博碩士論文 943204055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.147.53.90
姓名 翁紹蘭(Shao-Lan Wong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米球微影術製備大面積二維金屬矽化物、矽鍺化物奈米點陣列及規則奈米結構之研究
(Periodic arrays of silicide nanodots and 2D well-ordered nanostructures fabricated via nanosphere lithography)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究成功利用聚苯乙烯(Polystyrene, PS)奈米球微影術在矽晶及矽鍺基材上製備出大面積、自組裝(Self-Assembly)排列規則的PS球陣列結構充當模板(Template),再於此模板上分別鍍製鎳、鈷金屬薄膜以形成尺寸均勻且具二維週期性排列的鎳、鈷金屬奈米點陣列。隨後再將所製備之鎳、鈷金屬點陣列進行不同的熱退火處理以探討其與矽晶及矽鍺基材間之界面反應。
在與矽晶基材反應之實驗方面,當試片分別退火至300 ℃及500 ℃時,由穿透式電子顯微鏡(TEM)及選區電子繞射(SAED)分析,可分別發現磊晶的二矽化鎳(NiSi2)及二矽化鈷(CoSi2)奈米點陣即已生成。此結果顯示越小奈米尺度之鎳、鈷金屬點陣越有利於磊晶結構NiSi2與CoSi2相的成長。而從電子繞射圖形分析得知磊晶的二矽化鎳(NiSi2)與(001)Si基材之磊晶方位關係為[001] NiSi2 // [001] Si,(200) NiSi2 // (400) Si,而磊晶的二矽化鈷(CoSi2)與(001)Si基材之磊晶方位關係為[001] CoSi2 // [001] Si,(200) CoSi2 // (400) Si。進一步利用HRTEM及XTEM觀察分析,可鑑定得磊晶鎳、鈷金屬矽化物奈米點皆為一倒金字塔角錐狀。且實驗發現磊晶金屬矽化物點陣的尺寸隨退火溫度的升高而有逐漸縮小的現象。
製備鈷金屬點陣列結構於矽鍺基材方面,經500 ℃之熱退火處理條件下即生成多晶Co2(Si,Ge)及Co(Si,Ge)的混合相。當退火處理溫度升高至700 ℃時,首次發現在鈷金屬奈米點開始出現鈷矽化物之蝌蚪狀結構,由TEM、SAED及EDS分析,可得知此蝌蚪狀結構由矽、鍺、氧成分所組成,並且為非晶質結構。退火溫度提高至900 ℃後,於單一奈米點上生成大量10-20 nm寛之非晶質SiO2奈米線,推測其生成為固-液-固(Solid-Liquid-Solid, SLS) 之成長機制。
本研究也首度結合自組裝製備微奈米球模板,成功製備出不同維度的有序奈米結構,如奈米環、三維網絡狀之奈米結構,並提出可能的形成機制。同時利用電鍍沉積法可在特定的區域內製備出金屬奈米碗狀及實心鎳金屬球之奈米結構。
摘要(英) The present study has demonstrated that 2D well-ordered arrays of nickel and cobalt metal nanodots were successfully fabricated on (001) Si and SiGe substrates by using the polystyrene nanosphere lithography (NSL) technique. The interfacial reactions of the metal nanodot arrays on Si and SiGe substrates after different heat treatments have been investigated.
From the TEM and SAED analysis, epitaxial NiSi2 and CoSi2 nanodots were found to form at a temperature as low as 300 ℃、500 ℃, respectively. The results indicated that the growth of epitaxial NiSi2 and CoSi2 is more favorable for the samples with smaller metal nanodot sizes. The orientation relationships of epitaxial metal disilicide nanodots with respect to (001)Si substrates were identified to be [001] NiSi2 (or CoSi2) // [001] Si and (200) NiSi2 (or CoSi2) // (400) Si. By combining the planview HRTEM and XTEM analysis, the faceted NiSi2 and CoSi2 nanodots were identified to be inverse pyramids in shape. In addition, the average size of the faceted silicide nanodots were measured to decrease with annealing temperature.
For the coabalt metal nanodot arrays on Si0.7Ge0.3 substrates after annealing at 500 ℃, Co2(Si,Ge) phase was found to coexist with the dominant polycrystalline Co(Si,Ge) phase. As the annealing temperature was increased to 700 ℃, it is interesting to see that tadpole-like nanowires were found to grow on individual Co silicide nanoparticales. From planview TEM, SAED and EDS analysis, it is indicated that these tadpole-like nanowires were composed of Si, Ge and O, and the nanoscale structure was examined to be amorphous. For the samples annealed at 900 ℃, 10-20-nm-diameter amorphous SiO2 (a-SiO2) nanowires were observed to grow from individual Co silicide nanodot regions. The growth process of a-SiO2 nanowires could be explained by the solid-liquid-solid (SLS) mechanism.
By tuning the drop-coasting processes and lift-off conditions, large-area periodic nanoring arrays and 3D well-ordered nanostructures were successfully fabricated on silicon substrates. The possible growth mechanisms were proposed. Furthermore, by utilizing the 3D nanostructures as the templates in conjunction with electrodeposition technique, 2D ordered metal nanobowl and solid Ni metal spheres were obtained in this study.
關鍵字(中) ★ 奈米球微影術
★ 金屬矽化物
★ 矽鍺化物
關鍵字(英) ★ nanosphere lithography silicide
論文目次 第一章 簡介 1
1-1 前言 1
1-2 自組裝 2
1-2-1 各種自組裝技術 3
1-2-1-1 自然滴製法 3
1-2-1-2 旋轉塗佈法 3
1-2-1-3 LB-LIKE 技術 4
1-2-1-4 電泳自組裝技術 4
1-3 微奈米球微影術 4
1-3-1 微影術的發展 4
1-3-2 利用奈米球微影術製備奈米結構 6
1-3-2-1 金屬薄膜沉積製程技術 6
1-3-2-2 反應離子蝕刻技術 7
1-3-2-3 電鍍沉積技術 8
1-3-2-4 無電鍍技術 8
1-3-2-5 反蛋白石結構(IOS) 8
1-4 矽鍺元件 9
1-4-1 矽鍺元件中之金屬接觸 9
1-5 金屬矽化物 9
1-5-1 金屬矽化物在半導體工業上之應用及其製程 10
1-5-2 鎳金屬矽化物 11
1-5-3 鈷金屬矽化物 11
1-6 研究動機 12
第二章 實驗步驟 14
2-1 奈米球模板及金屬矽化物奈米點陣列之製備 14
2-1-1 基材前處理 14
2-1-2 奈米球膠體溶液配製 15
2-1-3 自組裝奈米球陣列 16
2-1-4 金屬薄膜蒸鍍 16
2-1-5 奈米球舉離 16
2-1-6 退火熱處理 16
2-2 奈米球微影術製備有序奈米結構之製程 17
2-2-1 碗狀之金屬奈米結構 17
2-2-2 三維網絡狀奈米結構及有序金屬球排列 17
2-2-3 奈米環陣列製備 18
2-3 分析儀器與鑑定 18
2-3-1 掃描式電子顯微鏡(SEM) 18
2-3-2 原子力顯微鏡(AFM) 18
2-3-3 穿透式電子顯微鏡(TEM)與X光能量散佈光譜儀 18
2-3-4 高分辨穿透式電子顯微鏡(HRTEM) 19
第三章 結果與討論 20
3-1 微奈米球模板之製備 20
3-2 鎳金屬與鎳矽化物奈米點陣列 22
3-2-1 鎳金屬及其矽化物外觀形貌觀察 23
3-2-2 鎳金屬與(001) SI基材之界面反應分析 23
3-3 於矽晶基材上製備鈷金屬與鈷矽化物奈米點陣列 25
3-3-1 鈷金屬及其矽化物外觀形貌觀察 25
3-3-2 鈷金屬與(001) SI基材之界面反應分析 25
3-4 鎳、鈷矽化物於不同尺寸奈米點陣之比較 27
3-5 於矽鍺基材上製備鈷金屬與鈷矽化物奈米點陣列 29
3-5-1 鈷金屬外觀形貌觀察 29
3-5-2 鈷金屬與矽鍺基材界面反應之結構分析 29
3-6 鎳金屬碗狀陣列之奈米結構 31
3-7 三維網絡狀奈米結構及金屬球陣列 32
3-8 奈米環陣列 33
第四章 結論與未來展望 35
4-1 結論 35
4-2 未來展望 36
4-2-1 二維金屬矽化物奈米環陣列 36
4-2-2 製備金屬奈米管 37
4-2-3 生成金屬矽化物於矽鍺元件 37
參考文獻 38
表目錄 45
圖目錄 49
參考文獻 [1] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale selective-area epitaxl growth of Si using an ultrathin SiO2/Si3Ni4 mask patterned by an atomic force microscope”, Appl. Phys. Lett. 77 (2000) 3917-3919.
[2] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties”, J. Magn. Magn. Mater. 256 (2003) 449-501.
[3] Q. Yan, F. L, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling nanoholes in colloidal spheres by selective etching”, J. Mater. Chem. 16 (2006) 2132–2134.
[4] A. Winkleman, B. D. Gates, L. S. McCarty, G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field”, Adv. Mater. 17 (2005) 1507-1511.
[5] W. Ma, D. Hesse, and U. Gcsele, “Formation of Ferroelectric Perovskite Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas Pressure Effect during Pulsed Laser Deposition”, small 1 (2005) 837 –841.
[6] N. Li and M. Z. Allmang. “Size-tunable Ge Nano-particle Arrays patterned on Si Substrates with Nanosphere Lithography and Thermal Annealing”, J. Appl. Phys. 41 (2002) 4626–4629.
[7] E. Ge´raud, V. Pre´vot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template”, Chem. Mater. 18 (2006) 238-240.
[8] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres:Old Materials with New Applications”, Adv. Mater. 12 (2000) 693-713.
[9] P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles”, Curr. Opinion. Coll. Interf. Sci. 6 (2001) 383-401.
[10] M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic Fabrication of Model Systems in Heterogeneous Catalysis and Surface Science Studies”, Langmuir 14 (1998) 1458-1464.
[11] G. Horneck, B. K. Christa, “Astrobiology: The Quest for the Conditions of Life, Part V Complexity and Life, Molecular Self-Assembly and the Origin of Life”, 2001, Spriger press, 360-372.
[12] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science 295 (2002) 2418-2421.
[13] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO):Synthesis of Hexagonal Mesoporous Silica Opals”, Adv. Mater. 12 (2000) 1940-1944.
[14] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres”, Langmuir 22 (2006) 7358-7363.
[15] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic Crystals”, Adv. Mater. 17 (2005) 2455–2458.
[16] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles”, Encyclopedia of Nanosci. and Nanotech. X (2003) 1–23.
[17] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns”, Chem. Phys. Lett. 408 (2005) 241–246.
[18] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183-3190.
[19] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface”, J. Colloid Interface Sci. 151 (1992) 79-94.
[20] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface”, J. Colloid Interface Sci. 155 (1993) 420-437.
[21] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles”, Langmuir 10 (1994) 23-36.
[22] K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films”, Colloids Surf. A 109 (1996) 363-374.
[23] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles”, Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[24] R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays”, J. Phys. Chem. B 103 (1999) 3854-3863.
[25] P. Yang, J. Huang, A. R. Tao, S. Connor, and R. He, “A General Method for Assembling Single Colloidal Particle Lines”, Nano Lett. 6 (2006) 524-529.
[26] A. J. Haes, C. L. Haynes, R. P. Van Duyne, “Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials”, Mat. Res. Soc. Symp. 636 (2001) D4.8.1-6.
[27] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea”, Chapter 4, 2003, Prentice Hall.
[28] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes”, Nucl. Instrum. Methods B39 (1989) 515-520.
[29] M. Zharnikov, A. Shaporenko, A. Paul, A. Go1lzha1user, and A. Scholl, “X-ray Absorption Spectromicroscopy Studies for the Development of Lithography with a Monomolecular Resist”, J. Phys. Chem. B 109 (1999) 5168-5174.
[30] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea”, Chapter 4, 2003, Prentice Hall.
[31] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes”, Nucl. Instrum. Methods B39 (1989) 515-520.
[32] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography”, Appl. Phys. Lett. 41 (1982) 377-379.
[33] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, J. Phys. Chem. B 105 (2001) 5599-5611.
[34] K. H. Koh, K. H. Park, S. Lee, R. Lacerda, K. B. K. Teo, and W. I. Milne, “Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers”, J. Appl. Phys. Lett. 97 (2005) 024311.
[35] S. S. Xie, D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, and C. Y. Wang, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers”, Nano Lett. (2006) 2375-2378.
[36] B. Fuhrmann, H. S. Leipner, and H. R. Hoche, L. Schubert, P. Werner, and U. Go1sele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy”, Nano Lett. 5 (2005) 2524-2527.
[37] J. Zhu, Z. Huang, and H. Fang, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density”, Adv. Mater. 19 (2007) 744-748.
[38] Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology”, Jpn. J. Appl. Phys. 45 (2006) 582-584.
[39] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays”, Nano Lett. 4 (2004) 2223-2226.
[40] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography”, Nano Lett. 5 (2005) 1784-1788.
[41] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas”, Adv. Mater. 16 (2004) 2155-2159.
[42] B. Wang, S. J. Chua, and J. Teng, “Novel 2D ordered arrays of nanostructures fabricated through silica masks formed by bilayer colloidal crystals as templates”, IEEE (2005).
[43] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography”, Adv. Funct. Mater. 16 (2006) 33-40.
[44] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks”, J. AM. CHEM. SOC. 127 (2005) 1636-1637.
[45] D. Wang, G. Zhang, and H. Mohwald, “Nanoembossment of Au Patterns on Microspheres”, Chem. Mater.18 (2006) 3985-3992.
[46] P. Chen, C.W. Kuo, J. Y. Shiu, and Y. H. Cho, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks”, Adv. Mater. 15 (2003) 1065-1068.
[47] K. Seeger and R. E. Palmer, “Fabrication of ordered arrays of silicon nanopillars”, J. Phys. D: Appl. Phys. 32 (1999) 129–132.
[48] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang, “Fabrication of Nanopillars by Nanosphere Lithography”, Nanotechnology 17 (2006) 1339–1343.
[49] W. Cai, G. Duan, Y. Li, Z. Li, B. Cao, and Y. Luo, “Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer”, J. Phys. Chem. B. 110 (2006) 7184-7188.
[50] W. Cai, G. Duan, Y. Luo, Z. Li, and Y. Lei, “Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition”, J. Phys. Chem. B. 110 (2006) 15729-15733.
[51] P. N. Bartlett, M. A. Ghanem, P. de Groot, and Alexander Zhukov, “A double templated electrodeposition method for the fabrication of arrays of metal nanodots”, Electrochemistry Communications 6 (2004) 447–453.
[52] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating”, Adv. Mater. 16 (2004) 417-422.
[53] O. D. Velev, D. M. Kuncicky, B. G. Prevo, and O. D. Velev, “Controlled assembly of SERS substrates templated by colloidal crystal films”, J. Mater. Chem. 16 (2006) 1207–1211.
[54] X. S. Zhao, L. Wang, and Q. Yan, “From Planar Defect in Opal to Planar Defect in Inverse Opal”, Langmuir 22 (2006) 3481-3484.
[55] O. D. Velev; A. M. Lenhoff, “Colloidal Crystals as Templates for Porous Materials”, Curr. Opin. Colloid Interface Sci. 5 (2000) 56-63.
[56] D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, “Stability of C54 Titanium Germanosilicide on a Silicon-Germanium Alloy Substrate”, J. Appl. Phys. 77 (1995) 5107-5114.
[57] P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Myers, and E. B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System”, J. Mater. Res. 14 (1999) 4372-4384.
[58] K. Goto, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep-Submicron CMOS Devices”, IEDM (1995) 449-452.
[59] F. D. Heurle, C. S. Petrsson, L. Slot, B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Film” J. Appl. Phys. 53 (1982) 5678-5681.
[60] L. J. Chen, J. W. Mayer, and K. N. Tu, “Formation and Structure of Epitaxial Silicides on Silicon”, Thin Solid Films 93 (1982) 135-141.
[61] S. P. Maruarka, “Silicide for VLSI Applications”, 1983, Academic Press, New York.
[62] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography”, Appl. Phys. Lett. 69 (1996) 999-1001.
[63] K. Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2”, Mater. Sc. Eng. R11 (1993) 53-153.
[64] S. P. Murarka, “Silicide Thin Films and Their Applications in Microelectronics”, Intermetallics 3 (1995) 173-186.
[65] I. J. van Gurp and C. Langereis, “Cobalt Silicide Layer on Si Structure and Growth”, J. Appl. Phys. 46 (1975) 4301-4307.
[66] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Formation through SiO2”, Thin Solid Films 386 (2001) 19-26.
[67] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep Submicron CMOS Devices”, IEDM Tech. Dig. 1995 906–909.
[68] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial Growth of CoSi on (111) Si Inside Miniature-Size Oxide by Rapid Thermal Annealing”, J. Appl. Phys. 69 (1991) 4282-4285.
[69] J. Y. Yew, L. J. Chena, and W. F. Wu, “Effects of Lateral Confinement on the Growth of CoSi and CoSi2 on (001)Si Inside 0.2±2 µm Oxide Openings Prepared by Electron Beam Lithography”, Mater. Chem. Phys. 61 (1999) 42-45.
[70] R. Beyers, and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin Films”, J. Appl. Phy. 57 (1985) 5240-5245.
[71] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti and Ni-Salicided Polysilicon Films”, IEEE Tran. Electron Devices ED-41 (1994) 2305-2317.
[72] J.Y. Yew, L.J. Chen, and W.F. Wu, “Effects of lateral confinement on the growth of CoSi and CoSi2 on (001)Si inside 0.2-2 μm oxide openings prepared by electron beam lithography”, Materials Chemistry and Physics 61 (1999) 42-45.
[73] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial growth of CoSi2, on (111)Si inside miniature-size oxide open by rapid thermal annealing”, J. Appl. Phys. 69 (1991) 4282-4285.
[74] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura and K. Nagayama, “Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment”, Colloid. Polym. Sci. 277 (1999) 914-930.
[75] H. Cong and W. Cao, “Colloidal Crystallization Induced by Capillary Force”, Langmuir 19 (2003) 8177-8181.
[76] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique”, Langmuir. 20 (2004) 10998-11004.
[77] S. P. Maruarka, “Silicide for VLSI Applications”, 1983, Academic Press, New York.
[78] K. H. Lee, H. S. Yang, K. H. Baik, J. Bang, R. R. Vanfleet, and W. Sigmund, “Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films”, Chemical Physics Letters 383 (2004) 380–384.
[79] F. Wang, M. Malac, R. F. Egerton, A. Meldrum, P. Li, M. R. Freeman, and J. G. C. Veinot, “Controlled Growth of Silicon Oxide Nanowires from a Patterned Reagent”, J. Phys. Chem. 111 (2007) 1865-1867.
[80] S. Maenosono, C. D. Dushkin, S. Saita, and Y. Yamaguchi, “Growth of a Semiconductor Nanoparticle Ring during the Drying of a Suspension Droplet”, Langmuir 15 (1999) 957-965.
[81] M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, “Fabrication of Nano-Dot and Nano-Ring-Arrays by Nanosphere Lithography”, Appl. Phys. A 63 (1996) 617–619.
[82] J. Boneberg, F. Burmeister, C. Scha¨fle, and P. Leiderer, “The Formation of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography”, Langmuir 13 (1997) 7080-7084.
[83] D. Jia and A. Goonewardene, “Two-Dimensional Nanotriangle and Nanoring Arrays on Silicon Wafer”, Appl. Phys. Lett. 88 (2006) 053105-1~3.
[84] P. Eaton, J. R. Smith, P. Graham, J. D. Smart, T. G. Nevell, and J. Tsibouklis, “Adhesion Force Mapping of Polymer Surfaces:Factors Influencing Force of Adhesion”, Langmuir 18 (2002) 3387-3389.
[85] R. Nath and M. Yeadon, “Direct Observations of the Mechanism of Nickel Silicide Formation on Si(100) and Si0.75Ge0.25 Substrates”, Electrochem. Solid-State Lett. 7 (2004) G231-G234.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明