博碩士論文 93394003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.222.20.3
姓名 魏向辰(Hsiang-Chen Wei)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 導電高分子與多層奈米碳管複合材料之研究
(Studies on the Conduction Polymers and Multi-Wall Carbon Nanotube Nanocomposite Materials)
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 聚苯胺與聚苯乙烯殼核複合材料之研究
★ 導電高分子與聚胺基甲酸酯複合材料之研究★ 在孔道均一的模板內合成聚苯胺奈米管
★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究
★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究
★ 二氧化鈦的合成與光催化性質的研究★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於奈米碳管具有許多優異之材料、機械、熱傳及電學特性,近年來引起廣泛的研究擁,使其成為複合材料補強材的絕佳候選人。而導電高分子聚苯胺(Polyaniline)、聚塞吩(Polythiophene)具有高分子質輕且導電度高的特性,同時又容易合成等性質。如果能將導電高分子與具有優異性質的奈米碳管相混合,形成具有高分子功能性之奈米複合材料。
本研究將分兩部分來探討,第一部份將多層奈米碳管(MWNT)放入混酸溶液(硫酸:硝酸=3:1)中,以超音波震盪使奈米管懸浮並將奈米碳管表面改質,利用混酸溶液的氧化作用使得奈米碳管表面(c-MWNT)改質成帶有羧酸基(-COOH)以及氫氧基(-OH),將苯胺單體吸附在改質的奈米碳管表面用,用原位聚合法(in-situ)將表面單體聚合而成聚苯胺/羧酸化奈米碳管、聚苯胺/奈米碳管複合材料。第二部份將多層奈米碳管放入氯仿中,加入塞吩後利用原位聚合法將表面單體聚合而成聚塞吩/奈米碳管複合材料。
用掃描式電子顯微鏡(SEM)和穿透式電子顯微鏡(TEM)觀察複合材料的結構,用紅外面光譜(FT-IR)與紫外光-可見光光譜(UV-VIS)來分析複合材料的官能基和複合體中摻雜的效果,使用熱分析儀(TGA)來測量複合材料的熱穩定性,以及用四點探針來量測導電度。
摘要(英) Carbon nanotubes (CNTs) have stimulated wide research activities in recent years because of the merits of their special material,mechanical, thermal and electric properties.
so it is one of the best choice for reinforcements. polyaniline and polythiophene(Poly(3-hexylthiophene)) are both conducting polymers, contains good processability, excellent environmental stability, and reversible control of conductivity, If we can mix conducting polymers and CNTs of excellent nature, arise from a composite of functionalizing.
This research will divide into two parts, First,Multi-wall carbon nanotube(MWNT)was functionalizing in a sulfuric and nitric mixed acids under ultrasonic vibration, and MWNT of surface contains carboxyl group and hydroxyl group. The carbo-xylated MWNT was reacted with aniline to Polyaniline/MWNT and Polyaniline/c-MWNT composites fabricated by in situ. Part two, Composites of MWNT embedded in the thiophene were fabricated by in situ of the P3HT/MWNT composites mixture dissolved in chloroform.
These nanocomposite materials were characterized by Trans-mission electron microscopy (TEM), scanning electron microscopy(SEM), UV-VIS spectra, Fourier-transform infared(FT-IR),thermal analysis (TGA) , Four-point probe.
關鍵字(中) ★ 聚噻吩
★ 聚苯胺
★ 多層奈米碳管
關鍵字(英) ★ polyaniline
★ carbon nanotube
★ polythiophene
論文目次 中文摘要.................................................Ⅰ
Abstract.................................................Ⅱ
致謝.....................................................Ⅲ
目錄.....................................................Ⅴ
圖目錄...................................................Ⅶ
表目錄.................................................ⅩⅡ
第一章 緒論..............................................1
1-1 前言..................................................1
1-2 研究動機..............................................3
第二章 文獻回顧..........................................5
2-1 奈米碳管..............................................5
2-1-1 奈米碳管的發展歷史..................................5
2-1-2 奈米碳管之結構......................................7
2-1-3 奈米碳管之特性.....................................10
2-1-4 奈米碳管之化學修飾方法.............................14
2-2 導電高分子...........................................19
2-2-1 導電高分子簡介.....................................19
2-2-2 聚苯胺.............................................25
2-2-2-1 聚苯胺簡介.......................................25
2-2-2-2 聚苯胺的結構.....................................27
2-2-2-3 聚苯胺之化學合成.................................30
2-2-2-4 聚合機構及氧化還原機制...........................31
2-2-2-5 聚苯胺性質分析...................................33
2-2-3 聚(3-烷基噻吩) ....................................37
2-2-3-1 聚(3-烷基噻吩)簡介...............................37
2-2-3-2 聚(3-烷基噻吩)的結構.............................38
2-2-3-3 聚(3-烷基噻吩)的導電機制.........................40
2-3 導電高分子/奈米碳管複合材料..........................41
2-4 導電高分子/奈米碳管複合材料之應用....................44
第三章 實驗部份.........................................48
3-1 實驗藥品.............................................48
3-2 儀器.................................................50
3-3 實驗步驟.............................................52
3-3-1 奈米碳管之官能基化.................................52
3-3-2 苯胺單體的還原.....................................54
3-3-3 製備聚苯胺/奈米碳管導電複合材料....................55
3-3-4 製備聚苯胺/羧化奈米碳管導電複合材料................57
3-3-5 製備聚(3-己烷基噻吩)/奈米碳管複合材料..............59
3-4 實驗儀器分析.........................................61
3-4-1 霍氏轉換紅外光譜儀(Fourier Transform-Infrared
Spectrophotometer,FT-IR)............................61
3-4-2 拉曼光譜儀(Raman Spectrophotometer) ...............61
3-4-3 場發射掃瞄式電子顯微鏡(Field-Emission Scanning
Electron Microscope,FE-SEM) ........................62
3-4-4 穿透式電子顯微鏡(Transmission Electron Microscope
,TEM) ..............................................62
3-4-5 紫外可見光譜儀(UV-Visible Spectrophotometer,UV-
VIS).................................................63
3-4-6 螢光光譜儀(Fluorescence Spectorphotometer,PL).....63
3-4-6 熱重分析儀(Thermogravimetric Analyzsis,TGA).......63
3-4-7 四點探針導電度測試(Four-Point Conductive Meter)....64
第四章 結果與討論........................................66
4-1 多層奈米碳管之官能基化...............................66
4-2 聚苯胺/羧酸化奈米碳管導電複合材料....................76
4-3 聚苯胺/奈米碳管導電複合材料..........................86
4-4 聚(3-己烷基噻吩)/奈米碳管導電複合材料................95
第五章 結論.............................................104
第六章 未來發展.........................................105
文獻....................................................106
參考文獻 1. Y. Cao, G. M. Treacy, P. Smith, A. J. Heeger, Synthetic Metals. 1993, 55-57, 3526
2. Pron, I-E Osterholm, P. Smith, A. J. Heeger, J. Laska, M. Zagorska, Synthetic Metals. 1993, 55-57, 3520
3. G. MacDiamid, A. J. Epstein, Synthetic Metals. 1994, 65, 103.
4. H. Shirakawa, S. Ikeda, Polymer. 1971, 2, 23.
5. S. Komarnei, J. Mater. Chem.. 1982, 2, 1219.
6. S. Iijima, Nature, 1991, 354, 56.
7. P. M. Ajayan, Q. Z. Zhou, Top. Appl. Phys.. 2001, 80, 391.
8. K. Y. Jen, R. Oboodi, R. L. Elsenbaumer, Polym. Mater. Sci. Eng. 1985, 53, 79.
9. 大澤映二,化學(日)。1970, 25, 854.
10. H. W. Kroto, J.R. Heath, S. O. C. Brien, et al. Nature. 1985, 347, 354.
11. J. A. E. Gibosn, NATURE. 1992, 359, 369.
12. P. G. Wiles, J. Abrahamsion, Carbon. 1978, 16, 341.
13. P. G. Wiles, J. Abrahamsion, B. I. Rhoades, Abstract in proceedings of 14th Biennial Conf. On Carbon(USA) 1979.
14. S. Iijima, T.Ichihashi, Nature, 1993, 363, 603.
15. D. S. Bethune, C. H. Kiang, M. S. Devries, Nature, 1993, 363, 605.
16. http://www.mos.org/cst/article/4864/
17. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon, 1995, 33, 883.
18. H. Dai, E. W. Wong, C. M. Lieber, Science, 1996, 272, 52.
19. C. J. Lee, J. Park, Applied Physics Letters, 2000, 77, 3397.
20. P. Chen, X. Wu, J. Lin, H. Li, K.L. Tan, Carbon, 2000, 38, 139.
21. J. W. G. Wildoer, L. C. Venema, A.G. Rinzler, R. E. Smalley, C. Dekker, Nature, 1998, 391, 59.
22. S. J. Tans, M. H. Devor 前, H. J.Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker, Nature, 1997, 386,474.
23. Groning, O. M. Kuttel, C. h. Emmenegger, P. Groning, L. Schlapbach, Journal of Vacuum Science & Technology B, 2000, 18, 665.
24. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Journal of Chemical Physics, 1996, 104, 2089.
25. B. I. Yakobson, In The Chemistry and Physics of Fullerence, 1997, 556.
26. M. P. Campbell, C. J. Brabec, J. Berbec, J. Bernholc, Comput, Mater, 1997, 341.
27. B. I. Yakobson, Appl. Phys, 1998, 918.
28. P. Zhang, P. E. Lammert, Crespi, Phys. Rev., 1998, 81.
29. M. Buongiorno Nardelli, B. I. Yakobson, J. Berhholc, Phys. Rev., 1998, 57, 4277.
30. M. Buongiorno Nardelli, B. I. Yakobson, J. Berhholc,Phys. Rev., 1998, 81, 4656.
31. P. Poncharal, Z. L. D. Wangarte and W. A. Heer, Science, 1999, 283, 1513.
32. J. Cumings, A. Zettl, Science, 2000, 80.
33. M. Terrones, W. K.Hsu, H.W. Kroto, D. R. M.Walton, Topis IN Current Chemistry, 1998, 199, 1.
34. R. S. Ruoff, D. C. Lorent, Phys. Rev, 1995, 33, 925.
35. S. Berber, Y. K. kwon, D. Tomanek, Phys. Rev., 2000, 84, 4613.
36. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B, 1999, 59, 2514.
37. W. Yi, L. Gu, Zhang, Z. W. Pan, S. S. Xie, Phys. Rev. B, 1999, 59, 9015.
38. M. A. Osman, D. Srivastava, Nanotechnolory, 2001, 21.
39. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, J. Phys. Chem. B, 1997, 101, 8839.
40. T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P.K. Kuo, R. L. Thomas, R. W. Pryor, Physical Review B , 1990, 42, 1104.
41. S. Bandow, Japanese Journal of Applied Physics, 1997, 236, L1403-L1405.
42. R. S. Ruoff, D. C. Lorents, Carbon, 1995, 33, 925.
43. S. C. Tsang, Y. K. Chen, M. L. H. Green, Nature, 1994, 372, 159.
44. R. M. Lago, S. C. Tsang, M. L. H. Green, J. Chem. Soc., Chem.
Commu., 1995, 1355.
45. H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater., 1995, 7, 275.
46. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science, 1998, 280, 1253.
47. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, J. G. Chen, J. Am. Chem. Soc., 2001, 123, 10699.
48. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu, R. E. Smalley, Chem. Phys. Lett., 2000, 321, 292.
49. Zhang, J. Xie, V. KVaradan, Smart Mater. Struct. 2002, 11, 962.
50. T. Wang, X. Hu, X. Qu, S. Dong, J. Phys. Chem. B, 2006, 110, 6631.
51. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, Y. P. Sun, Nano Lett., 2002, 2, 231.
52. D. Q. Yang, J. F. Rochette, E. Sacher, J. Phys. Chem. B, 2005, 109, 7788.
53. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science,1998, 282, 95.
54. Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, J. L. Margrave, Nano Lett., 2002, 2, 1009.
55. M. A. Hamon, J. Chen, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Adv. Mater., 1999, 11, 834.
56. U. D. Weglikowska, J. M. Benoit, P. W. Chiu, R. Graupner, S. Lebedkin, S. Roth, Current Applied physics, 2002, 2, 497.
57. V. Georgakilas, K. Kordatos, M. Prato, M. Holzinger, A. Hirsch, J. Am. Chem. Soc. 2002, 124, 760.
58. Y. Wang, Z. Iqbal, S. Mitra, J. Am. Chem. Soc. 2006, 128, 95.
59. Cao, P. Smith, A. J. Heeger, Synth. Met., 1992, 48, 91.
60. J. Stejskal, P. Kratochvil, Polymer, 1996, 37, 367.
61. E. C. Venancio, C. A. R. Costa, S.A.S. Machado, A.J. Motheo, Electrochemistry Communications, 2001, 3, 229.
62. S. Uemura, K. Teshima, Synth. Met., 1999, 101, 701.
63. S. Uemura, K. Teshima, Synth. Met., 1999, 101, 701.
64. R. B. Seymour, New York: Plenum Press, Conductive polymers, 171.
65. R. B. Seymour, New York: Plenum Press, Conductive Polymers, 227.
66. Patil, Y. Ikenoue, F. Would and A. J. Heeger, J. Am. Chem. Soc., 1987, 109, 1858.
67. T. A. Skothrim, Handbook of Conducting Polymers, 1986, 2, 1195.
68. H. Letherby, J. chem. Soc. 1862, 15, 16.
69. G. Green, A. E. Woodhead, J. chem. Soc., 1910, 1117.
70. M. Josefowicz, Thesis, University of Paris, 1963.
71. M. Josefowicz, L .T. Yu, J. Perichon, R. Buvet, J.polym.Sci.C, 1969, 22,1187.
72. R. D. Surville, M. Josefowicz, L. T. Yu, J. Perichon, R. Buvet, Electrochim.Acta, 1968, 13, 1451.
73. D. M. Mohilner, R. N. Adams, W. J. Argersinger , J. Am. Chem. Soc. 1962, 84, 3618.
74. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
75. A. G. MacDiarmid, J. C. Chiang, A. F. Richter, A. J. Epstein, Synth.Met.,1987, 18, 285.
76. A. Ray, G. E. Asturias, D. L. Kershner, A. F. Richter, A. G .MacDiarmid, A. J. Epstein, Synth.Met., 1989, 29, E141.
77. J. P. Travers, J. Chroboczek, F. Derreux, F. Genoud, M. Nechtscheim, A. M. Sayed, E. M. Genies, C. Tsintavis, Mol. Cryst. Liq. Cryst., 1985, 121, 195.
78. E. M. Genies, A. M. Sayed, C. Tsintavis, Mol. Cryst. Liq. Cryst., 1985, 121, 181.
79. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako, J. Electroanal. Chem. Interf. Electrochem., 1984, 161, 399.
80. M. C. Bernard, V. T. Bich, Synth. Met., 1999, 101, 811.
81. A. Kitani, M. Kaya, J. Yano, K. Yoshikawa, Synth. Met., 1987, 18, 341.
82. A. Malinauskas, R. Holze, Synth. Met., 1998, 97, 31.
83. A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97, 2388.
84. S. S. Pandey, S. Annapoorni, B. D. Malhocra, Macromolecules, 1993, 26, 3190.
85. A. G. MacDiarmid, A. J. Epstein, Faraday Discuss. Chem. Soc. 1989, 88, 317.
86. A. G. MacDiarmid, A. J. Epstein, W.R. Salaneck, D.T. Clark, E.J. Samuelsen (Eds.), Science and Applications of Conducting Polymers, Adam Hilger, Bristol, UK, 1990, 117.
87. A. G. MacDiarmid, J. C. Chang, A. F. Richter, A. J. Epstein, Synth. Met. 1987, 18, 285.
88. E. M. Genie`s, C. Tsintavis and A. A. Syed, Mol. Cryst., Liq. Cryst., 1985, 121, 181.
89. J. P. Travers, J. Chroboczek, F. Devreux, F. Genoud, M. Nechtschein, A. A. Syed, E. M. Genie`s, C. Tsintavis, Mol. Cryst., Liq. Cryst., 1985, 121, 195.
90. H. Kuzmany, E. M. Genie`s and A. A. Syed, Springer Series in Solid State Sciences, 1985. 63, 223; H. Kumany,N. S. Sariciftci, Synth.Met., 1987, 18, 353.
91. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D.Somasiri, W. Wu and S. I. Yaniger, Mol. Cryst., Liq. Cryst., 1985, 121, 174.
92. A. G. MacDiarmid, N. L. D. Somasiri, W. R. Salaneck, I. LundstrSrn, B. Liedberg, M. A. Hasan, R. Erlandsson and P. Konrasson, Springer Series in Solid State Sciences, 1985 63, 218.
93. H. A. Pohl and E. H. Engelhardt, J. Phys. Chem., 1962, 66, 2085.
94. R. L. Hand, R. F. Nelson, J. Electrochem. Sac., 1978, 125, 1059.
95. R. L. Hand and R. F. Nelson, J. Am. Chem. Sac., 1974, 96, 850.
96. M. S. Yun, D. P. Kang, Synth. Met., 1989, 29, 343.
97. L. T. Yu, M. S. Borredon, M. Jozefowicz, G. Belorgey and R. Buvet, J. Polym. Sci., 1987, 10, 2931.
98. Asturias, G. E., MacDiarmid,A.G,McCall,R.P. and Epstein, A.J., Synth.Met., 1989. 29. 157.
99. E. M. Genie`s, J. F. Penneau, M. Lapkowski and A. Boyle, J. Electroanal. Chem., 1989, 269, 63.
100. S. Wawzonek and T. W. MacIntyre, J. Electrochem. Soc., 1967, 114. 1025.
101. R. Holze, J. Electroanal. Chem., 1971, 224, 253.
102. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 1980, 111, 111.
103. R. Noufi, A. J. Nozik, J. White and L. F. Warren, J. Electrochem. Sac., 1982, 129, 226.
104. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako, J. Electroanal. Chem., 1984, 161, 399.
105. J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met., 1988, 24, 231.
106. J. Tan, X. Jing, B. Wang, F. Wang, Synth. Met, 1988, 24, 234.
107. B. Wang J. Tang, F. Wang, Synth. Met. , 1987, 18, 323.
108. A. P. Monkman, P. Adams, Synth. Met. , 1991, 41, 891.P. M. McManus, R. J. Cushman, S. C. Yang, J. Phys. Chem. ,1987, 91, 744.
109. M. Inoue, R. E. Navarro, M. B. Inouo, Synth. Met. , 1989, 30, 199.
110. G. E. Matsubayashi, T. Doi, T. Tanaka, Synth. Met. , 1989, 33, 99.
111. C. Liu, J. Zhang, G. Shi, F. Chen, J. Appl. Polym. Sci., 2004, 92, 171.
112. N. Chandrakanthi, M. A. Careem, Polym. Bull., 2000, 44, 101.
113. E. S. Matveeva, R. D. Calleja, V. P. Parkhutik, Synth. Met., 1995, 72, 105.
114. C. H. Chen, J. Appl. Polym. Sci., 2003, 89, 2142.
115. P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 1994, 265, 1212.
116. B. Z. Tang, H. Xu, Macromolecules 1999, 32, 2569.
117. H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, Adv. Mater., 1999, 11, 1281.
118. E. Kymakis, G. A. J. Amaratunga, Appl. Phys. Lett., 2002, 80, 112.
119. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A.B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens, Adv. Mater., 1998, 10, 1281.
120. H. Y. Lim, S. K. Jeong, J. S. Suh, E. J. Oh, Y. W. Park, K. S. Ryu, C. H. Yo, Synth. Met., 1995, 70, 1463.
121. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez, J. M. Benoit, J. Schreiber, O. Chauvet, Chem. Commun., 2001, 1450.
122. H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, J. Ballato, Adv. Mater., 2002, 14, 1480.
123. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan, European Polymer Journal, 2002, 38, 2497.
124. J. E. Huang, X. H. Li, J. C. Xu, H. L. Li, Carbon, 2003, 41, 2731.
125. G. Kumar, A. Sivashanmugam, N. Muniyandi, S. K. Dhawan, Synth. Met., 1996, 80, 279.
126. Z. Yao, H. W. C. Postama, L. Balents, C. Dekker, Nature, 1998, 402, 273.
127. C. T. Kuo, W. H. Chiou, Synth. Met., 1997, 88, 23.
128. H. L. Wang, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, A. J. Epstein, Synth. Met., 1996, 78, 33.
129. S. A. Chen, K. R. Chuang, C. I. Chao, H. T. Lee, Synth. Met., 1996, 82, 207.
130. C. Li, Z. Song, Synth. Met., 1991, 40, 23.
131. H. Zhang, C. Li, Synth. Met., 1991, 44, 143.
132. 133林彥文,聚苯胺/奈米碳管導電複合材料之製備與電性研究,2004年。
133. N. Adamsm, P. J. Laughlin, A. P. Monkman, A. M. Kenwright, polymer, 1996, 37, 3411.
指導教授 楊思明(Sze-Ming Yang) 審核日期 2007-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明