參考文獻 |
[1] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale selective-area epitaxl growth of Si using an ultrathin SiO2/Si3Ni4 mask patterned by an atomic force microscope”, Appl. Phys. Lett. 77 (2000) 3917-3919.
[2] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties”, J. Magn. Magn. Mater. 256 (2003) 449-501.
[3] Q. Yan, F. L, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling nanoholes in colloidal spheres by selective etching”, J. Mater. Chem. 16 (2006) 2132–2134.
[4] A. Winkleman, B. D. Gates, L. S. McCarty, G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field”, Adv. Mater. 17 (2005) 1507-1511.
[5] W. Ma, D. Hesse, and U. Gcsele, “Formation of Ferroelectric Perovskite Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas Pressure Effect during Pulsed Laser Deposition”, small 1 (2005) 837 –841.
[6] N. Li and M. Z. Allmang. “Size-tunable Ge Nano-particle Arrays patterned on Si Substrates with Nanosphere Lithography and Thermal Annealing”, J. Appl. Phys. 41 (2002) 4626–4629.
[7] E. Ge´raud, V. Pre´vot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template”, Chem. Mater. 18 (2006) 238-240.
[8] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres:Old Materials with New Applications”, Adv. Mater. 12 (2000) 693-713.
[9] P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles”, Curr. Opinion. Coll. Interf. Sci. 6 (2001) 383-401.
[10] M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic Fabrication of Model Systems in Heterogeneous Catalysis and Surface Science Studies”, Langmuir 14 (1998) 1458-1464.
[11] G. Horneck, B. K. Christa, “Astrobiology: The Quest for the Conditions of Life, Part V Complexity and Life, Molecular Self-Assembly and the Origin of Life”, 2001, Spriger press, 360-372.
[12] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science 295 (2002) 2418-2421.
[13] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO):Synthesis of Hexagonal Mesoporous Silica Opals”, Adv. Mater. 12 (2000) 1940-1944.
[14] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres”, Langmuir 22 (2006) 7358-7363.
[15] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic Crystals”, Adv. Mater. 17 (2005) 2455–2458.
[16] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles”, Encyclopedia of Nanosci. and Nanotech. X (2003) 1–23.
[17] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns”, Chem. Phys. Lett. 408 (2005) 241–246.
[18] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183-3190.
[19] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface”, J. Colloid Interface Sci. 151 (1992) 79-94.
[20] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface”, J. Colloid Interface Sci. 155 (1993) 420-437.
[21] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles”, Langmuir 10 (1994) 23-36.
[22] K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films”, Colloids Surf. A 109 (1996) 363-374.
[23] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles”, Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[24] R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays”, J. Phys. Chem. B 103 (1999) 3854-3863.
[25] P. Yang, J. Huang, A. R. Tao, S. Connor, and R. He, “A General Method for Assembling Single Colloidal Particle Lines”, Nano Lett. 6 (2006) 524-529.
[26] A. J. Haes, C. L. Haynes, R. P. Van Duyne, “Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials”, Mat. Res. Soc. Symp. 636 (2001) D4.8.1-6.
[27] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea”, Chapter 4, 2003, Prentice Hall.
[28] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes”, Nucl. Instrum. Methods B39 (1989) 515-520.
[29] M. Zharnikov, A. Shaporenko, A. Paul, A. Go1lzha1user, and A. Scholl, “X-ray Absorption Spectromicroscopy Studies for the Development of Lithography with a Monomolecular Resist”, J. Phys. Chem. B 109 (1999) 5168-5174.
[30] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea”, Chapter 4, 2003, Prentice Hall.
[31] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes”, Nucl. Instrum. Methods B39 (1989) 515-520.
[32] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography”, Appl. Phys. Lett. 41 (1982) 377-379.
[33] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, J. Phys. Chem. B 105 (2001) 5599-5611.
[34] K. H. Koh, K. H. Park, S. Lee, R. Lacerda, K. B. K. Teo, and W. I. Milne, “Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers”, J. Appl. Phys. Lett. 97 (2005) 024311.
[35] S. S. Xie, D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, and C. Y. Wang, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers”, Nano Lett. (2006) 2375-2378.
[36] B. Fuhrmann, H. S. Leipner, and H. R. Hoche, L. Schubert, P. Werner, and U. Go1sele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy”, Nano Lett. 5 (2005) 2524-2527.
[37] J. Zhu, Z. Huang, and H. Fang, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density”, Adv. Mater. 19 (2007) 744-748.
[38] Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology”, Jpn. J. Appl. Phys. 45 (2006) 582-584.
[39] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays”, Nano Lett. 4 (2004) 2223-2226.
[40] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography”, Nano Lett. 5 (2005) 1784-1788.
[41] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas”, Adv. Mater. 16 (2004) 2155-2159.
[42] B. Wang, S. J. Chua, and J. Teng, “Novel 2D ordered arrays of nanostructures fabricated through silica masks formed by bilayer colloidal crystals as templates”, IEEE (2005).
[43] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography”, Adv. Funct. Mater. 16 (2006) 33-40.
[44] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks”, J. AM. CHEM. SOC. 127 (2005) 1636-1637.
[45] D. Wang, G. Zhang, and H. Mohwald, “Nanoembossment of Au Patterns on Microspheres”, Chem. Mater.18 (2006) 3985-3992.
[46] P. Chen, C.W. Kuo, J. Y. Shiu, and Y. H. Cho, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks”, Adv. Mater. 15 (2003) 1065-1068.
[47] K. Seeger and R. E. Palmer, “Fabrication of ordered arrays of silicon nanopillars”, J. Phys. D: Appl. Phys. 32 (1999) 129–132.
[48] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang, “Fabrication of Nanopillars by Nanosphere Lithography”, Nanotechnology 17 (2006) 1339–1343.
[49] W. Cai, G. Duan, Y. Li, Z. Li, B. Cao, and Y. Luo, “Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer”, J. Phys. Chem. B. 110 (2006) 7184-7188.
[50] W. Cai, G. Duan, Y. Luo, Z. Li, and Y. Lei, “Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition”, J. Phys. Chem. B. 110 (2006) 15729-15733.
[51] P. N. Bartlett, M. A. Ghanem, P. de Groot, and Alexander Zhukov, “A double templated electrodeposition method for the fabrication of arrays of metal nanodots”, Electrochemistry Communications 6 (2004) 447–453.
[52] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating”, Adv. Mater. 16 (2004) 417-422.
[53] O. D. Velev, D. M. Kuncicky, B. G. Prevo, and O. D. Velev, “Controlled assembly of SERS substrates templated by colloidal crystal films”, J. Mater. Chem. 16 (2006) 1207–1211.
[54] X. S. Zhao, L. Wang, and Q. Yan, “From Planar Defect in Opal to Planar Defect in Inverse Opal”, Langmuir 22 (2006) 3481-3484.
[55] O. D. Velev; A. M. Lenhoff, “Colloidal Crystals as Templates for Porous Materials”, Curr. Opin. Colloid Interface Sci. 5 (2000) 56-63.
[56] D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, “Stability of C54 Titanium Germanosilicide on a Silicon-Germanium Alloy Substrate”, J. Appl. Phys. 77 (1995) 5107-5114.
[57] P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Myers, and E. B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System”, J. Mater. Res. 14 (1999) 4372-4384.
[58] K. Goto, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep-Submicron CMOS Devices”, IEDM (1995) 449-452.
[59] F. D. Heurle, C. S. Petrsson, L. Slot, B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Film” J. Appl. Phys. 53 (1982) 5678-5681.
[60] L. J. Chen, J. W. Mayer, and K. N. Tu, “Formation and Structure of Epitaxial Silicides on Silicon”, Thin Solid Films 93 (1982) 135-141.
[61] S. P. Maruarka, “Silicide for VLSI Applications”, 1983, Academic Press, New York.
[62] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography”, Appl. Phys. Lett. 69 (1996) 999-1001.
[63] K. Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2”, Mater. Sc. Eng. R11 (1993) 53-153.
[64] S. P. Murarka, “Silicide Thin Films and Their Applications in Microelectronics”, Intermetallics 3 (1995) 173-186.
[65] I. J. van Gurp and C. Langereis, “Cobalt Silicide Layer on Si Structure and Growth”, J. Appl. Phys. 46 (1975) 4301-4307.
[66] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Formation through SiO2”, Thin Solid Films 386 (2001) 19-26.
[67] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep Submicron CMOS Devices”, IEDM Tech. Dig. 1995 906–909.
[68] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial Growth of CoSi on (111) Si Inside Miniature-Size Oxide by Rapid Thermal Annealing”, J. Appl. Phys. 69 (1991) 4282-4285.
[69] J. Y. Yew, L. J. Chena, and W. F. Wu, “Effects of Lateral Confinement on the Growth of CoSi and CoSi2 on (001)Si Inside 0.2±2 µm Oxide Openings Prepared by Electron Beam Lithography”, Mater. Chem. Phys. 61 (1999) 42-45.
[70] R. Beyers, and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin Films”, J. Appl. Phy. 57 (1985) 5240-5245.
[71] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti and Ni-Salicided Polysilicon Films”, IEEE Tran. Electron Devices ED-41 (1994) 2305-2317.
[72] J.Y. Yew, L.J. Chen, and W.F. Wu, “Effects of lateral confinement on the growth of CoSi and CoSi2 on (001)Si inside 0.2-2 μm oxide openings prepared by electron beam lithography”, Materials Chemistry and Physics 61 (1999) 42-45.
[73] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial growth of CoSi2, on (111)Si inside miniature-size oxide open by rapid thermal annealing”, J. Appl. Phys. 69 (1991) 4282-4285.
[74] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura and K. Nagayama, “Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment”, Colloid. Polym. Sci. 277 (1999) 914-930.
[75] H. Cong and W. Cao, “Colloidal Crystallization Induced by Capillary Force”, Langmuir 19 (2003) 8177-8181.
[76] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique”, Langmuir. 20 (2004) 10998-11004.
[77] S. P. Maruarka, “Silicide for VLSI Applications”, 1983, Academic Press, New York.
[78] K. H. Lee, H. S. Yang, K. H. Baik, J. Bang, R. R. Vanfleet, and W. Sigmund, “Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films”, Chemical Physics Letters 383 (2004) 380–384.
[79] F. Wang, M. Malac, R. F. Egerton, A. Meldrum, P. Li, M. R. Freeman, and J. G. C. Veinot, “Controlled Growth of Silicon Oxide Nanowires from a Patterned Reagent”, J. Phys. Chem. 111 (2007) 1865-1867.
[80] S. Maenosono, C. D. Dushkin, S. Saita, and Y. Yamaguchi, “Growth of a Semiconductor Nanoparticle Ring during the Drying of a Suspension Droplet”, Langmuir 15 (1999) 957-965.
[81] M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, “Fabrication of Nano-Dot and Nano-Ring-Arrays by Nanosphere Lithography”, Appl. Phys. A 63 (1996) 617–619.
[82] J. Boneberg, F. Burmeister, C. Scha¨fle, and P. Leiderer, “The Formation of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography”, Langmuir 13 (1997) 7080-7084.
[83] D. Jia and A. Goonewardene, “Two-Dimensional Nanotriangle and Nanoring Arrays on Silicon Wafer”, Appl. Phys. Lett. 88 (2006) 053105-1~3.
[84] P. Eaton, J. R. Smith, P. Graham, J. D. Smart, T. G. Nevell, and J. Tsibouklis, “Adhesion Force Mapping of Polymer Surfaces:Factors Influencing Force of Adhesion”, Langmuir 18 (2002) 3387-3389.
[85] R. Nath and M. Yeadon, “Direct Observations of the Mechanism of Nickel Silicide Formation on Si(100) and Si0.75Ge0.25 Substrates”, Electrochem. Solid-State Lett. 7 (2004) G231-G234. |