博碩士論文 943204015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:52.14.88.137
姓名 王儀雯(Yi-wun Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 添加微量Fe、Co、Ni至無鉛銲料對界面生成物Cu3Sn厚度之影響
(The Effects of Minor Fe, Co, and Ni addition to Lead-Free Solders on the Thickness of Cu3Sn at the Interface)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究
★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究
★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究
★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究★ 新穎太陽能電池基板表面粗糙化結構之研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於鉛污染問題,現今已用無鉛銲料取代鉛錫銲料,但無鉛化製程仍有可靠度上的問題,例如封裝適合性、孔洞的形成等。在銲點Cu3Sn/Cu界面處,我們有時可以觀察到一整排Kirkendall’s voids,這些孔洞的形成是造成產品失效的主要兇手,而由於Kirkendall’s voids只會生長在Cu3Sn介金屬層上,因此,Cu3Sn生長型態與Kirkendall’s voids的形成是息息相關的,本實驗觀察的重點即在於Cu3Sn生長。
為了改善無鉛銲料的品質,減少介金屬Cu3Sn生成,添加微量元素於銲料中將有助於降低Cu3Sn生成厚度,本實驗室先前研究結果發現,添加0.1%的Ni於Sn3.5Ag銲料中,能有效降低Cu3Sn生成。在本研究中,將所添加微量元素的量縮小到0.1%以下,觀察其是否仍具有相同效果。另ㄧ方面,我們也添加Fe、Co兩種微量元素和Ni做比較,本實驗目的為探討添加微量Fe、Co、Ni於銲料中,與Cu墊層進行銲接與熱處理反應時對界面生成物的影響。
實驗結果顯示當我們把微量元素Fe、Co、Ni的使用量縮小的情況下,仍具有抑制Cu3Sn生長,但卻增加Cu6Sn5形成。在160oC下當熱處理時間超過1000小時,在Sn2.5Ag-xNi與Cu墊層反應的試片中,Cu3Sn/Cu界面處有Kirkendall’s voids生長,而由於孔洞生長的位置靠近Cu墊層,因此我們推測在Cu3Sn層裡,Cu原子擴散的速度比Sn原子快;另外,在Sn2.5Ag0.8Cu-xNi與Cu墊層反應的試片中,在銲點界面處並沒有孔洞的生成,本實驗結果推測銲料中Cu含量應是其中ㄧ個控制孔洞生成的因子。
Sn2.5Ag-xNi與Cu墊層反應中,在界面生成物Cu6Sn5上有兩層Ni分佈,靠近銲料端的Cu6Sn5 Ni含量比靠近Cu墊層端的Cu6Sn5 Ni含量多,這是由於在冷卻過程中,銲料中部分Ni回到界面所致;而在Sn2.5Ag0.8Cu-xNi與Cu墊層反應中,界面生成物Cu6Sn5沒有Ni分層情形,因為Sn2.5Ag0.8Cu銲料中本身含有Cu,與Cu墊層銲接時銲料內部生成的Cu6Sn5多,部分的Ni溶解到銲料內的Cu6Sn5中,以致於冷卻過程中,回到界面上的Ni少,才不會有分層的情形。
本實驗之主要目的即是探討Fe、Co、Ni的添加對無鉛銲料與Cu界面反應之影響。研究目標是去深入了解加入第四元素對Cu6Sn5、Cu3Sn、及Kirkendall’s voids生長之影響,進而找出最佳之無鉛銲料合金組成。
摘要(英) Owing to the ban of lead, the conventional lead-bearing solder has been replaced by lead-free solder. The drive for lead-free solders in the microelectronics industry presents some reliability challenges. Examples include package compatibility, creep, and Kirkendall’s voids. Along the Cu3Sn/Cu interface, we can find a series of Kirkendall’s voids. These Kirkendall’s voids were the true culprit responsible for the weakening of the interface. It is widely accepted that the formation of these Kirkendall’s voids is related to the growth of Cu3Sn.
In order to promote the quality of lead-free solder, minor elements addition can reduce the Cu3Sn thickness. Recently, our research group showed that a 0.1 wt.% Ni addition to SnAg could reduce the Cu3Sn thickness during the solder/Cu reaction. We want to extend this past result to find out the minimum level of Ni addition that still retains this beneficial effect. In addition, we will also investigate whether the elements, Fe, and Co will have a similar effect. The objective of this study is to investigate the effects of minor Fe, Co, and Ni on the soldering and aging reactions between lead-free solders and Cu.
The experimental result shows that the presence of Ni can in fact reduce the growth rate of Cu3Sn but increase the formation of Cu6Sn5. Moreover, the presence of Fe and Co can have the some effect. We can find the Kirkendall’s voids in the reaction between Sn2.5Ag-xNi (x=0~0.1wt. %) and electroplated Cu at 160 oC for excess 1000 hr. The observation of Kirkendall’s void formation near the Cu3Sn/Cu is direct evidence of Cu diffusion since we can use the voids to serve as diffusion markers. On the side, we didn’t find voids in the reaction between Sn2.5Ag0.8Cu-xNi (x=0~0.1wt. %) and electroplated Cu. The growth of voids is complicated. We consider that the Cu concentration in the solders is the factor to control the void formation.
In the Sn2.5Ag-xNi solders, the addition of Ni also produces two distinct Cu6Sn5 regions at the interface. The outer region contains more Ni, and the inner region contains less Ni. Cooling conditions changed the Ni content of the Cu6Sn5 formed at the interface. Besides, the Sn2.5Ag0.8Cu-xNi solders didn’t have two different Ni content in the Cu6Sn5. This is because there are more Cu6Sn5 precipitated in the Sn2.5Ag0.8Cu-xNi than in Sn2.5Ag-xNi solders. A part of Ni could be dissolved in the Cu6Sn5. Therefore, a few Ni could come back to interface.
關鍵字(中) ★ 微量元素
★ 無鉛銲料
★ 孔洞
關鍵字(英) ★ Cu6Sn5
★ Cu3Sn
★ minor elements
★ Kirkendall’s voids
論文目次 目錄
頁數
中文摘要……………………………………………………I
英文摘要…………………………………………………III
目錄…………………………………………………………V
圖目錄……………………………………………………VII
表目錄……………………………………………………XII
第一章 緒論
1.1 研究背景…………………………………………1
1.1.1 微電子構裝技術…………………………………1
1.1.2 銲接………………………………………………6
1.1.3 無鉛銲料…………………………………………12
1.2 研究目的…………………………………………14
第二章 文獻回顧
2.1 介金屬種類………………………………………15
2.2 Kirkendall’s void……………………………17
2.3 添加第四元素……………………………………22
2.4 實驗規劃…………………………………………27
2.4.1 界面形態…………………………………………27
2.4.2 微量元素在介金屬中的含量……………………27
第三章 實驗方法與步驟
3.1 銲接反應(liquid-solid reaction)……………28
3.1.1 銲料製備…………………………………………28
3.1.2 液態銲錫球與Cu墊層進行反應…………………28
3.1.3 試片處理、觀察及分析…………………………30
3.2 老化反應(solid-solid reaction)……………32
3.3 不同冷卻速度對介金屬生長的影響……………32
3.3.1 試片製備…………………………………………32
3.3.2 試片處理、觀察及分析…………………………33
第四章 實驗結果
4.1 SnAgCu銲料中不同Ni含量的影響………………34
4.1.1 迴銲後電子顯微鏡(SEM)界面金相觀察………34
4.1.2 熱處理後電子顯微鏡(SEM)界面金相觀察……41
4.1.3 電子微探儀(EPMA)組成分析……………………46
4.2 SnAg銲料中不同Ni含量的影響…………………50
4.2.1 迴銲後電子顯微鏡(SEM)界面金相觀察………50
4.2.2 熱處理後電子顯微鏡(SEM)界面金相觀察.……54
4.2.3 電子微探儀(EPMA)組成分析……………………58
4.3 不同冷卻速率對Cu6Sn5中Ni含量的影響………64
4.3.1 迴銲後電子顯微鏡(SEM)界面金相觀察…………64
4.3.2 電子微探儀(EPMA)組成分析……………………64
4.4 SnAgCu銲料中添加Fe、Co的影響………………68
4.4.1 迴銲後電子顯微鏡(SEM)界面金相觀察…………68
4.4.2 熱處理後電子顯微鏡(SEM)界面金相觀察………68
4.4.3 電子微探儀(EPMA)組成分析……………………75
第五章 結果與討論
5.1 固/液反應…………………………………………78
5.1.1 Sn2.5Ag0.8CuxNi(x=0~0.1)與Cu墊層銲接反應…78
5.1.2 Sn2.5AgxNi(x=0~0.1)與Cu墊層銲接反應………78
5.1.3 Sn2.5Ag0.8Cu0.03X(X=Fe,Co,Ni)與Cu墊層銲接反應…78
5.2 固/固反應…………………………………………………78
5.2.1 Sn2.5Ag0.8CuxNi(x=0~0.1)與Cu墊層老化反應………78
5.2.2 Sn2.5AgxNi(x=0~0.1)與Cu墊層老化反應………………79
5.2.3 Sn2.5Ag0.8Cu0.03X(X=Fe,Co,Ni)與Cu墊層老化反應…79
5.3 Ni在銲料中以及界面上分佈情形…………………………83
參考文獻………………………………………………………………84
參考文獻 [ABB] Reza Abbaschian, and Robert E. Reed-Hill, “Physical Metallurgy Principles.”, 2004.
[AND] I. E. Anderson, and J. L. Harringa, “Suppression of Void Coalescence in Thermal Aging of Tin-Silver-Copper-X Solder Joints," J. Electron. Mater., p.94, 2006.
[CHE] Tz-Cheng Chiu, Kejun Zeng, Roger Stierman, Darvin Edwards, and Kazuaki Ano, “Effect of Thermal Aging on Board Level Drop Reliability for Pb-free BGA Packages,” ECTC , p.1256, 2004.
[ERN] C. Ernhart, and S. Scarr, presented at the ACYF research conference, New Directions in Child and Family Research, 1991.
[GAO] F. GAO, T. Takemoto, and H. Nishikawa, “Effects of Co and Ni addition on reactive diffusion between Sn-3.5Ag solder and Cu during soldering and annealing”, Materials Science Engineering, p.39, 2006.
[IPC] Roadmap for Lead-Free Electronics Assemblies, 2nd draft, IPC, Northbrook, IL, November, 1999.
[LAU] T. Laurila, V. Vuorinen, and J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, p.1, 2005.
[MEI] Z. Mei, A. J. Sunwoo, and J. W. Morris, Jr., “Analysis of Low-Temperature Intermetallic Growth in Copper-Tin Diffusion Couples”, p.857, 1992.
[MIN] M. L. Minges et al., “Packaging”, Electronic Materials Handbook, Vol. 1, ASM International, Materials Park, Ohio, 1989.
[MOR] J. E. Morris, Workshop, “The Design and Processing Technology of Electronic Packaging”, 1997.
[NEM] National Electronics Manufacturing Initiative (NEMI) Lead-Free Readiness Task Force Report, NEMI, 1999.
[PCF] Printed Circuits Federation/International Tin Research Institute Joint Statement, PCIF/ITRI, 1999.
[SAU] N. Saunders, and A. P. Miodownik, “Cu-Sn (Copper-Tin)”,Binary Alloy Phase Diagrams, p.1481, 1990.
[SEE] K. F.Seeling, and D. G. Lockard, United States Patent, Patent No. 5,352,407, Oct., 1994.
[TSAI] J. Y. Tsai, Y. C. Hu, C. M. Tsai, and C. R. Kao, ”A Study on the Reaction between Cu and Sn3.5Ag Solder Doped with Small Amounts of Ni”, J. Electron. Mater., 32, p.1203, 2003.
[TU] K. N. Tu, and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, Materials Science and Engineering, p.1, 2001.
[TUM] R. R. Tummala, and E. J Rymaszewski, “Microelectronics Packaging Handbook”, Van Nostrand Reinhold, 1989.
[VIA] Paul T. Vianco, Jerome A. Rejent, and Paul F. Hlava, “Solid-State Intermetallic Compound Layer Growth Between Copper and 95.5Sn-3.9Ag-0.6Cu Solder”, J. Electron. Mater., 33, p.991, 2004.
[WAS1] R. J. Wassink, Soldering in Electronics, Electrochemical Pub. Ltd., p. 99, 1984.
[WAS2] R. J. Wassink, Soldering in Eelectronics, 2nd ed., Electro-chemical Pub. Ltd., p. 523, 1989.
[YU] Hao Yu, Vesa Vuorinen ,and Jorma Kivilahti, “Effect of Ni on the formation of Cu6Sn5 and Cu3Sn intermetallics,” Transactions on Electronics Packaging Manufacturing, 2006.
[ZEN] Kejun Zeng, Roger Stierman, Tz-Cheng Chiu, Darvin Edwards, Kazuaki Ano, and K. N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, Journal of Applied Physics, 2005.
[呂宗興] 呂宗興,電子構裝技術的發展歷程,工業材料115期,p. 49, 1996。
[陳信文] 陳信文、陳立軒、林永森、陳志銘,“電子構裝技術與材料”,高立圖書,2005。
[陳國銓] 陳國銓,IC 封裝技術,工業材料,第158期, p. 78, 2000。
指導教授 高振宏、鄭紹良
(C.Robert Kao、Shao-liang Cheng)
審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明