參考文獻 |
Akita, T., Lu, P., Ichikawa, S., Tanaka, K., and Haruta, M., “Analytic TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures”, Surf. Interface Anal., 31 (2001) 73-78.
Andreeva, D., Idakiev, V., Tabakova, T., and Andreev, A., “Low-Temperature Water-Gas Shift Reaction over Au/ ά-Fe2O3”, J. Catal, 158 (1996) 354
Ando, M., Kobayashi, T., Ijima, S., and Haruta, M., “Optical CO Sensitivity of Au-CuO Composite Film by Use of the Plasmon Adsorption Change”, Sensors and Actuators B, 96 (2003) 589-595.
Avgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., and Matralis, H. K., “A comparative study of Pt/r-Al2O3, Au/a-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, catal. Today, 75 (2002) 157-167.
Azar, M., Valerie, C., Franck, M., Jean-Luc, R., Agnes, P., Jean-Claude, B., Laurent, P., “Insights into activation, deactivation and hydrogen-induced promotion of a Au/TiO2 reference catalyst in CO oxidation”, J. Catal. 239 (2006) 307-312.
Arena, F., Pio, F., Giuseppe, T., Giuseppe, B., Francesco, F., Lorenzo, S., “Probing the factors affecting structure and activity of the Au/CeO2 system in total and preferential oxidation of CO”, Appl. Catal., B Environ. 66 (2006) 81-91.
Avgouropoulos, G., Joan, P., Tatyana, T., Vasko, I., Theophilos, I., “A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction”, Chem. Eng. J. 124 (2006) 41-45.
Baiker, A, Kilo, M., Maciejewski, M., Menzi, S., Wokaun, A., in: Guczi, L., Salomosi, F., Tetenyi, P., Proceedings of the 10th International Congress on Catalysis, Budapest, 1992, part B, Elsevier, Amsterdam, (1993) 1257
Bethke, G.. K. and Kung, H. H., “Selective CO oxidation in a hydrogen-rich stream over Au/r-Al2O3 catalysts”, Appl. Catal. A: General, 194-195 (2000) 43-53.
Bond, G.. C. and Thompson, D. T., Au Bull., 33 (2000) 41.
Bond, G.. C., “Gold: a relatively new catalyst”, Catal. Today, 72 (2002) 5-9.
Bond, G.. C. and Thompson, D. T., Au Bull., 33 (2000) 41.
Boccuzzi, F., Chiorino, A., Tsubota, S., and Haruta, M., Catal .Lett., 29 (1994) 225
Bond, G.. C. and Thompson, D. T., Catal. Rev.-Sci. Eng., 41 (1999) 319-388.
Cameron, D., Richard, H., David, T., “Gold’s future role in fuel cell systems”, J.Power Sources 118 (2003) 298-303.
Centeno, M.A., K. H., Tz. V, Hr. K., J.A. O., “Comparative study of Au/Al2O3 and Au/CeO2-Al2O3 catalysts”, J.Mol. Catal. A: Chemical 252 (2006) 142–149
Cuenya, A. R., Baeck, S. H., Jaramillo, T. F., Mcfarland, E. W., J. Am. Chem. Soc., 125 (2003) 12928.
Casaletto, M. P., Alessandro, L., Anna, M. V., Antonino, M., Antonio, P., “Metal-support and preparation influence on the structural and electronic properties of gold catalysts”, Appl. Catal., A General 302 (2006) 309–316
Cant, N. W., Ossipoff, N. J., “Cobalt promotion of Au/TiO2 catalysts for the reaction of carbon monoxide with oxygen and nitrogen oxides”, Catal. Today, 36 (1997) 125-133.
Choudhary, T. V., Sivadinarayana, C., Chusuei, C. C., Datye, A. K., Fackler, J. P., Jr., and Goodman, D. W., “CO oxidation on Supported Nano-Au Catalysts Synthesized form [Au(PPh3)6](BF4)2”, J. Catal, 207 (2002) 247
Cosandey, F. and Madey, T. E., Surf. Rev. Lett, 8 (2001) 73-93.
Costello, C. K., Kung, M. C., Oh, H. S., Wang, Y., and Kung, H. H., “Nature of the active site for CO oxidation on highly active Au/r-Al2O3”, Appl. Catal. A: General, 232 (2002) 159-168.
Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., and Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catal. Today, 72 (2002) 89-94.
Dekkers, M. A. P., Lippits, M. J., and Nieuwenhuys, B. E., Catal. Lett., 56 (1998) 195
Dong, J. K., Jae, H. S., Hong, S. H, Noon, I. S., Korean J. Chem. Eng., 14 (1997) 486-490.
Freni, S., Calogero, G.., Cavallaro, S., J. Power Sources, 87 (2000) 28-38.
Gluhoi, A. C., Dekkers, M. A. P., and Nieuwenhuys, B. E., “Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides”, J. Catal, 219, (2003) 197.
Grisel, R.J.H. and Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catal. Today, 64 (2001) 69-81.
Grisel, R. J. H. and Nieuwenhuys, B. E ., “Selective Oxidation of CO, over Supported Au Catalysts”, J. Catal, 199, (2001) 48.
Grisel, R. J. H., Westrstrate, C. J., Goossens, A., Craje, M. W. J., Van der Kraan, A. M., and Nieuwenhuys, B. E., “Oxodation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today, 72, (2002) 123-132.
Grunwaldt, J.D., Maciejewski, M., Becker, O.S., Fabrizioli, P., and Baiker, A., J. Catal., 186 (1999) 458.
Gupts, N. M. and Tripathi, A. K., “Microcalorimetry, Adsorption, and Reaction Studies of CO, O2, and CO+O2 over Fe2O3, Au/Fe2O3, and Polycrystalline Gold Catalysts as a Function of Reduction Treatment”, J. Catal. 187, 3(1999) 43
Hammer B. and Norskov J.K., Nature, 376 (1995) 238-239.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon B.,
“Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal., 144, (1993) 175.
Haruta, M., Ueda, A., Tsubota, S., and Torres-Sanchez, R. M., “Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts”, Catal. Today, 29, (1996) 443-447.
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today, 36 (1997) 153-16
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today, 36 (1997) 153-166.
Haruta, M., “Nanoparticulate Gold Catalyst for Low-Temperature CO oxidation”, J. New. Electrochem. System., 7 (2004) 163.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T., Kielin, E. J., “Au/MnOx catalystic performance characteristics for low-temperature carbon monoxide oxidation”, Appl. Catal. B, 6 (1995) 117-126.
Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T., Kielin, E. J., “Au/MnOx catalystic performance characteristics for low-temperature carbon monoxide oxidation”, Appl. Catal. B, 6 (1995) 117-126.
Hutchings, G.J., Mirzaei, A.A., Joyner, R.W., Appl. Catal., 166 (1998) 143-152.
Hutchings, G.J., “Gold catalysis in chemical processing”, Catal. Today, 72 (2002) 11-17.
Iizuka, Y., Fujiki, H., Yamauchi, N., Chijiiwa, T., Arai, S., Tsubota, S., and Haruta, M., “Adsorption of CO on gold supported on TiO2”, Catal. Today, 36 (1997) 115-123.
“Low-Temperature Oxidation of CO over Gold Supported on TiO2,ά-Fe2O3, and Co3O4”, J. Catal., 144, (1993) 175.
Luengnaruemitchai, A., Osuwan, S., and Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catal. Commun, 4 (2003) 215-221.
Landon, P., Jonathan, F., Benjamin, E., Solsona, T. G., Saleh, A.S., Albert, F., Carley, A. A., Herzing, C., Michiel, M. M., Jacob, A. M., Arjan, O., Stanislaw, E. G., Graham, J. H., “Selective oxidation of CO in the presence of H2, H2O and CO2 untilising Au/α-Fe2O3 catalysts for use in fuel cells”, J. Mater. Chem. 16 (2006) 199-208.
Lee, S. J. and Gavriilidis, A., “Au catalysts supported on anodized aluminum for low-temperature CO oxidation”, Catal. Comm., 3 (2002) 425-428.
Lin, J. N., Chen, J. H., Hsiao, C. Y., Kang, Y. M., and Wan B. Z., “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation”, Appl. Catal. B: Environ, 36 (2002) 19-29.
Lopez, N., Norskov, J. K., Janssens, T. V. W., Ccalsson, A., Puig-Molina, A., Clausen, B. S., and Grunwaldt, J. D., “The adhesion and shape of nanosized Au particle in a Au/TiO2 catalyst”, J. Catal, 225 (2004) 86-94.
Jozsef, L., Margitfalvi, M., Hegedus, A., Szegedi, and Sajo, I., “Modification of Au/MgO catalysts used in low temperature CO oxidation with Mn and Fe”, Appl. Catal. A: General, 272 (2004) 87-97.
Kandoi, S., A. A., Gokhale, L. C. Grabow, J. A., Dumesic, and M., Mavrilalis, “Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature”, Catalysis Letters Vol. 93, Nos. 1-2, March 2004.
KO, E. Y., E. D., Park, K. W., Seo, H. C., Lee, D., Lee, S., Kim, “A comparative study of catalysts for the preferential CO oxidation in excess hydrogen”, Catal. Today 116 (2006) 377-383.
Minico, S., Scire, S., Crisafulli, C., and Galvagno, S., “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide”, Appl. Catal. B: Environmental, 34 (2001) 277-285.
Monyanon, S., Sangobtip, P., Apanee, L., “Catalytic activity of Pt-Au /CeO2 catalyst for the preferential oxidation of CO in H2-rich stream”, Jourmal of Power Sources 163 (2006) 547-554.
Neri, G.., Visco, A. M., Galvagno, S., Donato, A., and Panzalorto, M., “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta, 329 (1999) 39-46.
Neri, G.., Visco, A. M., Galvagno, S., Donato, A., and Panzalorto, M., “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta, 329 (1999) 39-46.
Okumura, M., “Report of the Research Achievement of Interdisciplinary Basic Research Scetion: No. 393”, Osaka National research Institute, 1999, 6.
Okumura, M., Tsubota, S., and Haruta, M., “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and H2”, J. Mol. Catal. A: Chemical, 199 (2003) 73-84.
Panzera, G., V., Modafferi, S., Candamano, A., Donato, F., Frusteri, P. L., Antonucci, “CO selective oxidation on ceria-supported Au catalysts for fuel cell application”, Journal of Power Sources 135 (2004) 177-183.
Park, E. D. and Lee, J. S., J. Catal., 186 (1999) 1.
Pillai, U.R., Sarojini D., “Highly active gold-ceria catalyst for the room temperature
oxidation of carbon monoxide”, Appl Catal A: General 299 (2006) 266–273.
Qi, C., Akita, T., Okumura, M., Kuraoka, K., and Haruta, M., “Effect of surface chemical properties and texture of mesoporous titanosilicate on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature”, Appl. Catal. A; General, 253 (2003) 75-89.
Rossignol, C., Sandrine, A., Franck, M., Laurent, P., Valerie, C., Jean-Luc, R., “Selective oxidation of CO over model gold-based catalysts in the presence of H2”, J. Catal. 230 (2005) 476-483.
Ruth, K., Hayes, M., Burch, R., Tsubota, S., and Haruta, M., “The effects of SO2 on the oxidation of CO and propane non supported Pt and Au catalysts”, Appl. Catal. B: Environ, 24 (2000) 133-138.
Schubert, M. M., Vojtech, P., Jurgen, G., R. Jurgen, B., “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas”, Catalysis Letters Vol. 76, No. 3–4, 2001.
Tabakova, T., Idakiev, V., Andreeva, D., and Mitov, I., “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction”, Appl. Catal. A: general, 202 (2000) 91-97.
Takaoka, G.. H., Hamano, T., Fukushima, K., Matsuo, J., and Yamada, I., “Preparation and catalytic activity of nano-scale Au islands supported on TiO2”, Nuclear Instru. Method. Phys. Research B, 121 (1997) 503-306.
Visco, A. M., Neri, F., Neri, G.., Donato, A., Milone, C., Galvagno, S., Phys. Chem. Chem. Phys., 1 (1999) 2869.
Wang, G.. Y., Zhang, W. X., Lian, H. L., Jiang, D. Z., and Wu, T. H., “Effect of calcinations temperatures and precipitants on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances”, Appl. Catal. A: General, 239 9 (2003) 1-10.
Wolf A,. and Schuth, F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: General, 226 (2002) 1-13.
Zhang ,J., Wang, Y., Chen, B., Li, C., Wu, D., and Wang, X., “Selective oxidation of CO in hydrogen rich gas over platinum-gold catalyst supported on zinc oxide for potential application in fuel cell”, Energy Conversion and Management, 44 (2003) 1805-1815. |