博碩士論文 943204002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.139.69.17
姓名 黃詩閔(Shin-min Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 (一)二氧化鈦奈米管陣列之合成及分析 (二)聚苯胺奈米管之合成及在氣體感測器上的應用
((一) Fabrication of TiO2 nanotube arrays(二) Fabrication of polyaniline nanotubes and application on the gas sensor )
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 聚苯胺與聚苯乙烯殼核複合材料之研究
★ 導電高分子與聚胺基甲酸酯複合材料之研究★ 在孔道均一的模板內合成聚苯胺奈米管
★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究
★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究
★ 二氧化鈦的合成與光催化性質的研究★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的第一部分為二氧化鈦奈米管陣列之合成及分析;採用簡單的二極式電化學陽極氧化法,以定電壓20V在含氟的有機甘油電解液中陽極氧化高純度的金屬鈦片,在鈦片上製備出高規則且高長寬比的二氧化鈦奈米管陣列。並藉由SEM、TEM影像分析二氧化鈦奈米管陣列表面及內部形態,由EDX分析進行二氧化鈦的成分鑑定,再由選區電子繞射(SAED)來判別二氧化鈦奈米管煅燒後的晶型結構;最後透過UV光譜及XRD鑑定所形成的產物為二氧化鈦anatase相的晶型結構。
此外,第二部分為聚苯胺奈米管之合成及在氣體感測器上的應用;本實驗首先採用兩步陽極氧化的方式經由電解液、電壓及溫度等參數控制,可成功製成50nm、30nm及20nm三種孔徑大小的高規則氧化鋁膜模板,接著使用電化學的方式在自製不同孔徑的模板內合成聚苯胺奈米管/線;並藉由SEM及TEM影像分析聚苯胺奈米管/線的表面及內部形態,以FT-IR、CV對合成的產物進行定性分析,證實在自製氧化鋁膜內所合成出的確實為聚苯胺結構。另一方面,以導電高分子聚苯胺為感測氣體材料將聚苯胺製備成傳統薄膜、奈米纖維及奈米管三種不同的形態結構,分別對NO2及NH3兩種氣體進行測試。由實驗結果比較其靈敏度發現,對NO2及NH3兩種氣體之靈敏度皆為:奈米管>奈米纖維>傳統薄膜,並且NO2氣體比NH3氣體的反應靈敏度高出許多。
摘要(英) In this thesis, we study two research topics: firstly, we report the preparation of TiO2 nanotubes by potentiostactic anodizing process. Titanium foil was anodizing at a voltage of 20 V in a glycerol solution containing NH4F to fabricate highly ordered and high aspect ratio (L/D) TiO2 nanotubes. SEM and TEM photographs, show the morphology and hollow tubular structure of TiO2 nanotube arrays. Additionally, the products was characterized by EDX, SAED, UV and XRD to demonstrate that TiO2-anatase structure is formed upon thermal annealing after anodization.
Secondly, We successfully synthesize polyaniline nanotubes by electrochemical method in self-organized anodic aluminum membrane (AAO), moreover, we study the properties of conducting polyaniline tube as gas sensor. Highly ordered anodic aluminum membranes with uniform pore diameters of 50 nm, 30 nm and 20 nm have been fabricated successfully by two-step anodizing process. We synthesized polyaniline nanotubes(wires) within the holes of the membrane. SEM and TEM were used to observe the surface and inner structure of the polyaniline nanotubes(wires). FT-IR spectra and CV show that the products synthesized in the pores of AAO membranes are polyaniline. The conducting form of polyaniline(PANI) have been tested as gas sensing material. The investigations were performed with three different structures of polyaniline films for detecting gaseous NH3 and NO2. The results showed that the sensitivity of both NO2 and NH3 gas follow the order: PANI nanotubes>PANI fibers>conventional PANI film. The sensitivity for NO2 are superior them the sensitivity of NH3.
關鍵字(中) ★ 二氧化鈦
★ 陽極氧化
★ 氣體感測器
★ 聚苯胺
關鍵字(英) ★ polyaniline
★ anodization
★ titanium oxide
★ gas sensor
論文目次 摘要 .........................................Ⅰ
Abstract .........................................Ⅱ
目錄 .........................................Ⅲ
表目錄 .........................................Ⅶ
圖目錄 .........................................Ⅷ
第一章 緒論 ................................1
第二章 文獻回顧 ................................3
2.1 二氧化鈦奈米管 ................................3
2.1.1 簡介 ................................3
2.1.2 二氧化鈦奈米管的製備方式 ..............5
2.1.3 二氧化鈦奈米管的形成機制 ..............8
2.1.4 二氧化鈦奈米管的應用 ......................11
2.2 聚苯胺奈米管 ...............................13
2.2.1 簡介 ...............................13
2.2.2 聚苯胺奈米管的合成方法 .............16
2.2.3 模板中聚苯胺奈米管的合成機制 .............19
2.2.4 聚苯胺奈米結構在氣體感測器的應用............20
2.3 研究動機與目的 ................................23
第三章 二氧化鈦奈米管之研究 .......................24
一、實驗 .........................................24
1.1 藥品 .........................................24
1.2 儀器 .........................................25
1.3 實驗方法......................................26
1.3.1 二氧化鈦奈米管製備..........................26
1.4 實驗分析儀器..................................28
1.4.1 場發射掃瞄式電子顯微鏡(Field-Emission Scanning
Electron Microscope,FE-SEM)......................28
1.4.2 穿透式電子顯微鏡(Transmission Electron Microscope,
TEM)..............................................28
1.4.3 紫外可見光譜儀(UV-Visible Spectrophotometer,UV-VIS)
..............................................28
1.4.4 X光繞射儀(X-Rays Diffractometer,XRD)....29
二、結果與討論....................................30
2.1 二氧化鈦奈米管SEM影像分析.....................30
2.2 二氧化鈦奈米管TEM影像分析.....................33
2.3 二氧化鈦奈米管之紫外可見光分析................36
2.4 二氧化鈦奈米管之XRD分析 .......................37
第四章 聚苯胺管奈米管之製備及氣體感測器應用.......39
一、實驗..........................................39
1.1 藥品..........................................39
1.2 儀器..........................................40
1.3 實驗方法......................................41
(一) 電化學法合成聚苯胺奈米管.....................41
1.3.1 自製多孔性陽極氧化鋁模板....................41
1.3.2 苯胺單體的還原..............................44
1.3.3 聚苯胺奈米管製備............................44
(二) 聚苯胺在氣體感測器上的應用...................45
1.3.4 聚苯胺感測材料(傳統薄膜、纖維、奈米管)之製備.. 45
1.3.4.1 傳統聚苯胺薄膜製備........................45
1.3.4.2 聚苯胺纖維製備............................45
1.3.4.3 聚苯胺奈米管感測薄膜的製備................46
1.3.5 感測系統之組裝..............................46
1.3.5.1 感測元件..................................46
1.3.5.2 氣體感測系統之組裝與量測..................47
1.4 實驗分析儀器 .................................49
1.4.1 場發射掃瞄式電子顯微鏡(Field-Emission Scanning Electron Microscope,FE-SEM).....................49
1.4.2 穿透式電子顯微鏡(Transmission Electron Microscope,TEM).............................................49
1.4.3 霍式轉換紅外光譜儀(Fourier Transform-Infrared Spectrophotometer,FT-IR)........................49
1.4.4 循環伏安儀(Cyclic Voltammetry)............50
二、結果與討論 ...................................51
(一) 電化學法合成聚苯胺奈米管.....................51
2.1 自製陽極氧化鋁膜SEM影像.......................51
2.2 聚苯胺奈米管SEM影像分析 .......................55
2.3 聚苯胺奈米管TEM影像分析 .......................60
2.4 電化學合成聚苯胺奈米管/線之紅外光光譜分析 .....63
2.5 聚苯胺奈米管/線之電化學分析....................65
(二) 聚苯胺在氣體感測器上的應用....................67
2.6 聚苯胺薄膜、纖維、奈米管之SEM影像分析..........67
2.7 聚苯胺薄膜、纖維、奈米管之紅外光光譜分析.......71
2.8 以聚苯胺薄膜、纖維、奈米管感測NO2、NH3氣體.....74
第五章 結論........................................80
第六章 未來發展....................................82
參考文獻...........................................83
參考文獻 1. U. Diebold, Surf. Sci. Reports, 2003, 48, 53.
2. X. Quan, S. Yang, H. Zhao, Environ. Sci. Technol., 2005, 39, 3770-3775.
3. O. K. Varghese, G. K. Mos, C. A. Grimes, Mater. Res. Soc. Symp. Proc., 2005, 828, 117-125.
4. O. K. Varghese, M. Paulose, C. A. Grimes, J. Nanosci. Nanotech., 2005, 5, 1158-1165.
5. M. Paulose, K. Shankar, C. A. Grimes, J. Phys. D: Appl. Phys., 2006, 39, 2498-2503.
6. P. Hoyer, Langmuir, 1996, 12, 1411-1413.
7. A. Michailowski, D. Aimawlawi, G. Cheng, M. Moskovits, Chemical Physics Letters, 2001, 349, 1-5.
8. J. Huang, T. Kunitake, S.Y. Onoue, ChemComm., 2004, 10008-1009.
9. X. Liu, T. F. Jaramillo, J. Mater. Res., 2005, 205.
10.T. Kasuga, Langmuir, 1998, 14, 3160-3163.
11.V. B. Dmitry, N. P. Valentin, J. Mater. Chem., 2004, 14, 3700- 3377.
12.H. Peng, G. Li, Z. Zhang, Materials Letters, 2005, 59, 1142-1145.
13.V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta., 1999, 44, 921.
14.D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 2001, 16, 3331.
15.G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Letters, 2005, 5, 191-195.
16.Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res., 2005, 20, 230.
17.G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, J. Mater. Res., 2003, 18, 2588-2593.
18.G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Adv. Funct. Mater., 2005, 15, 1291-1296.
19.J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int.Ed., 2005, 44, 2100-2120.
20.J. Zhao, X. Wang, R. Chen, L. Li, Solid-State Commun., 2005, 134, 705-710.
21.A. Fujishima, K. Honda, Nature, 1972, 238, 37-39.
22.G. K. Mor, K. Shankar, O. K. Varghese, C. A. Grimes, J. Mater. Res., 2004, 19, 2989-2996.
23.O. K. Varghese, G. K. Mor, C. A. Grimes, J. Nanosci. Nanotech., 2004, 4, 733-737.
24.B. O’Regan, M. Grätzel, Nature, 1991, 353, 737.
25.M. Paulose, K. Shankar, C. A. Grimes, J. Phys. D: Appl. Phys., 2006, 39, 2498-2503.
26.M. J. Macak, H. Tsuchiya, P. Schmuki, Electrochemistry Communicat- ion, 2005, 7, 1133-1137.
27.R. M. Baughman, J. L. Bredas, R. L. Elsenbaumer, and L. W. Shacklette, Chem. Rev., 1982, 82, 209.
28.A. F. Diaz and K. K. Kanazdwd, in “ Extended Linear Chain Compou- nds” (G. S. Miller, ed.), Plenum, New York, 1982, p3.
29.K. Kaneto, S. Ura, K. Yoshino, Y. Inuishi, Jap. J. App. Phys., 1984, 23, 189.
30.H. Letherby, J. chem. Soc., 1862, 15, 16.
31.M. Josefowicz, In: Thesis, University of Paris 1963.
32.M. Josefowicz, L. T. Yu, J. Perichon, R. Buvet, J. polym. Sci. C, 1969, 22, 1187.
33.R. D. Surville, M. Josefowicz, L. T. Yu, J. Perichon, R. Buvet, Elec- trochim. Acta., 1968, 13, 1451.
34.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
35.A. G. MacDiarmid, J. C. Chiang, A. F. Richter, A. J. Epstein, Synth. Met.,1987, 18, 285.
36.A. Ray, G. E. Asturias, D. L. Kershner, A. F. Richter, A. G. MacDiarmid, A. J. Epstein, Synth.Met., 1989, 29, E141.
37.J. P. Travers, J. Chroboczek, F. Derreux, F. Genoud, M. Nechtscheim, A. M. Sayed, E. M. Genies, C. Tsintavis, Mol. Cryst. Liq. Cryst., 1985, 121, 195.
38.E. M. Genies, A. M. Sayed, C. Tsintavis, Mol. Cryst. Liq. Cryst., 1985, 121, 181.
39.T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako, J. Elec- troanal. Chem. Interf. Electrochem., 1984, 161, 399.
40.J. C. Chang, A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
41.W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc. Faraday Trans. 1986, 82, 2385.
42.A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97, 2388.
43.S. S. Pandey, S. Annapoorni, B. D. Malhocra, Macromolecules, 1993, 26, 3190.
44.W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., 1986, 82, 2385-2400.
45.J. Huang, R. B. Kaner, Chem. Commun., 2006, 367–376.
46.M. Delvaux, J. Duchet, P.Y. Stavaux, R. Legras, D. C. Sophie, Synthetic Metals, 2000, 113, 275–280.
47.C. R. Martin, Science, 1994, 266, 1961–1966.
48.B. L. Brinda, K. D. Peter, R. M. Charles, Chem. Mater., 1997, 9, 857–862.
49.W. Liang, C.R. Martin, J. Am. Chem. Soc., 1990, 112, 9666.
50.M. Tagowska, B. Palys, K. Jackowska, Synth. Met., 2004, 142, 223-239.
51.M. Delvaux, J. Duchet, P. Y. Stavaux, R. Legras, S. D. Champagne, Synth. Met., 2000, 113, 223-239.
52.S. Xiong, Q. Wang, H. Xia, Materials Research Bulletin, 2004, 39, 1569-1580.
53.L. Dauginet-De Pra, S. Demoustier-Champagne, Thin Solid Films., 2005, 479, 321-328.
54.J. Huang, Y. Shen, M. Wan, Synth. Met., 1999, 101, 708-711.
55.Z. Wei, Z. Zhang, M. Wan, Macromolecules, 2002, 35, 5937-5942.
56.Y. Yang, M. Wan, J. Mater. Chem., 2002, 12, 897-901.
57.L. Zhang, M. Wan, Adv. Funct. Mater., 2003, 10, 815-820.
58.L. Zhang, Y. Long, Z. Chen, M. Wan, Adv. Funct. Mater., 2004, 7, 693-697.
59.L. Zhang, M. Wan, Thin Solid Films., 2005, 477, 24-31.
60.C. Hylander, M. Armgarth, I. Lundstrom, Fukuoka, 1983, 203.
61.A. Mohammadi, M. A. Hasan, B. Liedberg, I. Lundstrom, W. R. Salanek, Synth. Met., 1986, 14, 189.
62.W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., Faraday Trans., 1986, 82, 2385-2400.
63.N. E. Agbor, M. C. Petty, A. P. Monkman, Sens. Actuators B: Chem., 1995, 28, 173–179.
64.E. T. Kang, K. G. Neoh, K. L. Tan, Prog. Polym. Sci., 1998, 23, 277–324.
65.S. Virji, J. Huang, R. B. Kaner, B. H. Weiller, Nano Letters, 2004, 4, 491-496.
66.J. X. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem. Soc., 2003, 125, 314–315.
67.J. X. Huang, R. B. Kaner, J. Am. Chem. Soc., 2004, 126, 851–855.
68.J. X. Huang, R. B. Kaner, Angew. Chem. Int. Ed., 2004, 43, 5817–5821.
69.W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. SOC. Faraday Trans. 1, 1986, 82, 2385-2400.
70.S. Iijima, Nature, 1991, 354, 56.
71.R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature, 1992, 360, 444.
指導教授 楊思明(Sze-ming Yang) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明