博碩士論文 93394015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.12.152.196
姓名 王清標(Ching-Biau Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 界面活性劑在銅晶片表面潤濕行為之研究
(Surfactants on the surface of copper wafer for wetting behavior research)
相關論文
★ 反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究★ 以離子型界劑溶解微脂粒之研究
★ 奈米添加物對微乳液滴靜電特性的影響–蒙地卡羅模擬法★ W/O型微乳液液滴之電荷分佈量測
★ 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究★ 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化
★ 膽固醇與膽鹽對微脂粒穩定度的影響★ 電解質溶液的表面張力-蒙地卡羅模擬法
★ 稀薄聚電解質溶液中的反離子凝聚現象★ 溫度不敏感性之電動力學行為於毛細管區域電泳
★ 以熱力學性質定義帶電粒子的電荷重正化現象★ 聚乙二醇與界面活性劑的作用
★ 聚電解質溶液中的反離子凝聚現象★ 聚電解質在中性高分子溶液中的泳動行為
★ 在聚電解質溶液中的有效電荷★ 以分散粒子動力學法模擬雙性團聯共聚物微胞之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文是針對未來半導體的生產過程中,化學機械研磨後的表面清洗作一界面現象的研究。本實驗是利用銅表面清潔後,接觸角的量測的方法,儘量去得到很低的接觸角標準差。特別是在晶片表面平坦化之後,會有許多微粒子以及金屬離子產生。使用DSA-10的液滴量測儀器在短時間的量測時能得到良好的實驗結果。液滴角度量測的原理是利用液滴外觀影像與基材的基準線,利用楊氏方程式計算可以求得接觸角。
本文的研究內容,主要是觀察界面活性劑在銅晶片表面的潤濕現象,表面越溼潤時,表面接觸角會越小,代表著銅晶片表面能量越低。例如;去離子水在表面氧化亞銅的銅晶片,及接觸角是100度,是非常的疏水,在銅表面上能量也是相當的高。
為了避免表面產生不良的缺陷,如金屬離子殘留或水痕等缺陷。因此這個研究是以添加界面活性劑的水溶液對銅晶片的潤溼性做研究,實驗中發現當動態接觸角量測時間在第30秒時,接觸角變化幅度趨於平緩;濃度到達十倍臨界微胞濃度(CMC)時,其動態接觸角會接近最低角度。這可意味著含有界面活性劑的清潔液在第30秒及10倍臨界微胞濃度時表面能會比較穩定。在比較陽離子或陰離子型界面活性劑時,可從實驗數據觀察到同一類型的界面活性劑,如SDS及DTAB界面活性劑,在頭基相同情況下,比較其尾鏈對銅濕潤性影響。
我們可以發現尾基碳鏈越長越親水;帶有雙尾鏈的DDAB及AOT界面活性劑溶液接觸角更可達到30以下。SDS系列的陰離子界面活性劑,以去離子水浸泡後回復的接觸角更可以到達95度,很接近初始值100度,表示表面能又回到原來的狀態,添加酸鹼及鹽類到不同型態溶液中,也可讓接觸角降低,使得銅晶片表面具有濕潤性質。
摘要(英) In this paper, we can know that the semiconductor production process, especially the Post CMP process is very important. The Post CMP cleaning can let to know how to research the phenomena of copper surface. We present our method for the measurement of contact angles on the surface of copper wafer cleaning process because the standard deviation obtained in our measurements achieved unexpectedly low error. DSA-10 equipment that construction of a goniometer connected with a specially prepared computer program allowed us to repeat measurements several times over a short time course, yielding excellent results. After defining points on the outline of the image of a drop and its baseline as well of the first approximation of the outline of the drop, an iterative process is initiated that is aimed at fitting the model of the drop and baseline. The measurements were made, the work of adhesion is determined according to Young’s equation.
In this study, the main to observe wetting behavior phenomena solders which surfactants on the copper wafer. No sooner had the surface wet than the contact angle became lower. It is represented that surface energy is lower. Example, DI-water wet on the copper wafer surface of cuprous oxide that contact angle is 100° and the surface is very hydrophobic. The surface energy is highly on the surface of copper wafer.
For avoid to the defects on the surface, such as the metal ions and the water mark were remained. In this study, we add the surfactants in the DI-water solvent to research wetting behavior on the copper wafer. In our experiment, we can found the dynamic contact angle that measurement time is 30th seconds and the angle variable is stable status. When the critical micelle concentration (CMC) reach tenth times that the angle variable is the lowest. That is show the cleaning solution that include the surfactants is status in 30th dynamic contact angle and 10th CMC. In compare to the cation and anion of surfactant, we can observe that have the same characteristic type surfactant, having the same head group and the different tail chain. In order to compare the tail chain affects the wet behavior on the surface of copper that we do experiment about the SDS and DTAB different tail chain effect.
We can find that when the carbon tail chain is longer, it wetting ability is more hydrophilic. With double tail chain surfactant, as like the DDAB and AOT that contact angle can lower than 30 degree. When use SDS types surfactant to immerse the DI-water that the contact angle can recover to 95 degree. That approach to the initial number 100 degree. It is show that surface energy recovers initial status. Add to the acid, alkali and salt solution to decrease the contact angle for wetting the surface of copper wafer.
關鍵字(中) ★ 化學機械研磨後清潔
★ 表面接觸角
關鍵字(英) ★ Contact angle
★ Post CMP
論文目次 摘要 ........................................................................Ι
Abstract ..................................................................III
誌謝 ........................................................................V
目錄 .......................................................................VI
圖目錄 ......................................................................X
表目錄 ...................................................................XIII
第一章 緒論..................................................................1
1.1前言.......................................................................1
1.2 化學機械研磨介紹…........................................................2
1.2.1 化學機械研磨的發展背景…................................................2
1.2.2 化學機械研磨的設備及材料介紹............................................4
1.2.3 化學機械研磨的製程原理..................................................9
1.3 化學機械研磨後清洗介紹...................................................13
1.3.1 化學機械研磨後清洗的發展背景...........................................13
1.3.2 化學機械研磨後清洗的設備及材料介紹.....................................14
1.3.3 化學機械研磨後清洗的製程原理...........................................18
1.4 界面活性劑介紹...........................................................21
第二章 半導體清潔製程與文獻回顧.............................................27
2.1微粒(particle)的發生源 ..................................................27
2.2 微粒(particle)的吸附類型.................................................29
2.3微粒(particle)產生的影響..................................................30
2.4微粒(particle)的去除與影響................................................32
2.4.1 有機物的去除...........................................................32
2.4.2 金屬物的影響...........................................................32
2.4.3 銅離子在矽基板的反應機制...............................................33
2.5清洗液的介紹..............................................................34
2.6文獻回顧..................................................................37
2.6.1專利查詢................................................................37
2.6.2表面潤濕性專利..........................................................38
第三章 實驗介紹.............................................................72
3.1實驗儀器介紹..............................................................72
3.1.1 影像式接觸角量測儀.....................................................72
3.1.1.1 接觸角原理介紹.......................................................73
3.1.1.2 表面能原理介紹.......................................................74
3.1.2 旋轉塗佈機(Spin coater) ...............................................75
3.2實驗材料介紹..............................................................76
3.2.1 銅金屬簡介.............................................................76
3.2.2 銅晶片簡介.............................................................78
3.2.3 實驗用界面活性劑簡介...................................................79
3.2.4 實驗用添加劑簡介.......................................................83
3.3實驗流程介紹..............................................................84
3.3.1 實驗前銅晶片表面清潔...................................................84
3.3.2 實驗儀器參數設定.......................................................84
3.3.2.1影像式接觸角量測儀參數設定............................................84
3.3.2.2 旋轉塗佈機參數設定...................................................85
3.3.3 界面活性劑潤濕性實驗流程...............................................90
3.3.3.1 動態表面接觸角量測...................................................91
3.3.3.2 界面活性劑清潔液濃度與銅表面接觸角相關性.............................91
3.3.3.3 比較相同濃度下碳鏈長短對接觸角的影響.................................92
3.3.3.4 界面活性劑加入添加劑的影響...........................................92
第四章 實驗結果與討論.......................................................93
4.1 動態表面接觸角量測研究...................................................93
4.2 界面活性劑清潔液濃度與銅表面接觸角相關性研究.............................95
4.2.1 銅與空氣表面能測定方法.................................................96
4.3 比較相同濃度下碳鏈長短對接觸角的影響....................................104
4.4 界面活性劑加入添加劑的影響..............................................106
4.4.1 去離子水中添加酸或鹼..................................................106
4.4.2 去離子水中添加鹽類....................................................107
4.4.3 界面活性劑添加酸、鹼、鹽溶液的潤濕行為................................109
第五章 結論................................................................117
第六章 參考文獻............................................................118
參考文獻 (1) 土肥 俊郎 ,半導體平坦化CMP技術,全華科技(2000)
(2) 林必窕,先進銅製程整合的對策,半導體科技 No.56(2005)
(3) 廖伯佑、李盈壕,半導體製程用濕式化學品的發展趨勢,伊默克化學科技(2001)
(4) Preston, F.W., 1927, “The Theory and Design of Plate Glass Polishing Machines,” J. Soc Glass Technology , Vol. 11, pp. 214-256.
(5) 莊達人,VLSI製造技術ver.5,高立圖書(2004)
(6) Nathan Stein, Guy Shirazi, Jianshe Tang, Robert Jackson, Greg Viloria, Younes Achkire, Wei-Yung Hsu, “Post-CMP Marangoni drying eliminates defects”, European Semiconductor Article(2004)
(7) 洪佳惠,膽固醇與膽鹽對微脂粒穩定度的影響,中央大學化材系碩士論文(2003.6)
(8) C. O. Rangel-Yagui*, A. Pessoa-Jr; D. Blankschtein, “Two-phase aqueous micellar systems - an alternative method for protein purification”, Braz. J. Chem. Eng. vol.21 no.4 pp. 531 - 544(2004)
(9) 張有義,郭蘭生,膠體及界面化學入門,高立圖書(1998)
(10) 刁建成,ULSI製程技術,全華科技圖書(2000)
(11) 蔡明蒔,化學機械研磨後清洗技術簡介,奈米通訊第六卷第一期P3
(12) T. Isagawa et al., “Proc. Microcontamination 90(Santa Clara,CA, Oct.,1990)”273
(13) H. Morinaga, M. Aoki, T. Maeda, M. Fujisue, H. Tanaka, and M. Toyoda, Mater. Res. Soc. Symp. Proc., 477, 35 (1997).
(14) T. Shimono. M. Morita, Y. Muramatsu, and M. Tsuji, “Device degradation by metallic contamination, and evaluation and cleaning of metallic contaminants,” in Proc. 8th Workshop on ULSI Clean Technology, Advanced Wet Chemical Processing I , Dec. 1990, pp. 59-68.
(15) 小林 稔、中島 薯,VLSI 製程技術ver.2,全華圖書(2003)
(16) http://www.uspto.gov/patft/index.html
(17) Zhang, Peng, Ross, Brenda Faye, “United States Patent Application: 20050081885”, 2005
(18) Jane Massey Licata or Kathleen A. Tyrrell, Licata & Tyrrell P.C., “United States Patent Application: 20040204329”,2004
(19) Vyvoda, Michael A.; (Fremont, CA) ; Cleeves, James M.; (Redwood City, CA) ; Dunton, Samuel V.; (San Jose, CA) “United States Patent Application: 20020105057”,2002
(20) Manual of contact angle measurement systems (G2, Kruss GmbH) p. 131.
(21) 蔣安仁,中國大百科全書,2005
(22) Katrin Boschkova, “Adsorption and frictional properties of surfactant assemblies at solid surfaces”, Stockholm 2002
(23) A.A. Rafatia*, H. Gharibib, H. Iloukhania and L. Safdaria, Physics and Chemistry of Liquids Vol. 41, No., pp. 227–238(2003)
(24) S. K. Hait and S. P. Moulik*, Current Science, vol. 82, no. 9, 10 (2002)
(25) http://researchlink.labvelocity.com/products/index
(26) David A. Sabatini1, Robert C. Knox1, Edwin E. Tucker2 and Robert W. Puls3, “Innovative Measures for Subsurface Chromium Remediation: Source Zone, Concentrated Plume, and Dilute Plume”(1997)
(27) Michael L. Free*,and Dinesh O. Shah, “Adsorption and Desorption of Cetyl Pyridinium Ions at a Tungsten-Coated Silicon Wafer Surface”, Journal of Colloid and Interface Science 208, 104–109 (1998)
指導教授 曹恒光(Heng-Kwong Tsao) 審核日期 2006-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明