑種類 42
A-2 PVP/金屬之添加量 45
A-3 PVP分子量 46
Part B 金屬觸媒之催化應用 49
2-3 不飽和醛選擇性氫化反應 52
2-3-1 糠醛選擇性氫化反應 52
2-3-2 巴豆醛選擇性氫化反應 55
2-3-2-1 氫化C=O鍵主產物為巴豆醇 55
2-3-2-2 氫化C=C鍵主產物為丁醛 57
2-3-3 檸檬醛選擇性氫化反應 62
2-3-3-1 Ru金屬觸媒之先趨鹽類與反應溶劑的影響 63
2-3-3-2 Ru金屬顆粒大小的影響 64
2-3-3-3 Ru金屬觸媒之促進劑效應的影響 65
2-3-3-4 Ru金屬觸媒之擔體效應的影響 67
2-3-3-5 Ru以外其它金屬觸媒之檸檬醛氫化反應 68
2-3-3-6 檸檬醛氫化反應之動力研究 71
第三章 實驗方法與設備 77
3-1 觸媒製備 77
3-1-1 非負載式NiB與PVP-NiB觸媒之製備 77
3-1-2 非負載式ME-NiB觸媒之製備 79
3-1-3 負載式NiB/SiO2觸媒之製備 79
3-1-4 負載式鎳觸媒(Ni/SiO2)之製備 81
3-1-5 倫尼鎳(Raney Ni)觸媒之製備 81
3-2 觸媒性質鑑定 81
3-2-1 鎳金屬表面積測量(H2 impulse adsorption) 81
3-2-2 元素組成分析(ICP) 84
3-2-3 X-射線繞射分析(XRD) 84
3-2-4 比表面積測定(BET) 85
3-2-5 示差掃瞄熱量測定(DSC) 86
3-2-6 熱重分析儀(TGA) 86
3-2-7 X-射線光電子光譜(XPS, ESCA) 86
3-2-8 電子顯微鏡(TEM, SEM) 87
3-2-9 反應活性測定 88
3-2-10 實驗藥品及氣體 91
第四章 奈米化NiB系列觸媒之製備與鑑定 95
4-1 PVP-NiB觸媒製備與鑑定分析 95
4-1-1 PVP-NiB觸媒之製備 95
4-1-2 PVP-NiB觸媒之ICP整體組成分析 98
4-1-3 PVP-NiB觸媒之BET表面積分析 99
4-1-4 PVP-NiB觸媒之XRD粉末繞射分析 99
4-1-5 PVP-NiB觸媒之DSC熱穩定分析 102
4-1-6 PVP-NiB觸媒之TGA熱重分析 102
4-1-7 PVP-NiB觸媒之SEM掃描式電子顯微影像分析 105
4-1-8 PVP-NiB觸媒之TEM穿透式電子顯微影像分析 105
4-1-9 PVP-NiB觸媒之XPS表面組成分析 106
4-2 ME-NiB觸媒製備與鑑定分析 112
4-2-1 ME-NiB觸媒之製備 113
4-2-2 ME-NiB觸媒之ICP整體組成分析 116
4-2-3 ME-NiB觸媒之BET表面積分析 117
4-2-4 ME-NiB觸媒之XRD粉末繞射分析 117
4-2-5 ME-NiB觸媒之DSC熱穩定分析 120
4-2-6 ME-NiB觸媒之TGA熱重分析 121
4-2-7 ME-NiB觸媒之SEM掃描式電子顯微影像分析 121
4-2-8 ME-NiB觸媒之TEM穿透式電子顯微影像分析 121
4-2-9 ME-NiB觸媒之XPS表面組成分析 126
4-3 NiB/SiO2觸媒製備與鑑定分析 128
4-3-1 NiB/SiO2觸媒之製備 128
4-3-2 NiB/SiO2觸媒之ICP組成分析 130
4-3-3 NiB/SiO2觸媒之BET全表面積及孔徑量測 131
4-3-4 NiB/SiO2觸媒之鎳金屬表面積量測 132
4-3-5 NiB/SiO2觸媒之X-射線繞射分析 133
4-3-6 NiB/SiO2觸媒之DSC熱穩定性分析 133
4-3-7 NiB/SiO2觸媒之TGA熱重分析 136
4-3-8 NiB/SiO2觸媒之SEM掃描式電子顯微影像分析 136
4-3-9 NiB/SiO2觸媒之TEM顯微影像分析 136
4-3-10 NiB/SiO2觸媒之XPS表面組成分析 137
4-4 PVP-NiB、ME-NiB與NiB/SiO2觸媒之比較 142
第五章 NiB系列觸媒之催化性質的探討 150
5-1 丁醛氫化反應測試 150
5-2 糠醛氫化 151
5-3 巴豆醛氫化 157
5-4 檸檬醛氫化 161
第六章 檸檬醛氫化反應之探討 169
6-1 溫度效應 169
6-2 溶劑的影響 176
6-3 添加促進劑的影響 188
6-4 NiB系列觸媒於檸檬醛氫化反應之動力探討 197
6-4-1 NiB觸媒添加inert SiO2探討 197
6-4-2 反應溫度影響 201
6-4-3 反應壓力影響 204
6-4-4 反應濃度影響 204
6-4-5 檸檬醛氫化成香茅醛的反應機制 209
第七章 結論 210
第八章 總結 213
參考文獻 214
參考文獻 [1] Y. Z. Chen, B. J. Liaw, S. J. Chiang, “Selective hydrogenation of citral over amorphous NiB and CoB nano-catalysts ”, Appl. Catal. A., 284 (2005) 97-104.
[2] Y. Z. Chen, Y. C. Chen, “Hydrogenation of para-chloronitrobenzene over nickel borides”, Appl. Catal. A., 115 (1994) 45-57.
[3] 魏水文,「促進劑對硼化鈷觸媒於選擇性氫化反應之影響」,國立中央大學,化學工程研究所,碩士論文,民國81年。
[4] K. Kralik, A. Biffis, “Catalysis by Metal Nanoparticles Supported on Functional Organic Polymers’’, J. Mol. Catal. A, 177 (2001) 113.
[5] H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loy, J. F. Deng, G. Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone)”, Langmuir, 12 (1996) 909.
[6] H. Hirai, N. Yakura, Y. Seta, S. Hodoshima, “Characterization of Palladium Nanoparticles Protected with Polymer as Hydrogenation Catalyst”, React. Func. Polym., 37 (1998) 121.
[7] A. B. R. Mayer, J. E. Mark, “Colloidal Gold Nanoparticles Protected by Water-Soluble Homopolymers and Random Copolymer”, Eur. Polym. J., 34 (1998) 103.
[8] 陳東煌,逆微胞技術在超微粒子製備上之研究,化工,第45卷,第5期,1998。
[9] J. Sjoblom, R. Lindberg, S.E. Friberg, “Microemulsions—phase equilibria characterization, structures, applications and chemical reactions”, Adv. Colloid Interface Sci., 95 (1996) 125-287.
[10] Q. Sunqing, D. Junxiu and C. Guoxu, “Preparation of Cu Nanoparticles from Water-in-Oil Microemulsions”, J. Colloid Interface Sci. 216, (1999) 230-234.
[11] W. J. Wang, M. H. Qiao, J. Yang, S. H. Xie, J. F. Deng, “Selective Hydrogenation of Cyclopentadiene to Cyclopentene over an Amorphous NiB/SiO2 Catalyst”, Appl. Catal. A, 163 (1997) 101-109.
[12] W. J. Wang, M. H. Qiao, H. X. Li, W. L. Dai, J. F. Deng, “Studyon the Deactivation of Amorphous NiB/SiO2 Catalyst during the Selective Hydrogenation of Cyclopentadiene to Cyclopentene”, Appl. Catal. A, 168 (1998) 151-157.
[13] W. J. Wang, H. X. Li, S. H. Xie, Y. J. Li, J. F. Deng, “Regeneration at Room Temperature for Amorphous NiB/SiO2 Catalyst Deactivated in Cyclopentadiene Hydrogenation”, Appl. Catal. A, 184 (1999) 33-39.
[14] S. H. Xie, H. X. Li, H. Li, J. F. Deng, “Selective Hydrogenation of Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Comparison with Other Ni-Based Catalysts”, Appl. Catal. A, 189 (1999) 45-52.
[15] J. F. Deng, H. X. Li, W. J. Wang, “Progress in Design of New Amorphous Alloy Catalysts”, Catal. Today, 51 (1999) 113-125.
[16] H. Li, H. Li, J. F. Deng, “Influence on the Reduction Degree of Ni-B/SiO2 Amorphous Catalyst and Its Role in Selective Hydrogenation of Acrylonitrile”, Appl. Catal. A, 193 (2000) 9-15.
[17] W. J. Wang, M. H. Qiao, H. X. Li, J. F. Deng, “Partial Hydrogenation of Cyclopentadiene over Amorphous NiB Alloy on Alumina and Titania-Modified Alumina”, J. Chem. Technol. Biotechnol., 72 (1998) 280.
[18] H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreat, H. R. Hoeksta, E. K. Hyde, “Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogenation”, J. Am. Chem. Soc., 75 (1953) 215.
[19] H. C. Brown, C. A. Brown, “The Reacction of Sodium Boro- hydride with Nickel Acetate in Aqueous Solution–A Convenient Synthesis of an Active Nickel Hydrogenation Catalyst of Low Isomerizing Tendency”, J. Am. Chem. Soc., 85 (1963) 1003-1005.
[20] H. C. Brown, C. A. Brown, “The Reaction of Sodium Borohydride with Nickel Acetate in Ethanol Solution–A Highly Selective Nickel Hydrogenation Catalyst”, J. Am. Chem. Soc., 85 (1963) 1005-1006.
[21] 陳吟足,「硼化鎳觸媒的催化性質研究」,國立台灣大學,化學工程研究所,博士論文,民國74年。
[22] M. H. Rei, L. L. Sheu, Y. Z. Chen, “Nickel Boride Catalyst in Organic Synthesis. I: A New Ferromagnetic Catalyst from the Diborane Reduction of Nickel Acetate”, Appl. Catal., 23 (1986) 281-290.
[23] H. Li, Q. Zhao, Y. Wan, W. Dai, M. Qiao, “Self-assembly of mesoporous Ni-B amorphous alloy catalysts”, J. Catal., 244 (2006) 251-254.
[24] N. N. Mal’tseva, Z. K. Sterlyadkina, V. I. Mikheeva, Chem. Abstr., 65 (1966) 1751f.
[25] 陳懿,范以寧,沈儉一,胡徵,「非晶態合金超細微粒催化劑製備、表徵和催化作用的研究」,超細微粒材料與觸媒研討會論文集,1-6頁,國立中央大學,中壢市,85年1月。
[26] J. S, A. I, T. M, “The Effect of Reaction Condition on Composition and Properties of Ultrafine Amorphous Powders in (Fe, Co, Ni)-B Systems Prepared by Chemical Reduction”, Metal. Trans. A, 22A (1991) 2125.
[27] H. Li, H. X. Li, W. L. Dai, W. Wang, Z. Fang, J. F. Deng, “XPS Studies on Surface Electronic Characteristics of Ni-B and Ni-P Amorphous Alloy and Its Correlation on Their Catalytic Proper- ties”, Appl. Surf. Sci., 152 (1999) 25-34.
[28] Y. Z. Chen, K. J. Wu, “Hydrogenation Activity and Selectivity of Cobalt Borides”, Appl. Catal., 78 (1991) 185.
[29] J. Deng, J. Yang, S. Sheng, H. Chen, G. Xiong, “The Study of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as Catalysts”, J. Catal., 150 (1994) 434.
[30] W. J. Wang, M. H. Qiao, J. Yang, S. H. Xie, J. F. Deng, “Selective Hydrogenation of Cyclopentadiene to Cyclopentene over an Amorphous NiB/SiO2 Catalyst”, Appl. Catal. A, 163 (1997) 101-109.
[31] Y. Okamoto, Y. Nitta, I. Imanaka, S. Teranishi, “Surface Characterization of Nickel Boride and Nickel Phosphide Catalysts by X-ray Photoelectron Spectroscopy (Part I)”, J. Chem. Soc. Faraday I., 75 (1979) 2027-2039.
[32] Y. Okamoto, Y. Nitta, T. Imanaka, S. Teranishi, “Surface State, Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions”, J. Chem. Soc. Faraday Trans. I, 76 (1980) 998-1007.
[33] Y. Okamoto, Y. Nitta, T. Imanaka, S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions III. Electronic and Catalytic Properties of Nickel Catalysts”, J. Catal., 64 (1980) 397-404.
[34] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions IV. Electronic Effects on the Selectivity in the Hydrogenation of 1,3-Butadiene”, J. Catal., 74 (1982) 173.
[35] Y. Okamoto, E. Matsunaga, T. Imanaka, S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions V. Electronic Effects on Methanation of CO and CO2”, J. Catal., 74 (1982) 183.
[36] A. H. Uken, C. H. Bartholomew, “Borided Metal Catalysts in Methanation of Carbon Monoxide I. Initial Activity and Conversion-Temperature Behavior of Unsupported Catalysts”, J. Catal., 65 (1980) 402.
[37] S. Xie, H. Li, H. Li, J. F. Deng, “Selective Hydrogenation of Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Comparison with Other Ni-Based Catalysts”, Appl. Catal. A, 189 (1999) 45-52.
[38] H. Li, X. Li, J. F. Deng, “Influence on the Reduction Degree of Ni-B/SiO2 Amorphous Catalyst and Its Role in Selective Hydroge- nation of Acrylonitrile”, Appl. Catal. A, 193 (2000) 9-15.
[39] Brown, C. A., V. K. Ahuja, “Catalytic Hydrogenation. VI. The Reaction of Sodium Borohydride with Nickel Salts in Ethanol Solution. P-2 Nickel, a Highly Convenient, New, Selective Hydrogenation Catalyst with Great Sensitivity to Substrate Structure”, J. Org. Chem., 38 (1973) 2226.
[40] Z. G. Fang, B. R. Shen, J. Lu, K. N. Fan, J. F. Deng, “DFT Study of Electron Transfer between B and Ni in Ni-B Amorphous Alloy”, ACTA CHIMICA SINIA, 57 (1999) 894.
[41] Y. Nitta, T. Imanaka, S. Teranish, “Hydrogenation Activity and Selectivity of Cobalt Boride and Cobalt Nickel Binary Catalysts”, Bull. Chem. Soc. Jpn., 53 (1980) 3154.
[42] D. J. Collins, D. A. Smith, “Hydrogenation of Nitrobenzene over a Nickel Boride Catalyst”, Ind. Eng. Chem. Prod. Res. Dev., 21 (1982) 279.
[43] 陳義忠,「對氯硝基苯於硼化鎳觸媒之選擇性氫化反應」,國立中央大學,化學工程研究所,碩士論文,民國82年。
[44] 蔡漢良,「硝基苯在P-1硼化鎳觸媒之氫化反應」,國立台灣大學,化學研究所,碩士論文,民國73年。
[45] H. Li, J. Zhang, H. Li, “Ultrasound-assisted preparation of a novel Ni-B amorphous catalyst in uniform nanoparticles for p-chloronitrobenzene hydrogenation”, Catal. Commun., 8 (2007) 2212-2216.
[46] 楊盛威,「硼化鎳觸媒於苯乙酮及二苯甲酮選擇性氫化反應之研究」, 國立中央大學,化學工程研究所,碩士論文,民國83年。
[47] C. Barnett, “Hydrogenation of Aliphatic Nitriles over Transition Metal Borides”, Ind. Eng. Chem. Prod. Res. Dev., 8 (1969) 145.
[48] H. Li, Y. Wu, Y. Wan, J. Zhang, W. Dai, M. Qiao, “Comparative studies on catalytic behaviors of various Co- and Ni-based catalysts during liquid phase acetonitrile hydrogenation”, Catal. Today, 93-95 (2004) 493-503.
[49] Z. B. Yu, M. H. Qiao, H. X. Li, J. F. Deng, “Preparation of Amorphous Ni-Co-B Alloys and the Effect of Cobalt on Their Hydrogenation Activity”, Appl. Catal. A, 163 (1997) 1-13.
[50] X. Chen, S. Wang, J. Zhuang, M. Qian, K. Fan, H. He, “Mesoporous silica-supported Ni-B amorphous alloy catalysts for selective hydrogenation of 2-ethylanthraquinone”, J. Catal., 227 (2004) 419-427.
[51] P. Kukula, V. Gabova, K. Koprivova, P. Trtik, “Selective hydrogenation of unsaturated nitriles to unsaturated amines over amorphous CoB and NiB alloys doped with chromium”, Catal. Today, 121 (2007) 27-38.
[52] H. Wang, Z. Yu, H. Chen, J. Yang, J. F. Deng, “High Activity Ultrfaine Ni-Co-B Amorphous Alloy Powder for the Hydrogenation of Benzene”, Appl. Catal. A, 129 (1995) L143-L149.
[53] M. Wang, H. Li, Y. Wu, J. Zhang, “Comparative studies on the catalytic behaviors between the Ni-B amorphous alloy and other Ni-based catalysts during liquid phase hydrogenation of acetonitrile to ethylamine”, Mater. Letters., 57 (2003) 2954-2964.
[54] X. Yan, J. Sun, Y. Xu, J. Yang, “Liquid-phase hydrogenation of chloro- nitrobenzene to chloroaniline over Ni-Co-B amorphous alloy catalyst”, Chin. J. Catal., 27 (2006) 119-123.
[55] S. P. Lee, Y. W. Chen, “Nitrobenzene hydrogenation on Ni-P, Ni-B and Ni-P-B ultrafine materials”, J. Mol. Catal. A., 152 (2000) 213-223.
[56] H. Li, Q. Zhao, H. Li, “Selective hydrogenation of p-chloronitrobenzene over Ni-P-B amorphous catalyst and synergistic promoting effects of B and P”, J. Mol. Catal. A., 285 (2008) 29-35.
[57] Y. Z. Chen, K. S. Ling, “Carbonytlation of Methanol over Suported Nickel Boride Catalysts”, J. Chin. I. Ch. E., 22 (1991) 103.
[58] H. Li, H. Li, W. L. Dai, J. F. Deng, “Influence of calcinations and temperature on the activity of Ni-B/SiO2 amorphous catalyst and in acrylonitrile hydrogenation”, Appl. Catal. A, 207 (2001) 151-157.
[59] A. S. Merenov, A. Nelson, M. A. Abraham, “Support effects of nickel on activated carbon as a catalyst for vapor phase methanol carbonylation”, Catal. Today., 55 (2000) 91-101.
[60] A. S. Merenov, M. A. Abraham, “Catalyzing the carbonylation of methanol using a heterogeneous vapor phase catalyst”, Catal. Today., 40 (1998) 397-404.
[61] Y. He, M. Qiao, H. Hu, J. F. Deng, K. Fan, “Characterization and catalytic behavior of amorphous Ni-B/AC catalysts prepared in different impregnation sequences”, Appl. Catal. A., 228 (2002) 29-37.
[62] H. Li, H. Li, J. F. Deng, “Glucose Hydrogenation over Ni-B/SiO2 Amorphous Alloy Catalyst and the Promoting Effect of Metal Dopants”, Catal. Today, 74 (2002) 53-56.
[63] R. Zhang, F. Li, N. Zhang, Q. Shi, “Benzene hydrogenation over amorphous NiB/bentonite catalyst and promoting effect”, Appl. Catal. A., 239 (2003) 17-23.
[64] X. Chen, H. He, B. Liu, M. Qiao, K. Fan, H. He, “Selective hydrogenation of 2-ethylanthraquinone over an environmentally benign Ni-B/SBA-15 catalyst prepared by a novel reductant-impregnation method”, J. Catal., 220 (2003) 254-257.
[65] L. Wang, W. Li, M. Zhang, K. Tao, “The interactions between the NiB amorphous alloy and TiO2 support in the NiB/TiO2 amorphous catalysts”, Appl. Catal. A., 259 (2004) 185-190.
[66] 胡張員,李鳳儀,張榮斌,華麗,「幾種非晶態Ni-B合金催化的物化和催化性能比較」,南昌大學學報(理科版),第30卷第6期,564~568頁,95年12月。
[67] M. Wang, F. Li, R. Zhang, “Study on catalytic hydrogenation properties and thermal stability of amorphous NiB alloy supported on carbon nanotubes”, Catal. Today, 93-95 (2004) 603-606.
[68] Y. Li, G. H. Li, R. X. Zhou, “Carbon nanotube supported Pt-Ni catalysts and their properties for the liquid phase hydrogenation of cinnamaldehyde to hydrocinnamaldehyde”, Appl. Surf. Sci., 253 (2007) 4978-4984.
[69] Y. Li, P. F. Zhu, R. X. Zhou, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with carbon nanotubes supported Pt-Co catalysts”, Appl. Surf. Sci., 254 (2008) 2609-2614.
[70] Y. Li, G. H. Li, R. X. Zhou, “Bimetallic Pt-Co catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol: Preparation and characterization”, J. Mol. Catal. A., 279 (2008) 140-146.
[71] 張立德,牟季美,奈米材料和奈米結構,滄海書局,民國九十一年。
[72] H. P. Choo, K. Y. Liew, W. A. K. Mahmood, H. Liu, “Morphology and Crystalline Structure of Polymer Stabilized Pd Nanoparticles”, J. Mater. Chem., 11 (2001) 2906.
[73] W. Yu, H. Liu, M. Liu, Q. Tao, “Selective hydrogenation of α,β-Unsaturated Aldehyde to α,β-Unsaturated Alcohol over Polymer-Stabilized Platinum Colloid and the Promotion Effect of Metal Cations ”, J. Mol. Catal. A, 138 (1999) 273.
[74] X. Yang, H. Liu, “Influence of Metal Ions on Hydrogenation of o-Chloro- nitrobenzene over Platinum Colloidal Clusters”, Appl. Catal. A, 164 (1997) 197.
[75] N. Toshima, Y. Shiraishi, T. Teranishi, “Effect of Addition Metal Ions on Catalyses of Polymer-Stabilized Metal Nanocluster”, J. Mol. Catal. A, 177 (2001) 139.
[76] Y. Shiraishi, M. Nakayama, E. Takagi, T. Tominaga, and N. Toshima, “Effect of Quantity of Polymer on Catalysis and Superatructure Size of Polymer-Preotected Pt Nanoclusters”, Inorg. Chim. Acta, 300-302 (2000) 964.
[77] T. Teranishi, M. Miyake, “Size Control of Palladium Nanoparticles and their Crystal Structure’’, Chem. Mater., 10 (1998) 594.
[78] 李潔如,牟中原,「微胞、微乳液的形成」,科學月刊,第二十五卷第十期,739~748頁,83年10月。
[79] 王鳳英,界面活性劑的原理與應用,高立圖書有限公司,民國八十九年。
[80] 連大成,「W/O 型微乳液液滴之電荷分佈量測」,國立中央大學,化學工程研究所,碩士論文,民國90年。
[81] 吳昇峰,「逆微乳化方式製造磁性奈米粒子之研究」,國立成功大學,機械工程學系,碩士論文,民國93年。
[82] A.S. Bommarius, J.F. Holzwarth, D.I.C. Wang, T.A. Hatton, “Coalescence and solubilizate exchange in a cationic four-component reversed micellar system”, J. Phys. Chem., 94 (1990) 7232-7239.
[83] B. Roque, S. F. Alvaro, G. C. Francisco, “Kinetic models in reverse micelles”, Biochem. J., 310 (1995) 721-739.
[84] 趙承琛,界面科學基礎,復文書局,民國九十二年。
[85] K. N. Kijiro, K. Ayao, “Solubility behavior of water in nonaqueous solution of oil-soluble surfactant: effect of molecular structure of surfactants and solvents”, J. Colloid and Interface Science, 37 (1971) 469-475.
[86] 王正全,「鈀奈米粒子之製備與應用」,國立成功大學,化學工程與材料工程研究所,碩士論文,民國90年。
[87] K. Osseo-Asare, F. J. Arriagada, “Preparation of SiO2 Nanoparticles in a Nonionic Reverse micellar System”, Colloids Surfaces, 50 (1990) 321.
[88] M. Boutonnet, J. Kizling, P. Stenius, “The Preparation of Monodisperse Colloid Metal Particless From Microemulsions”, Colloids Surf., 5 (1982) 209.
[89] K. Kurihara, J. Kizking, P. Stenius, J. H. Fendler, “Laser and Pulse Radiolytically Induced Colloid Gold Formation in Water and in Water-in-Oil Microemulsions”, J. Am. Chem. Soc., 105 (1983) 2574.
[90] C. Petit, P. Lixon, M. P. Pileni, “In situ synthesis of silver nanocluster in AOT reverse micelles”, J. Phys. Chem., 97 (1993) 12974.
[91] Pileni, M.P. and Lisiecki, I., “Synthesis of Copper Metallic Clusters Using Reverse Micelles as Microreactors”, J. Am. Chem. Soc., 115 (1993) 3887.
[92] J. B. Nagy, “Multinuclear NMR characterization of microemulsions: preparation of monodisperse colloidal metal boride particles”, Colloids and surfaces, 35 (1989) 201-220.
[93] P. Lianos, J. K. Thomas, “Small CdS Particles in Inverted Micelles”, J. Colloid Interface Sci., 117 (1987) 505.
[94] A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, L. E. Brus, “Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media”, J. Am. Chem. Soc., 112 (1990) 1327.
[95] A. J. I. Ward, E. C. O’Sullivan, J. C. Rang, J. Nedeljkovic, R. C. Patel, “The Synthesis of Quantum-Size Lead Sulfide Particles in Surfactant-Based Complex Fluid Media”, J. Colloid Interface Sci., 161 (1993) 316.
[96] T. Hirai, S. Shiojiri, I. Komasawa, “Preparation of Metal Sulfide Composite Ultrafine Particles in Reverse Micellar Systems and Their Photocatalytic Property”, J. Chem. Eng. Jpn., 27 (1994) 590.
[97] S. K. Haram, A. R. Mahadeshwar, S. G. Dixit, “Synthesis and Characterization of Copper Sulfide Nanoparticles in Triton-X-100 Water-in-Oil Microemulsions”, J. Phys. Chem., 100 (1996) 5868.
[98] P. Lianos, J. K. Thomas, Mater. Sci. Forum, 25/26 (1988) 369.
[99] L. Motte, F. Billoudet, M. P. ileni, “Synthesis in-Situ of Nanosize Silver Sulfide Semiconductor Particles in Reverse Micelles”, J. Mat. Sci., 31 (1996) 38.
[100] M. volaitzky, R. ber, C. aupin, R. nthore, X. uvray, C. Petipas, C. Williams, J. Dispersion Sci. Technol. 4 (1983) 29.
[101] K. Kandori, K. Kon-No, A. Kitahara, “Formation of Ionic Water Oil Microemulsions and Their Application in the Preparation of CaCO3 Particles”, J. Colloid Interface Sci., 122 (1988) 78.
[102] E. Joselevich, I. Willner, “Photosensitization of Quantum-Size TiO2 Particles in Water-in-Oil Microemulsions”, J. Phys. Chem., 98 (1994) 7628.
[103] C. L. Chang, H. S. Fogler, “Controlled Formation of Silica Particles from Tetraethyl Orthosilicate in Nonionic Water-in-Oil Microemulsions”, Langmuir, 13 (1997) 3295.
[104] J. Wang, L. S. Ee, S. C. Ng, C. H. Chew, L. M. Gan, “Reduced Crystallization Temperature in a Microemulsion-Derived Zirconia Precursor”, Mater. Lett., 30 (1997) 119.
[105] M. Singhal, V. Chhabra, P. Kang, D. O. Shah, “Synthesis of ZnO Nanoparticles for Varistor Application Using Zn-Substituted Aerosol OT Microemulsion”, Mater. Res. Bull., 32 (1997) 239.
[106] V. Chhabra, M. Lal, A. N. Maitra, P. Ayyub, “Preparation of Ultrafine High-Density Gamma-Ferric-Oxide Using Aerosol OT Microemulsions and Its Characterization”, Colloid Polym. Sci., 273 (1995) 939.
[107] V. Pillai, P. Kumar, M. S. Multani, D. O. Shah, “Structure and Magnetic-Properties of Nanoparticles of Barium Ferrite Synthesized Using Microemulsion Processing”, Colloids Surf. A., 80 (1993) 69.
[108] P. Ayyub, A. N. Maitra, D. O. Shah, “Formation of Theoretical-Density Microhomogeneous YBa2Cu3O7-X Using a Microemulsion-Mediated Process”, Physica C, 168 (1990) 571.
[109] N. Lufimpadio, J. B. Nagy, E. G. Derouane, “Preparation of colloidal iron boride particles in the CTAB/n-hexanol/water reversed micellar system”, In Surfactantsin Solution, Vol. 3; Mittal, K. L., Lindman, B. L., Eds.; Plenum: New York, (1984) 1483-1497.
[110] D. H. Chen, S. H. Wu, “Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions”, Chem. Mater., 12 (2000) 1354-1360.
[111] Toshiaki Hanaoka, Takatoshi Hatsuta, Teruoki Tago, Masahiro Kishida, Katsuhiko Wakabayashi “Control of the rhodium particle size of the silica-supported catalysts by using microemulsion”, Appl. Catal. A., 190 (2000) 291-296.
[112] Masahiro Kishida, Toshiaki Hanaoka, Won Young Kim, Hideo Nagata, Teruoki Tago, Katsuhiko Wakabayashi “Size control of rhodium particle of silica-supported catalysts using water-in-oil microemulsion”, Applied Surface Science 121/122 (1997) 347-350.
[113] T. Teranishi, M. Miyake, “Size Control of Palladium Nanoparticles and Their Crystal Structure’’, Chem. Mater., 10 (1998) 594.
[114] T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake. “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophporetic Deposition”, J. Phy. Chem. B, 103 (1999) 3818.
[115] X. Yan, H. Liu, K. Yong Liew, “Size Control of Polymer-Stabilized Ruthenium Nanoparticles by Polyol Reduction”, J. Mater. Chem., 11 (2001) 3387.
[116] H. P. Choo, K. Y. Liew, H. Liu, “Factors Affecting the Size of Polymer Stabilized Pd Nanoparticles”, J. Mater. Chem., 12 (2002) 934.
[117] W. Tu, H. Liu, “Rapid Synthesis of Nanoscale Colloidal Metal Clusters by Microwave Irradiation”, J. Mater. Chem., 10 (2000) 2207.
[118] W. Yu, W. Tu, H. Liu, “Synthesis of nanoscale platinum colloids by microwave dielectric heating”, Langmuir, 15 (1999) 6-9.
[119] B. He, Y. Ha, H. Liu, K. Wang, K. Y. Liew, “Size control synthesis of polymer- stabilized water-soluble platinum oxide nanoparticles”, J. Colloid interface sci., 308 (2007) 105-111.
[120] W. Yu, M. Liu, H. Liu, X. Ma, Z. Liu, “Preparation, Characterization, and Catalytic Properties of Polymer-Stabilized Ruthenium Colloids”, J. Colloid Interf. Sci., 208 (1998) 439.
[121] 陳世文,「奈米非晶態CoNiB雙金屬觸媒的製備與氫化探討」,國立中央大學,化學工程研究所,碩士論文,民國95年。
[122] 蔡政勳,「高分子穩定化奈米NiB觸媒之製備與催化性質研究」,國立中央大學,化學工程研究所,碩士論文,民國92年。
[123] J. Turkevich, G. Kim, Science 169 (1970) 873.
[124] M.T. Reetz, S.A. Quaiser, Angew. Chem. Int. Ed. Engl. 34 (1995) 2240.
[125] M.T. Reetz, S.A. Quaiser, R. Breinbauer, B. Tesche, Angew. Chem. Int. Ed. Engl. 34 (1995) 2728.
[126] L. C. Chao, R.P. Andres, J. Colloid Interface Sci. 165 (1994) 290.
[127] G. Schmid, S. Emde, V. Maihack, W. Meyer-Zaika, St. Peschel, J. Mol. Chem., A: Chem. 107 (1996) 95.
[128] B.C. Gates, Chem. Rev. 95 (1995) 511.
[129] Z. Xu, F. S. Xiao, S.K. Purnell, O. Alexeev, S. Kawi, S.E. Deutsch, B.C. Gates, Nature 372 (1994) 346.
[130] Q. Wang, H. Liu, H. Wang, “Immobilization of polymer-stabilized noble metal colloids and their catalytic properties for hydrogenation of olefins”, J. Colloid interface Sci., 190 (1997) 380-386.
[131] W. Yu, M. Liu, H. Liu, X. An, Z. Liu, X. Ma, “Immobilization of polymer-stabilized metal colloids by a modified coordination cpture: preparation of supported metal colloids with singular catalytic properties”, J. Mol. Catal. A., 142 (1999) 201-211.
[132] S. Zhao, H. Liang, Y. Zhou, “Selective hydrogenation of m-dinitrobenzene to m-nitroaniline catalyzed by PVP-Ru/Al2O3”, Catal. Commun., 8 (2007) 1305-1309.
[133] Q. Xu, X. M. Liu, J. R. Chen, R. X. Li, X. J. Li, “Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/γ-Al2O3”, J. Molec. Catal. A., 260 (2006) 299-305.
[134] H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loy, J.F. Deng, G.Q. Xu, Langmuir, 12 (1996) 909.
[135] W. Yu, M. Liu, H. Liu, X. Ma, Z. Liu, J. Colloid Interf. Sci., 208 (1998) 439.
[136] H.P. Choo, K.Y. Liew, H.F. Liu, C.E. Seng, W.A.K. Mahmood, M. Bettahar, J. Mol. Catal. A, 191 (2003) 113.
[137] Z. Zhang, X. Yan, H. Liu, J. Mol. Catal. A, 176 (2001) 286.
[138] X. Zuo, H. Liu, J. Tian, J. Mol. Catal. A, 157 (2000) 217.
[139] W. Yu, H. Liu, M. Liu, Q. Tao, J. Mol. Catal. A, 138 (1999) 273.
[140] W. Yu, Y. Wang, H. Liu, W. Zheng, J. Mol. Catal. A, 112 (1996) 105.
[141] H. Feng, H. Liu, J. Mol. Catal. A, 126 (1997) L5.
[142] W. Yu, M. Liu, H. Liu, X. Ma, Z. Liu, J. Colloid Interf. Sci., 208 (1998) 439.
[143] X. Yan, M. Liu, H. Liu, K.Y. Liew, J. Mol. Catal. A, 169 (2001) 225.
[144] X. Yang, M. Liu, H. Liu, K.Y. Liew, N. Zhao, J. Mol. Catal. A, 170 (2001) 203.
[145] M. Liu, W. Yu, H. Liu, J. Mol. Catal. A, 138 (1999) 295.
[146] X. Yang, Z. Deng, H. Liu, J. Mol. Catal. A, 144 (1999) 123.
[147] W. Tu, H. Liu, Y. Tang, J. Mol. Catal. A, 159 (2000) 115.
[148] W. Yu, H. Liu, X. An, X. Ma, Z. Liu, L. Qiang, J. Mol. Catal. A, 147 (1999) 73.
[149] H.P. Choo, K.Y. Liew, H.F. Liu, C.E. Seng, J. Mol. Catal. A, 165 (2001) 127.
[150] Y. Shiraishi, M. Nakayama, E. Takagi, T. Tominaga, N. Toshima, Inorg. Chim. Acta, 300-302 (2000) 964.
[151] W. Yu, H. Liu, M. Liu, “Selective hydrogenation of citronellal to citronellol over polymer-stabilized noble metal colloids”, Reactive & Functional Polymer 44 (2000) 21-29.
[152] M. Liu, W. Yu, H. Liu, “Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Molec. Catal. A., 138 (1999) 295-303.
[153] W. Tu, H. Liu, Y. Tang, “The metal complex effect on the selective hydrogenation of m- and p-chloronitrobenzene over PVP-stabilized platinum colloidal catalysts”, J. Molec. Catal. A., 159 (2000) 115-120.
[154] W. Yu, H. Liu, M. Liu, Q. Tao, “Selective hydrogenation of α,β-unsaturated aldehyde to α,β-unsaturated alcohol polymer-stabilized platinum colloid and the promotion effect of metal cations”, J. Molec. Catal. A., 138 (1999) 273-286.
[155] X. Yan, M. Liu, H. Liu, K. Y. Liew, “Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Molec. Catal. A., 169 (2001) 225-233.
[156] N. Toshima, Y. Wang, “Preparation and Catalysis of Novel Colloidal Dispersions of Copper/Noble Metal Bimetallic Clusters”, Langmuir, 10 (1994).
[157] W. Yu, Y. Wang, H. Liu. “Preparation and Characterization of Polymer- Protected Pt/Co Bimetallic Colloids and Their Catalytic Properties in the Selective Hydrogenation of Cinnamaldehyde”, J. Mol. Catal. A, 112 (1996) 105.
[158] X. Yang, H. Liu, H. Zhong, “Hydrogenation of o-Chloronitrobenzene over Polymer-Stabilized Palladium–Platinum Bimetallic Colloidal Clusters”, J. Mol. Catal. A, 147 (1999) 55.
[159] M. Liu, W. Yu, H. Liu, J. Zheng, “Preparation and characterization of polymer-stabilized ruthenium-palladium bimetallic colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene”, J. Colloid interface sci., 214 (1999) 231-237.
[160] 陳志豪,「雙金屬CoNiB奈米非晶態觸媒之製備與果糖氫化反應」,國立中央大學,化學工程研究所,碩士論文,民國96年。
[161] C. L. Thomas, in “Catalytic Processes and Proven Catalysts”, Chap. 15, Academic Press, New York (1970).
[162] H. Adkins, R. Connor, “Hydrogenation over Copper Chromite”, J. Am. Chem. Soc., 53 (1931) 1090.
[163] R. Rao, A. Dandekan, R. T. K. Baker, M. A. Vannice, “Properties of Copper Chromite Catalysts in Hydrogenation Reactions”, J. Catal., 171 (1997) 406.
[164] J. McEvoy, H. Shalit, “Copper Chromite-Alkali Metal Oxide High Surface Area Hydrogenation Catalyst”, U.S. Patent, 3,374,184, Mar. 19 (1968).
[165] M. S. Borts, N. D. Gil’chenok, V. M. Ignat’ev, G. S. Gurevich, “Kinetics of Vapor-Phase Hydrogenation of Furfural on a Copper Chromite Catalyst”, J. Appl. Chem. USSR, 59 (1986) 114.
[166] G. Seo, H. Chon, “Hydrogenation of Furfural over Copper-Containing Catalysts”, J. Catal., 67 (1981) 424.
[167] Z. Huang, L. Qiu, Shiyou Huagong 21 (1992) 35.
[168] B. M. Nagaraja, V. Siva Kumar, V. Shasikala, A. H. Padmasri, B. Sreedhar, B. David Raju, K. S. Rama Rao, “A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural alcohol”, Catal. Commun, 4 (2003) 287-293.
[169] B. M. Nagaraja, A. H. Padmasri, B. David Raju, K. S. Rama Rao, “Vapor phase selective hydrogenation of furfural to furfural to furfuryl alcohol over Cu-MgO coprecipitated catalysts”, J. Molec. Catal. A., 265 (2007) 90-97.
[170] J. Wu, Y. Shen, C. Liu, H. Wang, C. Geng, Z. Zhang, “Vapor phase hydrogenation of furfural to furfuryl alcohol over environmentally friendly Cu-Ga/SiO2 catalyst”, Catal. Commun, 6 (2005) 633-637.
[171] X. Chen, H. Li, H. Luo, M. Qiao, “Liquid phase hydrogenation of furfuryl alcohol over Mo-doped Co-B amorphous alloy catalysts”, Appl. Catal. A., 233 (2002) 13-20.
[172] H. Li, S. Zhang, H. Luo, “A Ce-promoted Ni-B amorphous alloy catalyst (Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol”, Materials Letters, 58 (2004) 2741-2746.
[173] H. Li, H. Luo, L. Zhuang, W. Dai, M. Qiao, “Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous Ni-B amorphous alloy catalysts”, J. Molec. Catal. A., 203 (2003) 267-275.
[174] B. M. Nagaraja, A. H. Padmasri, P. Seetharamulu, K. Hari Prasad Reddy, B. David Raju, K. S. Rama Rao, “A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route-Combination of furfural hydrogenation and cyclohexanol dehydrogenation”, J. Molec. Catal. A., 278 (2007) 29-37.
[175] W. Huang, H. Li, B. Zhu, Y. Feng, S. Wang, S. Zhang, “Selective hydrogenation of furfural to furfuryl alcohol over catalysts prepared via sonochemistry”, Ultra. Sonochem, 14 (2007) 67-74.
[176] T. B. L. W. Marinelli, V. Ponec, G. C. Raab, J. A. Lercher, “Furfural-Hydrogenation Reactions, Manipulation of Activity and Selectivity of the Catalyst”, Stud. Surf. Sci. Catal., 78 (1993) 195.
[177] J. Kijeński, P. Winiarek, T. Paryjczak, A. Lewicki, A. Mikolajska, “Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol”, Appl. Catal. A., 233 (2002) 171-182.
[178] B. J. Liaw, S. J. Chiang, C. H. Tsai, Y. Z. Chen, “Preparation and Catalysis of Polymer-stabilized NiB Catalysts on Hydrogenation of Carbonyl and Olefinic groups”, Appl. Catal.A, 284 (2005) 239
[179] 廖炳傑,「CuB超細合金觸媒之製備與催化性質探討」,國立中央大學,化學工程研究所,博士論文,民國89年。
[180] N. Merat, C. Godawa, A. Gaset, “High Selective Production of Tetrahydrofurfuryl Alcohol: Catalytic Hydrogenation of Furfural and Furfuryl Alcohol”, J. Chem. Tech. Biotechnol., 48 (1990) 145.
[181] J. Yang, H. Y. Zheng, Y. L. Zhu, G. W. Zhao, C. H. Zhang, B. T. Teng, H. W. Xiang, Y. Li, “Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing γ-butyrolacton and 2-methylfuran through the coupling of dehydrogenation and hydrogenation”, Catal. Commun, 5 (2004) 505-510.
[182] J. Kije´nski, P. Winiarek, T. Paryjczak, A. Lewicki, A. Mikoajska, “Platinum Deposited on Monolayer Supports in Selective Hydrogenation of Furfural to Furfuryl Alcohol”, Appl. Catal.A, 233 (2002) 171
[183] P. Beccat, J. C. Bertolini, Y. Gauthier, J. Massardier, P. Ruiz, “Crotonaldehyde and Methylcrotonaldehyde Hydrogenation over Pt(111) and Pt80Fe20(111) Single Crystals”, J. Catal., 126 (1990) 451.
[184] A. Dandekar, M. A. Vannice, “Crotonaldehyed hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts”, J. Catal., 183 (1999) 344-354.
[185] M. A. Vannice, B. Sen, “Metal-Support Effect on the Intramolecular Selectivity of Crotonaldehyde Hydrogenation over Platinum”, J. Catal., 115 (1989) 65.
[186] 高慶富,「α,β-不飽和醛於Yttria-Stabilized Zirconia負載式金屬觸媒之選擇性氫化反應研究」,國立中央大學,化學工程研究所,碩士論文,民國87年。
[187] E. Djerboua, D. Benachour, R. Touroude, “On the performance of a highly loaded Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatment-catalyst structure-selectivity relationship”, Appl. Catal., 282 (2005) 123-133.
[188] Y. Nitta, T. Imanaka, S. Teranish, “Hydrogenation Activity and Selectivity of Cobolt Boride and Cobolt Nickel Binary Boride Catalyst”, Bull. Chem. Soc. Jap., 53 (1990) 3154.
[189] T. B. L. W. Marinelli, S. Nabuurs, V. Ponec, “Activity and Selectivity in the Reactions of Substituted ?,?-Unsaturated Aldehydes”, J. Catal., 151(1995) 431.
[190] E. V. Ramos-Fernández, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, “Enhancing the catalyst performance of Pt/ZnO in the vapour phase hydrogenationof crotonaldehyde by the addition of Cr to the support”, Catal. Commun., 9 (2008) 1243-1246.
[191] F. Ammari, C. Milone, R. Touroube, “Selective hydrogenation of crotonaldehyde on Pt/ZnCl2/SiO2 catalysts”, J. Catal., 235 (2005) 1-9.
[192] H. Noller, W. M. Lin, “Activity and Selectivity of Ni-Cu/Al2O3 Catalysts for Hydrogenation of Crotonaldehyde and Mechamism of
Hydrogenation”, J. Catal., 85 (1984) 25.
[193] D. V. Solkoskii, N. V. Anisimova, A. K. Zharmagambetova, S. G. Mukhaedzhanova, L. N. Edygenova, “Pt-Fe2O3 Catalytic System for Hydrogenation Reaction”, React. Kinet. Catal. Lett., 33 (1987) 399.
[194] Y. Pei, H. Hu, J.Fang, M. Qiao, W. Dai, K. Fan, H. Li, “Liquid phase hydrogenation of crotonaldehyde over Sn-promoted amorphous Co-B catalyst”, J. Mol. Catal. A., 211 (2004) 243-249.
[195] 李明書,「負載式CuB合金觸媒製備與催化性質探討」,國立中央大學,化學工程研究所,碩士論文,民國91年。
[196] 楊朝興,「負載式NiB/SiO2非晶態奈米觸媒的製備與氫化反應研究」,國立中央大學,化學工程研究所,碩士論文,民國94年。
[197] M. Englisch, V.S. Ranade, J.A. Lercher, J. Mol. Catal. A 121 (1997) 69.
[198] J.L. Margitfalvi, A. Tompos, I. Kolosova, J. Valyon, J. Catal. 174 (1998) 246.
[199] A. B. Merlo, G. F. Santori, J. Sambeth, G. J. Siri, M. L. Casella, O. A. Ferretti, “Hydrogenation of crotonaldehyde and butyraldehyde on silica supported Pt and PtSn catalysts:A drifts study”, Catal. Commun. 7 (2006) 204-208.
[200] J. C. S. Wu, T. S. Cheng, C. L. Lai, “Boron nitride supported PtFe catalysts for selective hydrogenation of crotonaldehyde”, Appl. Catal. A., 314 (2006) 233-239.
[201] J. Ruiz-Martínez, F. Coloma, A. Sepúlveda-Escribano, J. A. Anderson, F. Rodríguez- Reinoso, “Effect of tin content and reduction temperature on the catalytic behaviour of PtSn/TiO2 catalysts in the vapour-phase hydrogenation of crotonaldehyde”, Catal. Today, 133-135 (2008) 35-41.
[202] C. Raab, J.A. Lercher, Catal. Lett. 18 (1993) 99.
[203] A. M. Ruppert, T. Paryjczak, “Pt/ZnO2/TiO2 catalysts for selective hydrogenation of crotonaldehyde:Tuning the SMSI effect for optimum performance”, Appl. Catal. A., 320 (2007) 80-90.
[204] J. C. S. Wu, W. C. Chen, “A novel BN supported bi-metal catalyst for selective hydrogenation of crotonaldehyde”, Appl. Catal. A., 289 (2005) 179-185.
[205] M. Abid. V. Paul-Boncour, R. Touroube, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation:Selectivity metal particle size and SMSI states”, Appl. Catal., 297 (2006) 48-59.
[206] M. Abid, G. Ehret, R. Touroude, Appl. Catal. 217 (2001) 219.
[207] J. Silverstre-Albero, F. Coloma, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, “Effect of the presence of chlorine bimetallic PtZn/CeO2 catalysts for the vapor-phase hydrogenation of crotonaldehyde”, Appl. Catal. A., 304 (2006) 159-167.
[208] J. C. Serrano-Ruiz, J. Luettich, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, “Effect of the support composition on the vapor-phase hydrogenation of crotonaldehyde over Pt/CexZr1-xO2 catalysts”, J. Catal., 241 (2006) 45-55.
[209] P. Concepcio´n, A. Corma, J. Silvestre-Albero, V. Franco, J.Y. Chane- Ching, J. Am. Chem. Soc. 126 (2004) 5523.
[210] F. Coloma, A. Sepulveda-Escribano, F. Rodríguez-Reinoso, Appl. Catal. A 123 (1995) L1.
[211] K. Liberková, R. Touroude, J. Mol. Catal. A., 180 (2002) 221.
[212] F. Ammari, J. Lamotte, R. Touroude, J. Catal. 221 (2004) 32.
[213] E. Gebauer-Henke, J. Grams, E. Szubiakiewicz, J. Farbotko, R. Touroube, J. Rynkowski, “Pt/Ga2O3 catalysts of selective hydrogenation of crotonaldehyde”, J. Catal., 250 (2007) 195-208.
[214] Y. Pei, P. Guo, M. Qiao, H. Li, S. Wei, H. He, K. Fan, “The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde”, J. Catal., 248 (2007) 303-340.
[215] B. Campo, M. Volpe, S. Ivanova, R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HAS-CeO2 catalysts”, J. Catal., 242 (2006) 162-171.
[216] B. C. Campo, S. Ivanova, C. Gigola, C. Petit, M.A. Volpe, “Crotonaldehyde hydrogenation on supported gold catalysts”, Catal. Today, 133-135 (2008) 661-666.
[217] B. Campo, C. Petit, M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts”, J. Catal., 254 (2008) 71-78.
[218] U. K. Singh, M. A. Vannice, “Liquid-Phase Citral Hydroge- nation over SiO2-Supported Group VIII Metals” J. Catal., 199 (2001) 73.
[219] G. Neri, L. Mercadante, A. Donate, A. M. Visco, S. Galvagno, “Influence of Ru Precursor, Support and Solvent in the Hydrogenation of Citral over Ruthenium Catalysts”, Catal. Lett., 29 (1994) 379.
[220] W. S. Millmen, G. V. Smith, in: Catalysis in Organic Syntheses, ed. G. V. Smith (Academic Press, New York, 1977) p. 33.
[221] S. Galvagno, C. Milone, A. Donato, G. Neri, R. Pietropaolo, “Influence of Metal Particle Size in Hydrogenation of Citral over Ru/C”, Catal. Lett., 18 (1993) 349.
[222] B. Didillon, A. El Mansour, J. P. Candy, J. P. Bournonville, J. M. Basset, in: Heterogenous Catalysis and Fine Chemicals II, eds. M. Guisent, J. Barrault, C. Bouchoule, D. Duprez, G. Perot, R. Maurel, and C. Montassier (Elsevier, Amsterdam, 1991) p. 137.
[223] A. A. Wismeijer, A. P. G. Kieboom, H. van Bekkum, “Selective Hydrogenation of Citronellal to Citronellol over Ru/TiO2 as Compare to Ru/SiO2”, Appl. Catal., 25 (1986) 181.
[224] L. Mercadante, G. Neri, C. Millone, A. Donato, S. Galvagno, “Hydrogenation of α,β–Unsaturated Aldehydes over Ru/Al2O3 Catalysts”, J. Mol. Catal. A, 105 (1996) 93.
[225] S. Galvagno, C. Milone, A. Donato, G. Neri, R. Pietro- paolo , “Hydrogenation of Citral over Ru-Sn/C”, Catal. Lett., 17 (1993) 55.
[226] G. Neri, L. Mercadante, C. Milone, R. Pietropaolo, S. Galvagno, “Hydrogenation of Citral and Cinnamaldehyde over Bimetallic Ru-Me/Al2O3 Catalysts”, J. Mol. Catal. A, 108 (1996) 41.
[227] B. B. Baeza, I. R. Ramos, A. G. Ruiz, “Influence of Mg and Ce Addition to Ruthenium Based Catalysts Used in The Selective Hydrogenation of α,β-Unsaturated Aldehydes”, Appl. Catal. A, 205 (2001) 227.
[228] A. M. Silva, O. A. A. Santos, M. J. Mendes, E. Jordão, M. A. Fraga, “Hydrogenation of Citral over Ruthenium-Tin Catalysts”, Appl. Catal., 241 (2003) 155.
[229] E. Asedegbega-Nieto, B. Bachiller-Baeza, A. Guerrero-Ruíz, I. Rodríguez-Ramos, “Modification of catalytic properties over carbon supported Ru–Cu and Ni–Cu bimetallics”, Appl. Catal. A., 300 (2006) 120-129.
[230] Á.-R. Jesús, G.-R. Antonio, R.-R. Inmaculada, A. M. Adolfo, “Modifications of the citral hydrogenation selectivities over Ru/KL-zeolite catalysts induced by the metal precursors”, Catal. Today, 107-108 (2005) 302-309.
[231] Á.-R. Jesús, G.-R. Antonio, R.-R. Inmaculada, A. Arcoya, “Changes in the selective hydrogenation of citral induced by copper addition to Ru/KL catalysts”, Microporous and Mesoporous Materials, 110 (2008) 186-196 .
[232] C. Milone, C. Ganermi, R. Ingoglia, G. Neri, S. Galvagno, “Role of Support in The Hydrogenation Citronellal on Ruthenium Catalysts”, Appl. Catal. A, 184 (1999) 89.
[233] A. M. Pak, D. V. Sokolskii, S. R. Konuspaev,“The Hydrogenation of Citral to Citronellol on Group VIII Metals in Alcohols of Various Structure under Hydrogen Pressure”, Kinet. Catal., 21 (1980) 670.
[234] J. N. Coupe, E. Jordao, M. A. Fraga, M. J. Mendes, “A Comparative Study of SiO2 Supported Rh-Sn Catalysts Prepared by Different Methods in the Hydrogenation of Citral”, Appl. Catal. A, 199 (2000) 45.
[235] W. Yu, H. Lin, M. Liu, Z. Liu, “Selective Hydrogenation of Citronellal over Polymer-Stabilized Noble Metal Colloids” React. Func. Poly., 44 (2000) 21.
[236] R. Malathi, R. P. Viswanath, “Citral Hydrogenation on Supported Platinum Catalysts”, Appl. Catal. A, 208 (2001) 323.
[237] P. Reyes, H. Rojas, G. Pecchi, J. L. G. Fierro, “Liquid-Phase Hydrogenation of Citral over Ir-Supported Catalysts”, J. Mol. Catal. A, 179 (2002) 293.
[238] G. Lafaye, C. Micheaud-Especel, C. Montassier, and P. Marecot, “Characterization of Bimetallic Rhodium-Germanium Catalysts Prepared by Surface Redox Reaction”, Appl. Catal. A, 230 (2002) 19.
[239] 江淑媜,「奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究」,國立中央大學,化學工程與材料工程所,碩士論文,民國92年。
[240] I. M. J. Vilella, S. R. de Miguel, C. S.-M. de Lecea, Á Linares-Solano, O. A. Scelza, “Catalytic performance in citral hydrogenation and characterization of PtSn catalysts supported on activated carbon felt and powder”, Appl. Catal. A., 281 (2005) 247-258.
[241] J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, D. Duprez, “Pt–Sn catalysts supported on highly-dispersed ceria on carbon Application to citral hydrogenation”, J. Molec. Catal. A., 268 (2007) 227-234.
[242] K. Kouachi, G. Lafaye, C. Especel, O. Cherifi, P. Marécot, “Effects of support and metal loading on the characteristics of Co based catalysts for selective hydrogenation of citral”, J. Molec. Catal. A., 280 (2008) 52-60.
[243] P. Reyes, H. Rojas, J.L.G. Fierro, “Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts”, Appl. Catal. A., 248 (2003) 59–65.
[244] K. Utpal, M. Singh, A. Vannice, “Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts–a review”, Appl. Catal. A., 213 (2001) 1-24.
[245] K. Utpal, M. Singh, A. Vannice, “Influence of metal–support interactions on the kinetics of liquid-phase citral hydrogenation”, J. Molec. Catal. A., 163 (2000) 233-250.
[246] L.-P. Tiainen, M.-A. Päíví, T. Salmi, “Modelling of citral hydrogenation kinetics on an Ni/Al2O3 catalyst”, Catal. Today, 48 (1999) 57-63.
[247] M. Kajitani, N. Suzuki, T. Abe, Y. Kaneko, K. Kasuya, K. Takahashi, A. Sugimor, “A Comparative Study of Nickel and Cobalt Catalysts in the Hydrogenation of Substituted Acetopheones Dependence of Hydrogenation Rate and Adsorption Strength on Subsituted and Solvent”, Bull. Chem. Soc. Jpn., 52(8) (1979) 2343-2348.
[248] R. A. Rajadhyasha, S. L. Karwa, “Solvent Effects in Catalytic Hydrogenation”, Chem. Eng. Sci., 41(7) (1986) 1765.
[249] John M. Prausnitz, University of California, Berkeley Ruediger N. Lichtenthaler, University of Heidelberg Edmundo Gomes de Azevedo, Technical University of Lisbon, “Molecular Thermodynamics of Fluid-Phase Equilibria”, (1986) 59.
[250] 吳坤哲,「硼化鈷系列觸媒對選擇性氫化反應的探討」,國立中央大學,化學工程研究所,碩士論文,民國79年。
指導教授 陳吟足、廖炳傑
(Yin-zu Chen、Biing-jye Liaw)
審核日期 2008-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明