以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:31 、訪客IP:3.14.145.167
姓名 李嘉益(Chia-yi Li) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 彩色濾光片再生製程強鹼染料廢水之電解-電透析處理以去除廢水中之KOH,並同時合成KOH與NaOCl
(Colre filter recycle process wastewater treatment)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 在低成本、低反射與低透光率等考量下,彩色濾光片大部份廠商
仍然以鉻金屬或鉻氧化物作為黑框(Black Matrix)的材料。當製程失
敗,採用氫氧化鉀作為清理處理藥劑可以避免將黑框一併蝕去,該玻
璃基板上之材料可以直接蝕除至樹脂層,基板仍可再生使用。
彩色濾光片玻璃基板再生製程所產生的廢鹼氫氧基濃度高達約
2.7 M,導電度值亦多達57mS cm-1,本研究希望藉由電解-電透析法,
去除氫氧基濃度,並同時回收、同時合成氫氧化鉀及次氯酸鈉。
本實驗裝置為四隔室型,為Pt-Ti / (1)KCl(aq) / C / (2)KOH(aq) / A /
(3)wastewater / C / (4)KOH(aq) / steel,A、C分別為離子交換膜Asahi
AMV與Nafion NX982TX,KCl(aq)在陽極室循環,KOH(aq)在濃縮室陰
極室循環,廢水在淡化室循環,並在陽極室外接氯氣吸收槽,以吸收
所產生之氯氣,製造次氯酸鈉。
由實驗數據可得知,本系統影響εc、εv之主要因素為室2、3
與4 之濃度、流速、及電流密度。綜合以上分析,選取適當實驗條件,
操作3 小時,原廢液淡化效率66.97%,氫氧化鉀再生效率179.74%
及次氯酸鈉生成效率75.4%。
同時藉由無因次分析,可得電流效率和電壓效率與系統操作變因
有著無因次之關係:
對於電流效率:
一:淡化室濃度大於濃縮室與陰極室
0.216 30.015 4 0.005 30.043
0 0 0 0 0
3.375( ) ( ) ( ) ( ) c
I C C u
FC u C C u
ε = −
R2 = 0.963
二:淡化室濃度小於濃縮室與陰極室
0.181 30.017 4 0.091 3 0.036
0 0 0 0 0
3.850( ) ( ) ( ) ( ) c
I C C u
FC u C C u
ε = − −
R2 = 0.96
對於電壓效率:
一:淡化室濃度大於濃縮室與陰極室
1 1 0.677 0.030 ln v
cell cell
Id I
E E
ε κ κ
− − = + +
− −
d
R2 = 0.954
二:淡化室濃度小於濃縮室與陰極室
1 1 0.677 0.031ln v
cell cell
Id I
E E
ε κ κ
− − = + +
− −
d
R2 = 0.982摘要(英) Low cost, low to reflect, under low printing opacity rate,etc. CF manufacturers of
slide yet regard chromium metal or the chromium oxide as the dark frame (Black
Matrix) Material. Potassium hydroxide as is it deal with drug can prevent from to
clear up without Black Matrix frame, glass material can be recover. CF recover
process make the produce oxyhydrogen base up to 2.7 M, conductivity up to 57mS
cm-1 also, research by electrolysis - electrodialysis to get rid of oxyhydrogen, and at
the same time, formate potassium hydroxide and chloric acid sodium.
It is in experimental for four compartment, it is Pt-Ti / (1)KCl(aq) /C / (2)
KOH(aq) /A / (3) wastewater / C / (4) KOH(aq) /Steel, A, C are membrane Asahi
AMV and Nafion NX982TX of ion exchange respectively.
By the experimental data, it is the concentration, flow velocity, and current density of
room 2, 3 and 4 that this system influences . choose the proper experiment condition,
operate for 3 hours, the original wastewater diluate 66.97% of current efficiency,
179.74% of recover efficiency of potassium hydroxide and chloric acid sodium 75.4%
of efficiency.
By the dimensionless groups of the operation variables, we can get 4 equations
for current and voltage efficienies.
For C3>C4
0 .2 1 6 30 .0 1 5 4 0 .0 0 5 30 .0 4 3
0 0 0 0 0
3 .3 7 5 ( ) ( ) ( ) ( ) c
I C C u
F C u C C u
ε = −
1 1 0.677 0 .030 ln v
cell cell
Id I
E E
ε κ κ
− − = + +
− −
d
For C30 .1 8 1 3 0 .0 1 7 4 0 .0 9 1 4 0 .0 3 6
0 0 0 0 0
3 .8 5 0 ( ) ( ) ( ) ( ) c
I C C u
F C u C C u
ε = − −
1 1 0 .677 0 .031 ln v
c e ll ce ll
Id Id
E E
ε κ κ關鍵字(中) ★ 再生
★ 彩色濾光片
★ 電透析
★ 廢水關鍵字(英) ★ wastewater treatment.
★ Color filter
★ Electordialyzers論文目次 中文摘要--------------------------------------------------------------------- i
英文摘要--------------------------------------------------------------------- iii
誌謝--------------------------------------------------------------------------- iv
目錄--------------------------------------------------------------------------- v
圖目錄------------------------------------------------------------------------ ix
表目錄------------------------------------------------------------------------ xiii
符號說明--------------------------------------------------------------------- xiv
第一章 序論-------------------------------------------------------------- 1
1-1 水回收之重要-------------------------------------------------- 1
1-2 研究動機與目的----------------------------------------------- 2
1-3 工業廢水處裡技術-------------------------------------------- 3
1-3-1 混凝------------------------------------------------------ 3
1-3-2 薄膜------------------------------------------------------ 4
1-3-3 逆滲透--------------------------------------------------- 5
1-3-4 電透析--------------------------------------------------- 6
1-3-5 濕式氧化------------------------------------------------ 7
1-4 電解電透析簡介及應用-------------------------------------- 8
1-4-1 電透析簡史--------------------------------------------- 8
1-4-2 電透析法處理廢水------------------------------------ 10
1-4-3 其他電透析之應用------------------------------------ 10
1-5 本研究目的與方法、步驟----------------------------------- 13
第二章 理論-------------------------------------------------------------- 16
2-1 電解電透析之流程-------------------------------------------- 16
2-2 離子通量方程式與電極間電位梯度----------------------- 16
2-3 通電初狀態系統之濃度分佈-------------------------------- 18
2-4 平衡極電位與電荷轉移過電壓----------------------------- 18
2-4-1 平衡極電位--------------------------------------------- 18
2-4-2 電荷轉移過電壓--------------------------------------- 20
2-5 擴散電位-------------------------------------------------------- 20
2-6 歐姆電位降----------------------------------------------------- 20
2-7 Donnan potential----------------------------------------------- 21
2-8 濃度偏極化----------------------------------------------------- 22
2-9 系統外加電壓Δφ 方程式------------------------------------- 22
2-10 電流效率、電壓效率及電能消耗與無因次操作變數群之關係式----------23
第三章 實驗部份-------------------------------------------------------- 29
3-1 實驗及分析用藥品-------------------------------------------- 29
3-2 實驗裝置及分析儀器----------------------------------------- 30
3-3 樣品分析-------------------------------------------------------- 30
3-3-1 導電度儀的校正及分析條件------------------------ 30
3-3-2 陽極室Cl-及OCl-分析------------------------------- 31
3-3-3 濃縮室淡化室陰極室OH-分析--------------------- 31
3-3-4 吸收室Cl-及OCl-分析------------------------------- 32
3-4 實驗步驟-------------------------------------------------------- 32
3-4-1 陽離子交換膜之選擇--------------------------------- 32
3-4-2 氫氧化鉀溶液導電度與pH 值校正---------------- 33
3-4-3 極限電流密度的測定--------------------------------- 33
3-4-4 電流密度對電流效率、電壓效率及電能消耗之影響------------33
3-4-5 濃度對電流效率、電壓效率及電能消耗之影響 33
3-4-6 流速對電流效率、電壓效率及電能消耗之影響 34
3-4-7 隔室寬度對電流效率電壓效率之影響------------ 35
3-4-8 電流密度對整體電透析各槽液之關係------------ 35
3-4-9 電流密度對鹼液吸收氯氣之影響------------------ 35
第四章 結果與討論----------------------------------------------------- 37
4-1 陽離子交換膜之選擇----------------------------------------- 37
4-2 氫氧化鉀溶液導電度與pH 值校正------------------------ 39
4-3 極限電流密度的測定----------------------------------------- 40
4-4 電流密度對電流效率電壓效率及電能消耗之影響---- 42
4-5 濃度對電流效率、電壓效率、電能消耗之影響--------44
4-6 流速對電流效率、電壓效率、電能消耗之影響---------47
4-7 電解槽隔室寬度對電流效率、電壓效率、電能消耗之影響----53
4-8 電流效率及電壓效率與無因次操作變數群之關係式------ 55
4-9 電流密度對整體電透析各槽之關係------------------------- 60
4-10 電流密度對鹼液吸收氯氣之影響-------------------------- 65
4-11 電解-電透析之最適條件------------------------------------- 66
第五章 結論-------------------------------------------------------------- 68
第六章 參考文獻-------------------------------------------------------- 71
表附錄------------------------------------------------------------------------ 76參考文獻 [1] 財團法人中國技術服務社,1993
[2] 鄭華安,”工業區廢水二級處裡放流水回收再利用技術研
究”,國立成功大學環境工程研究所碩士論文,2001
[3] 楊萬發,水及廢水處理化學,茂昌圖書有限公司,2002
[4] 蔡明蒔,化學機械研磨後清洗技術簡介,網路公開資料
www.ndl.gov.tw/ndlcomm/p6_1/21.htm,2000
[5] Richard, W. B., “Membrane technology and applications,”
John Wiley & Sons, New York 2004
[6] 林正芳,薄膜程序於水處理的應用,土木水利,第26 卷,
第4 期,第27-36 頁,2000
[7] Olivier V. P.,et al.,“Continous Microfiltration of Surface
water,” proceedings of the AWWA 1991 Menbrane prosess
conference, Orlando, FLa, pp. 385, 1991
[8] 劉馨遠等譯,水處理工程理論與應用(下),科技圖書股份有
限公司,1995
[9] 茹至剛,廢水防治工程,科技圖書股份有限公司,1995
[10] Lacey R. E. and S. Loeb,“Industrial Prosess with
Membranes," John Wiley and Sons Inc., N. Y., 1972
[11] Yasuyuki F. and Kiyonori H.,“Advanced treatment of swine
wastewater by electrodialysis with a tubular ion exchange
membrane,"Animal Science Journal 75, 479–485, 2004
[12] Altan G. and Belgin K.,“Use of electrodialysis to remove
silver ions from model solutions and wastewater,"
71
Desalination 172, 2005
[13] 郭文正;曾添文, “薄膜分離",高立圖書公司,臺北1988
[14] Hung, T. C. and T. T. Wang,“A Study on the Behavior of
Cation on Ion Exchange ,” Desalination, 21, pp. 327-340, 1977
[15] Grot, G. F.,“Nafion as a Separator in Electrolytic Cells,"
The Abstrate of the Electrochemical Soc. Meeting, 7, May,
1986
[16] Taguchi, Satoshi; Suetsugu, Masumi, “Manufacture
of Aqueous Tetraalkylammonium Hydroxide
Solutions," Jpn. Kokai Tokkyo Koho, 01, Feb, 1994
[17] Kojima, Kunihiko;Suzuki, Joji;Shida, Takeo, “Manufacture
of High-Purity Quaternary Ammonium Hydroxide by
Electrodialysis," Jpn. Kokai Tokkyo Koho, 18, Apr, 1991
[18] Rijkhof, Evert Jan;Van der Maas,“Method for
Electrochemical Preparation of Quaternary Ammonium
Hydroxide,,"Eur. Pat. Appl. EP 420, 331
[19] Iwamoto, Hisahiko;Sada, Toshikatsu,“Electrolysis in Cell
having Cation Exchangers,"Jpn. Kokai Tokkyo Koho J, 27,
Apr, 1990
[20] Sharifian, Hossein;Tanner, Alan R.,“Method for
Purifying Quaternary Ammonium Hydroxides,"PCT Int,
14, Jun, 1990
[21] Hossein, Sharifian;Tanner, Alan R.,“Process for
Electrochemically Preparing Quaternary Ammonium
Hydroxides,"PCT Int, 08, Feb, 1990
[22] Takahashi, Shuji;Uchama, Minoru,“Manufacture of
72
High-Purity Quaternary Ammonium Hydroxides,"Jpn. Kokai
Tokkyo Koho, 3, May, 1988
[23] Shimizu, Shunpei;Cho, Shunren;Yagi, Osamu,“Manutacture
of Quaternary Ammonium Hydroxide Aqueous
Solution," Jpn. Kokai Tokkyo Koho, 01, Feb, 1988
[24 Hale, Cecil H.;Tanner, Alan;Hale, Bryan M.,
“Electrochemical Method for Producing High-Purity
Quaternary Ammonium Hydroxides,"1, Jul, 1986
[25] Kashiwase, Masaharu;Terumi,“Electrolytic
Preparation of Quaternary Ammonium Hydroxides,"Jpn.
Kokai Tokkyo Koho, 23, Aug, 1986
[26] Ochoa Gomez, Jose Ramon;Tarancon Estrads, Maria
“Electrolytic Preparation of Quaternary Ammonium
Hydroxides and Alkoxides," Span. ES 16, Jun, 1991
[27] Ochoa Gomez, J.R.;Tarancon Estrads, M.,“Electrosnthesis
of Quaternary Ammonium Hydroxides,"J. Appl. Electrochem.
21(4), 365-7, 1991
[28] Kofuch. Yasutosh;Deo, Takashi,“Electrochemical
Manufacturing of High-Purity Quaternary Ammonium Hydroxide
Aqueous Solution,"Jpn. Kokai Tokkyo Koho, 23, Jur, 1987
[29] Kato, Tomomichi;Deo, Takashi;Terao, Hiroshi,“Electrolytic
Cell for Manufacture of High-Purity Quaternary Ammonium
Hydroxide,"Jpn. Kokai Tokkyo Koho, 17, May, 1990
[30] Kato, Tomomichi;Yamauchi, Masaharu, Terumasa,“ Manufacture
of Tetraalkylammonium Hydroxide,"Jpn. Kokai
Tokkyo Koho, 08, Mar, 1990
73
[31] Sada, Toxhikatsu; Iwamoto, Hisahiko,
“Manufacturing of High-Purity Quaternary Ammonium
Hydroxide,"Jpn. Kokai Tokkyo Koho, 31, Mar, 1989
[32] Iwamoto, Hisahiko;Deo, Takashi;Sada, Toshikatsu,
“ Manufacturing of High-Purity Quaternary Ammonium
Hydroxide Using Anion Exchanger,"Jpn. Kokai Tokkyo
Koho, 31, Mar, 1989
[33] Iwamoto, Hisahiko;Suehiro, Mimoru;Takasaki,
Yoshiharu,“Manufacturing of High-Purity Quaternary
Ammonium Hydroxide,"Jpn. Kokai Tokkyo Koho, 25, Apr,
1989
[34] Iwamoto, Hisahiko;Deo, Takashi;Sada, Toshikatsu,
“ Manufacturing of High-Purity Quaternary Ammonium
Hydroxide by Electrolysis,"Jpn. Kokai Tokkyo Koho, 06,
Sep, 1988
[35] J. O,M. Bockis;A. K. N. Reddy,“Modern Electrochemistry,"
Plenum Press, New York, 1970, Chap. 4
[36] Klaus J. Vetter,“Electrochemical Kinetics,"Scripta Technica,
INC., Chap. 2
[37] Allen J. Bard ; Larry R. Faukner,“Electrochemical methods,”
John Wiley and Sons, Inc., 1980, Chap.5
[38] Robert E. Lacey and Sidney Loeb,“Industrial Processing with
Membrance,”John Wiley and Sons, Inc., 1972, Chap.1
[39] Huang, T. C. and I. Y. Yu,“The Concentration Polarization of
Electrodialysis in Ion Exchange Membrane
Multi-Compartment Electrodialyzer ,”J. Chin. Inst. Chem.
74
Eng., 5, pp.39-48, 1974指導教授 王天財(Ten-Tsai Wang) 審核日期 2007-7-18 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare