博碩士論文 943204042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.143.235.104
姓名 陳書卉(Shu-Hui Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金觸媒在富氫氣中選擇性一氧化碳氧化之應用
(Selective Oxidation of CO in Hydrogen Stream over gold catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 長久以來,金觸媒是一個很熱門的研究並且被廣泛的討論。即使在無數人的努力研究探討之下,金觸媒所擁有高活性的可能原因還是無法找出一個統一的解答,而且隨著實驗室的不同,也產生分歧的見解。一般而言,所有的見解皆研究探討認為擔體是影響金觸媒活性好壞的重要因素。本研究目標是找出高活性的金觸媒,可應用於在富氫氣流中選擇性一氧化碳氧化。我們利用初濕含浸法製備混合雙氧化物擔體,其擔體為二氧化錳-氧化鐵與二氧化鈰-二氧化鈦,並改變錳/鐵和鈰/鈦的莫耳比。混合擔體的莫耳比為1/9、2/8、3/7、4/6、5/5。金觸媒是藉由沉積沉澱法來加以製備,以四氯化氫金來當作金的前驅物,並以二氧化錳-氧化鐵與二氧化鈰-二氧化鈦視為擔體。金/二氧化鈰-二氧化鈦和金/二氧化錳-氧化鐵的酸鹼值分別為7和9,金觸媒乾燥溫度分別為80℃和110℃,煅燒溫度皆為180℃ 4小時,利用連續式反應器將金觸媒進行反應測試轉化率與選擇率,其反應溫度為25-100℃。金觸媒可以利用X光繞射分析儀(XRD)、穿透式電子顯微鏡(TEM)、氮-吸附(BET)、X光電子能譜儀(XPS)、感應耦合電漿質譜分析儀(ICP)等儀器來加以鑑定。
根據氮-吸附得知金/氧化鐵加入二氧化錳後,其BET surface area 和
Langmuir surface area 隨著增加的二氧化錳愈多表面積下降愈多,所以二氧化錳會導致面積下降。對於金/二氧化鈰-二氧化鈦(1:9)和金/二氧化錳-氧化鐵(3:7)在X光繞射分析儀鑑定中,並無發現任何金顆粒的結晶,其表示金顆粒非常小且小於4奈米。由穿透式電子顯微鏡可發現金觸媒金/二氧化鈰-二氧化鈦(1:9)
和金/二氧化錳-氧化鐵(3:7)金顆粒大小平均為2.5奈米。X光電子能譜儀可得知金/二氧化鈰-二氧化鈦(1:9)和金/二氧化錳-氧化鐵(3:7)金表面的氧化態有元素態金、正一價金、正三價的金,元素態金能夠吸附大部分的一氧化碳。感應耦合電漿質譜分析儀可測的擔體表面的金含量,但隨著金含量的增加而導致金顆粒的聚集。
金/二氧化鈰-二氧化鈦(1:9)和金/二氧化錳-氧化鐵(3:7)對於在富氫氣流中選擇性一氧化碳氧化有良好的結果,兩個金觸媒在室溫下進行選擇性一氧化碳氧化時,轉化率及選擇率皆很好。但是在高溫80℃-100℃下時,金/二氧化錳-氧化鐵(3:7)轉化率幾乎完全轉化,選擇率達到50%,顯然地,金/二氧化錳-氧化鐵(3:7)較金/二氧化鈰-二氧化鈦(1:9)穩定。所以,吾人認為金/二氧化錳-氧化鐵(3:7)對於在燃料電池富氫氣流中去移除一氧化碳有很大的幫助。
摘要(英) Supported gold catalyst has been a subject of intense investigation. In spite of these efforts, there is still great uncertainty of the cause of the high activity and there is a wide variation in the activities reported among different laboratories. Superficially, all results suggest that the catalytic activity depends on the support. The aim of this study was to develop a method to prepare CeO2-TiO2 and MnO2-Fe2O3 to be used as supports by incipient-wetness ingeneration method. We change the molar ratio Ce/Ti and Mn/Fe to obtain different CeO2-TiO2 and MnO2-Fe2O3 supports. The molar Ce/Ti and Mn/Fe ratio was 1/1, 2/8, 3/7, 4/6, and 5/5. Used to HAuCl4 as the Au precursor to prepare Au/CeO2-TiO2 and Au/MnO2-Fe2O3 catalysts by deposition-precipitation. The gold catalysts Au/CeO2-TiO2 and Au/MnO2-Fe2O3 were maintained pH value 7 and 9. Au/CeO2-TiO2 and Au/MnO2-Fe2O3 were dried at 80℃ and 110 ℃ for overnight dividedly. The calcination temperature was at 180℃ for 4 h. The activity and selectivity of PROX was measured using a Pyrex fixed-bed continuous flow reactor at various temperatures (25
關鍵字(中) ★ 金觸媒
★ 二氧化錳
★ 氧化鐵
★ 一氧化碳
★ 二氧化鈰
★ 二氧化鈦
關鍵字(英) ★ TiO2
★ CeO2
★ carbon monoxide.
★ MnO2
★ Fe2O3
★ gold catalysts
論文目次 Chapter 1. Introduction………………………………………………………….. 01
Chapter 2. Literature Review…………………………………………………..... 03
2.1 Preparation method……………………………………………………….. 03
2.2 Active state of Au........................................................................................ 05
2.3 Au-support interaction................................................................................. 06
2.4 Applications in catalysis………………………………………………….. 06
2.4.1 CO oxidation………………………………………………………..... 06
2.4.2 VOC oxidation………………………………………………………... 06
2.4.3 water-gas shift reaction……………………………………………….. 07
2.4.4 Chemical processing………………………………………………….. 07
2.4.5 Epoxidation of propylene……………………………………………... 07
2.4.6 Electronics applications………………………………………………. 07
2.5 CO oxidation……………………………………………………………… 10
2.5.1 Particle size effect…………………………………………………… 10
2.5.2 Support effect………………………………………………………… 10
2.5.3 Promoter……………………………………………………………… 11
2.5.4 Reaction mechanism………………………………………………… 12
2.6 Selective CO oxidation in H2 stream……………………………………… 13
Chapter 3. Experimental………………………………………………………… 17
3.1 Chemical………………………………………………………………… 17
3.2 Catalyst preparation……………………………………………………… 17
3.2.1 Preparation of Iron oxide support…………………………………… 17
3.2.2 Preparation of MnO2-Fe2O3 support………………………………… 17
3.2.3 Preparation of CeO2-TiO2 support…………………………………… 21
3.2.4 Preparation of gold catalysts………………………………………...... 23
3.3. Characterization………………………………………………………… 27
3.3.1 N2-sorption…………………………………………………………… 27
3.3.2 X-ray diffraction……………………………………………………… 27
3.3.3 Transmission electron microscope…………………………………… 27
3.3.4 X-ray photoelectron spectroscope…………………………………… 28
3.3.5 Inductively coupled plasma mass spectrometry……………………… 28
3.4 Reaction testing…………………………………………………………… 28
3.4.1 Selective CO oxidation in H2 stream………………………………… 29
Chapter 4. Au/CeO2-TiO2 catalysts on selective CO oxidation………………….. 31
4.1 Introduction……………………………………………………………….. 31
4.2 Effect of preparation method……………………………………………… 35
4.3 Effect of Ce/Ti ratio……………………………………………………...... 54
4.4 Effect of gold loading……………………………………………………... 64
4.5 Summary…………………………………………………………………... 75
Chapter 5. Au/MnO2-Fe2O3catalysts on selective CO oxidation………………… 77
5.1 Introduction………………………………………………………………... 77
5.2 Effect of preparation method……………………………………………… 79
5.3 Effect of Mn/Fe ratio……………………………………………………… 82
5.4 Effect of gold loading……………………………………………………... 101
5.5 Effect of CO/O2 ratio……………………………………………………… 111
5.6 Effect of pH……………………………………………………………...... 111
5.7 Summary…………………………………………………………………... 116
Chapter 6. Conclusion……………………………………………………………. 118
Literature Cited…………………………………………………………………... 121
參考文獻 Akita, T., Lu, P., Ichikawa, S., Tanaka, K., and Haruta, M., “Analytic TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures”, Surf. Interface Anal., 31 (2001) 73-78.
Andreeva, D., Idakiev, V., Tabakova, T., and Andreev, A., “Low-Temperature Water-Gas Shift Reaction over Au/ ά-Fe2O3”, J. Catal, 158 (1996) 354
Ando, M., Kobayashi, T., Ijima, S., and Haruta, M., “Optical CO Sensitivity of Au-CuO Composite Film by Use of the Plasmon Adsorption Change”, Sensors and Actuators B, 96 (2003) 589-595.
Avgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., and Matralis, H. K., “A comparative study of Pt/r-Al2O3, Au/a-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, catal. Today, 75 (2002) 157-167.
Azar, M., Valerie, C., Franck, M., Jean-Luc, R., Agnes, P., Jean-Claude, B., Laurent, P., “Insights into activation, deactivation and hydrogen-induced promotion of a Au/TiO2 reference catalyst in CO oxidation”, J. Catal. 239 (2006) 307-312.
Arena, F., Pio, F., Giuseppe, T., Giuseppe, B., Francesco, F., Lorenzo, S., “Probing the factors affecting structure and activity of the Au/CeO2 system in total and preferential oxidation of CO”, Appl. Catal., B Environ. 66 (2006) 81-91.
Avgouropoulos, G., Joan, P., Tatyana, T., Vasko, I., Theophilos, I., “A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction”, Chem. Eng. J. 124 (2006) 41-45.
Baiker, A, Kilo, M., Maciejewski, M., Menzi, S., Wokaun, A., in: Guczi, L., Salomosi, F., Tetenyi, P., Proceedings of the 10th International Congress on Catalysis, Budapest, 1992, part B, Elsevier, Amsterdam, (1993) 1257
Bethke, G.. K. and Kung, H. H., “Selective CO oxidation in a hydrogen-rich stream over Au/r-Al2O3 catalysts”, Appl. Catal. A: General, 194-195 (2000) 43-53.
Bond, G.. C. and Thompson, D. T., Au Bull., 33 (2000) 41.
Bond, G.. C., “Gold: a relatively new catalyst”, Catal. Today, 72 (2002) 5-9.
Bond, G.. C. and Thompson, D. T., Au Bull., 33 (2000) 41.
Boccuzzi, F., Chiorino, A., Tsubota, S., and Haruta, M., Catal .Lett., 29 (1994) 225
Bond, G.. C. and Thompson, D. T., Catal. Rev.-Sci. Eng., 41 (1999) 319-388.
Cameron, D., Richard, H., David, T., “Gold’s future role in fuel cell systems”, J.Power Sources 118 (2003) 298-303.
Centeno, M.A., K. H., Tz. V, Hr. K., J.A. O., “Comparative study of Au/Al2O3 and Au/CeO2-Al2O3 catalysts”, J.Mol. Catal. A: Chemical 252 (2006) 142–149
Cuenya, A. R., Baeck, S. H., Jaramillo, T. F., Mcfarland, E. W., J. Am. Chem. Soc., 125 (2003) 12928.
Casaletto, M. P., Alessandro, L., Anna, M. V., Antonino, M., Antonio, P., “Metal-support and preparation influence on the structural and electronic properties of gold catalysts”, Appl. Catal., A General 302 (2006) 309–316
Cant, N. W., Ossipoff, N. J., “Cobalt promotion of Au/TiO2 catalysts for the reaction of carbon monoxide with oxygen and nitrogen oxides”, Catal. Today, 36 (1997) 125-133.
Choudhary, T. V., Sivadinarayana, C., Chusuei, C. C., Datye, A. K., Fackler, J. P., Jr., and Goodman, D. W., “CO oxidation on Supported Nano-Au Catalysts Synthesized form [Au(PPh3)6](BF4)2”, J. Catal, 207 (2002) 247
Cosandey, F. and Madey, T. E., Surf. Rev. Lett, 8 (2001) 73-93.
Costello, C. K., Kung, M. C., Oh, H. S., Wang, Y., and Kung, H. H., “Nature of the active site for CO oxidation on highly active Au/r-Al2O3”, Appl. Catal. A: General, 232 (2002) 159-168.
Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., and Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catal. Today, 72 (2002) 89-94.
Dekkers, M. A. P., Lippits, M. J., and Nieuwenhuys, B. E., Catal. Lett., 56 (1998) 195
Dong, J. K., Jae, H. S., Hong, S. H, Noon, I. S., Korean J. Chem. Eng., 14 (1997) 486-490.
Freni, S., Calogero, G.., Cavallaro, S., J. Power Sources, 87 (2000) 28-38.
Gluhoi, A. C., Dekkers, M. A. P., and Nieuwenhuys, B. E., “Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides”, J. Catal, 219, (2003) 197.
Grisel, R.J.H. and Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catal. Today, 64 (2001) 69-81.
Grisel, R. J. H. and Nieuwenhuys, B. E ., “Selective Oxidation of CO, over Supported Au Catalysts”, J. Catal, 199, (2001) 48.
Grisel, R. J. H., Westrstrate, C. J., Goossens, A., Craje, M. W. J., Van der Kraan, A. M., and Nieuwenhuys, B. E., “Oxodation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today, 72, (2002) 123-132.
Grunwaldt, J.D., Maciejewski, M., Becker, O.S., Fabrizioli, P., and Baiker, A., J. Catal., 186 (1999) 458.
Gupts, N. M. and Tripathi, A. K., “Microcalorimetry, Adsorption, and Reaction Studies of CO, O2, and CO+O2 over Fe2O3, Au/Fe2O3, and Polycrystalline Gold Catalysts as a Function of Reduction Treatment”, J. Catal. 187, 3(1999) 43
Hammer B. and Norskov J.K., Nature, 376 (1995) 238-239.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon B.,
“Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal., 144, (1993) 175.
Haruta, M., Ueda, A., Tsubota, S., and Torres-Sanchez, R. M., “Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts”, Catal. Today, 29, (1996) 443-447.
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today, 36 (1997) 153-16
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today, 36 (1997) 153-166.
Haruta, M., “Nanoparticulate Gold Catalyst for Low-Temperature CO oxidation”, J. New. Electrochem. System., 7 (2004) 163.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T., Kielin, E. J., “Au/MnOx catalystic performance characteristics for low-temperature carbon monoxide oxidation”, Appl. Catal. B, 6 (1995) 117-126.
Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T., Kielin, E. J., “Au/MnOx catalystic performance characteristics for low-temperature carbon monoxide oxidation”, Appl. Catal. B, 6 (1995) 117-126.
Hutchings, G.J., Mirzaei, A.A., Joyner, R.W., Appl. Catal., 166 (1998) 143-152.
Hutchings, G.J., “Gold catalysis in chemical processing”, Catal. Today, 72 (2002) 11-17.
Iizuka, Y., Fujiki, H., Yamauchi, N., Chijiiwa, T., Arai, S., Tsubota, S., and Haruta, M., “Adsorption of CO on gold supported on TiO2”, Catal. Today, 36 (1997) 115-123.
“Low-Temperature Oxidation of CO over Gold Supported on TiO2,ά-Fe2O3, and Co3O4”, J. Catal., 144, (1993) 175.
Luengnaruemitchai, A., Osuwan, S., and Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catal. Commun, 4 (2003) 215-221.
Landon, P., Jonathan, F., Benjamin, E., Solsona, T. G., Saleh, A.S., Albert, F., Carley, A. A., Herzing, C., Michiel, M. M., Jacob, A. M., Arjan, O., Stanislaw, E. G., Graham, J. H., “Selective oxidation of CO in the presence of H2, H2O and CO2 untilising Au/α-Fe2O3 catalysts for use in fuel cells”, J. Mater. Chem. 16 (2006) 199-208.
Lee, S. J. and Gavriilidis, A., “Au catalysts supported on anodized aluminum for low-temperature CO oxidation”, Catal. Comm., 3 (2002) 425-428.
Lin, J. N., Chen, J. H., Hsiao, C. Y., Kang, Y. M., and Wan B. Z., “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation”, Appl. Catal. B: Environ, 36 (2002) 19-29.
Lopez, N., Norskov, J. K., Janssens, T. V. W., Ccalsson, A., Puig-Molina, A., Clausen, B. S., and Grunwaldt, J. D., “The adhesion and shape of nanosized Au particle in a Au/TiO2 catalyst”, J. Catal, 225 (2004) 86-94.
Jozsef, L., Margitfalvi, M., Hegedus, A., Szegedi, and Sajo, I., “Modification of Au/MgO catalysts used in low temperature CO oxidation with Mn and Fe”, Appl. Catal. A: General, 272 (2004) 87-97.
Kandoi, S., A. A., Gokhale, L. C. Grabow, J. A., Dumesic, and M., Mavrilalis, “Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature”, Catalysis Letters Vol. 93, Nos. 1-2, March 2004.
KO, E. Y., E. D., Park, K. W., Seo, H. C., Lee, D., Lee, S., Kim, “A comparative study of catalysts for the preferential CO oxidation in excess hydrogen”, Catal. Today 116 (2006) 377-383.
Minico, S., Scire, S., Crisafulli, C., and Galvagno, S., “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide”, Appl. Catal. B: Environmental, 34 (2001) 277-285.
Monyanon, S., Sangobtip, P., Apanee, L., “Catalytic activity of Pt-Au /CeO2 catalyst for the preferential oxidation of CO in H2-rich stream”, Jourmal of Power Sources 163 (2006) 547-554.
Neri, G.., Visco, A. M., Galvagno, S., Donato, A., and Panzalorto, M., “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta, 329 (1999) 39-46.
Neri, G.., Visco, A. M., Galvagno, S., Donato, A., and Panzalorto, M., “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta, 329 (1999) 39-46.
Okumura, M., “Report of the Research Achievement of Interdisciplinary Basic Research Scetion: No. 393”, Osaka National research Institute, 1999, 6.
Okumura, M., Tsubota, S., and Haruta, M., “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and H2”, J. Mol. Catal. A: Chemical, 199 (2003) 73-84.
Panzera, G., V., Modafferi, S., Candamano, A., Donato, F., Frusteri, P. L., Antonucci, “CO selective oxidation on ceria-supported Au catalysts for fuel cell application”, Journal of Power Sources 135 (2004) 177-183.
Park, E. D. and Lee, J. S., J. Catal., 186 (1999) 1.
Pillai, U.R., Sarojini D., “Highly active gold-ceria catalyst for the room temperature
oxidation of carbon monoxide”, Appl Catal A: General 299 (2006) 266–273.
Qi, C., Akita, T., Okumura, M., Kuraoka, K., and Haruta, M., “Effect of surface chemical properties and texture of mesoporous titanosilicate on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature”, Appl. Catal. A; General, 253 (2003) 75-89.
Rossignol, C., Sandrine, A., Franck, M., Laurent, P., Valerie, C., Jean-Luc, R., “Selective oxidation of CO over model gold-based catalysts in the presence of H2”, J. Catal. 230 (2005) 476-483.
Ruth, K., Hayes, M., Burch, R., Tsubota, S., and Haruta, M., “The effects of SO2 on the oxidation of CO and propane non supported Pt and Au catalysts”, Appl. Catal. B: Environ, 24 (2000) 133-138.
Schubert, M. M., Vojtech, P., Jurgen, G., R. Jurgen, B., “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas”, Catalysis Letters Vol. 76, No. 3–4, 2001.
Tabakova, T., Idakiev, V., Andreeva, D., and Mitov, I., “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction”, Appl. Catal. A: general, 202 (2000) 91-97.
Takaoka, G.. H., Hamano, T., Fukushima, K., Matsuo, J., and Yamada, I., “Preparation and catalytic activity of nano-scale Au islands supported on TiO2”, Nuclear Instru. Method. Phys. Research B, 121 (1997) 503-306.
Visco, A. M., Neri, F., Neri, G.., Donato, A., Milone, C., Galvagno, S., Phys. Chem. Chem. Phys., 1 (1999) 2869.
Wang, G.. Y., Zhang, W. X., Lian, H. L., Jiang, D. Z., and Wu, T. H., “Effect of calcinations temperatures and precipitants on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances”, Appl. Catal. A: General, 239 9 (2003) 1-10.
Wolf A,. and Schuth, F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: General, 226 (2002) 1-13.
Zhang ,J., Wang, Y., Chen, B., Li, C., Wu, D., and Wang, X., “Selective oxidation of CO in hydrogen rich gas over platinum-gold catalyst supported on zinc oxide for potential application in fuel cell”, Energy Conversion and Management, 44 (2003) 1805-1815.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2007-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明