摘要(英) |
The KOH concentration in strong alkaline dyeing wastewater from the process of the recovery of color glass filter plate is about 2.7N. The strong alkaline dyeing wastewater should be reduced to a suitable pH range of 9~12, so that it can be treated by other process. Electrodialysis is most suitable to reduce the basicity of the wastewater and simultaneously recover the KOH.
And this research is strong alkaline dyeing wastewater from the process of the recovery of color glass filter plate treatment by catalytic Wet Air Oxidation (COD 160000-180000 ppm), pH > 13, conductivity is 57 mS/cm , this research carries on the choice of the catalyst at first, compare V2O5, Ru/C and MnO2 , after 120 minutes, can all make pH drop effectively , and the COD removal is respectively V2O5: 34.2% , MnO2: 37.7% , Ru/C : 36.7%, the result to show MnO2 and Ru/C have better oxidation ability, but the price relatively has Ru/C on the high side, considering the factor of the cost , so choose MnO2 for this wet type of catalysis.
As to adding the system of the catalyst , carry on the comparison of conductivity , pH and COD removal, and change the parameter as reflecting temperature, oxygen pressure, stirring speed , amount of catalyst, in order to seek the optimum condition. stirring speed, there is better getting COD removal in above 400 rpm , so choose 500 rpm; And temperature drops more obvious in pH, but react and lower to 1.77 to its pH value after 120 minutes under 220℃, so choose 200℃; The pressure is increase with Po2, COD removal is also increase relatively, so choose Po2, 0 =350 psig, and Pt = 600 psig; the amount of Catalyst shows that 0.032 g (3% ) and 0.048 g (4% ) have better COD removal, so choose the amount of catalyst of 0.048 g MnO2.
With reflect the increase of time, the quantity of the carbon dioxide increases too, and reduce the oxygen enter the reactor , in order to confirm the carbon dioxide is the influence factor , and then change the concentration of the potassium hydroxide, whether absorb the carbon dioxide because the increase the concentration of potassium hydroxide, enable oxygen to enter and participate in reacting smoothly, reaction: CO2 + KOH K2CO3 . There is better COD removal for 0.27 M and 0.6 M in KOH concentration, so choose 0.27 M.
Synthesize the above result finally, it is determined that the optimum operation parameters (stirring speed 500 rpm , KOH concentration 0.27 M , temperature 200℃, Po2 , 0 = 350 psig ,the amonut of catalysis is 0.048 g (4% )),but with reflect the increase of time, the quantity of the carbon dioxide increases too, makes Po2 drop and difficult to enter reactor, so cooperate with many steps to operate to reject the carbon dioxide, and with the optimum conditions, the many steps, COD removal up to 92.4% already , can make strong alkaline dyeing wastewater to decompose. |
參考文獻 |
[1] Liu B., Yan H., Liu D.“Oxidation Techniques for Treatment Dyeing Wastewater,” (2006).
[2] 呂冠霖, 司洪濤“高濃度COD廢水氧化處理技術評析,”
[3] 陳益滽, 張藝, 詹文碩, 楊永明, 戴寶通“廢溶劑回收系統於TFT-LCD製造廠之應用,”( 2005.5).
[4] Klinghoffer Alec A., Ramon L. Cerro, Martin A. Abraham,“Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst,”,Catalysis Today,Vol. 40, pp. 59-71 , (1998).
[5] Chowdhury A.K., Copa W.C.“Wet Air Oxidation of Toxic and Hazardous Organics in Industrial Wastewater,” Indian Chemical
Engineer, Vol. 28, No.3, pp3-11, (1996).
[6] 許雄淙“濕式氧化法處理高濃度含氰廢液之研究,” 國立台
灣大學環境工程研究所碩士論文, (1993.6).
[7] 張必杰 “以濕式氧化法處理印刷電路板顯像、去墨/剝膜廢液之研究,” 國立中央大學環境工程研究所碩士論文, (1995.7).
[8] Luck F.“Wet Air Oxidation : Past,Present and Future,”,Catalysis Today, Vol. 53, pp. 81-91, (1999).
[9] 鄒琮湣 “以觸媒濕式氧化法處理鐵氰錯化合物之研究,"國立中山大學環境工程研究所碩士論文, (1998,6).
[10] Lei L., Hu X. and Yue P.-L.,“Improved Wet Oxidation for the treatment of Dyeing Wastewater Concentrate from Membrane Separation Process,” Wat.Res ., Vol. 32, NO.9, pp. 2753-2759, (1998).
[11] Belkavemi K., Larachi F., Hamoudi S., Turcotte G., and Sayari A.“Inhibition and Deactivation Effects in Catalytic Wet Oxidation of High-strength Alcohol-Distillery Liquours,” Ind. Eng. Chem. Res., Vol. 38. pp. 2268-2274, (1999).
[12] Khan Y., G.K. Anderson, and D.J. Elliott, “Wet Oxidation of Activated Sludge,” Wat. Res., Vol.33, NO.7, pp. 1681-1687, (1999).
[13] Hubert D., Crispel S., Reilhac P., Périé F., Foussard J.N.,“Wet Air Oxidation(WAO) for The Treatment of Industrial Wastewater and Domestic Sludge. Design of Bubble Column Reactors,” Chemical Engineering Science Vol.54, pp. 4953-4959,( 1999).
[14] D. Hubert, J.N. Foussard,“Wet Air Oxidation for The Treatment of Industrial Wastes. Chemical Aspects, Reactor Design and Industrial Applications in Europe,”Waste Management, Vol. 22, pp.15-25, (2000).
[15] Mishra V.S., V.V. Mahajani, J.B. Joshi,“Wet Air Oxidation,”, Ind. Eng. Chem. Res., Vol. 53, pp. 81-91, (1995).
[16] Mirjam, H. Schoonenboom, Hans E. Zoetmeijer, Kess Olie“Dechlorination of Octachlorodibenzo-p-Dioxin and
Octachlorodibenzofuran on an Alumina Support,”, Applied Catalysis B: Environmental, Vol. 6, pp. 11-20, (1995).
[17] Belkacemi K., Larachi F., Hamoudi S., Turcotte G., and Sayari A.,“Inhibition and Deactivation Effects in Catalytic Wet oxidation of High-Strength Alcohol-Distillery Liquors,” Ind. Eng. Chem. Res., Vol. 38, pp. 2268-2274, (1999).
[18] Li L., Chen P., Gloyna E.F.,“Generalized Kinetic Model for Wet Oxidation of Orangic Compounds,” AICHE J., Vol. 37, pp. 1687. Qin Jiangyan, Ken-ichi Aika, “Catalytic Wet Oxidation of Ammonia Over Alumina Supported Metals,” Appl. Catal.B : Environmental, Vol. 16, pp. 261-268, (1998).
[19] Alep A.Klinghoffer,Raneon I. Cerho. Martin A. Abraham, “Catalysis wet oxidation of acetic acid using platinum on alumina monolith catalyst,” Catalysis Today, Vol. 40, pp. 59-71 , (1998).
[20] C. William, J. Heimbuch, and P. Schaefer,“Demonstration of Wet air Oxidation of Hazardous Waste,” Incineration Hazardous Wastes, pp. 261-269,( 1998).
[21] M.J. Dietrich, T.L. Randall, and P.J. Canney,“Wet Air Oxidation of Hazardous Organicity in Wastewater,” Environment Progress, Vol. 4, NO.3, pp. 171-177, (1985).
[22] S. Imamura, and D. Akira,“Wet Oxidation of Ammonia Catalyzed by Cerium Based Composite Oxides,” Ind. Eng. Chem. Prod. Res. Dev., Vol.24, NO.1, pp. 75-80, (1985).
[23] Junji T., Nakato T., and Okuhara T., “Selective Oxadative Decomposition of Ammonia in Water to Nitrogen Catalyzed by Platinum-supported Titania,” Chemistry Letters, pp. 277-278, (1999).
[24] Tang W., Zeng X., Zhao J., Gu G., Li Y.“The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics,” Separation and Purification Technology 31, (2003).
[25] Dietrich M.J., T.L. Randall, and P.J. Canney,“Wet Air Oxidation of Hazardous Organicity in Wastewater,” Environmental Progress, Vol.4, NO.3, pp. 171-177, (1985).
[26] 高志明 “高溫水解併同濕式氧化處理鐵氰錯化合物之研究,”國立中央大學環境工程研究所碩士論文, (1994,6).
[27] 李炳楠,樓基中,賴俊谷,“以濕式氧化法處理2,4-二氯酚水溶液之研究,” 中華民國環境工程學會第二十四屆廢水處理技術研討會論文集,pp. 335-340, (1999).
[28] Wang T.-T., Yang W.-C.“Factors affecting the current and the voltage efficiencies of the synthesis of quaternary ammonium hydroxides by electrolysis-electrodialysis,”Chemical Engineering Journal , (2000.5).
[29] Mantzavinos M., R.Hellenbrand, A.G. Livingston and I.S. Metcalfe,“Reaction Mechanisms and Kinetics of Chemical Pretreatment of Bioresistant Organic Molecules by Wet Air Oxidation,” Water Sci. Tech., Vol. 35, NO.4, pp. 119-127, (1997).
[30] Rivas, F.J., S.T. Kolaczkowski, F.J. Beltrán and D.B. mcLurgh,“Development of a Model for the Wet Air Oxidation of Phenol Based on a Free Radical Mechanism,”Chem.Eng.Sci.,
Vol. 53, NO.14, pp. 2575-2586, (1998).
[31] 曾明加,環保署環訓所, (2002).
[32] Hamoudi S., Larachi F., Sayari A.,“Wet Oxidation of Phenolic Solutions over Heterogeneous Catalysts: Degradation Profile and Catalyst Behavior,”JOURNAL of Catalysis 177, 247-258, (1998).
[33] 行政院環境保護署。修訂已公告無機類水質檢測方法,EPA-87-1302-03-01 計畫報告, (1998.6).
[34] APHA. Standard method for the examination of water and wastewater, 5520 chemical oxygen demand, pp .5-12~5-16. (1995).
[35] 行政院環境保護署環境檢驗所。環境檢測相關法規資料。環境檢測標準方法驗證程序準則。pp. 50-56, (1997.8).
[36] S.H.Lin , S.J.Ho,“Catalytic wet-air oxidation of high strength industrial wastewater,”, Applied Catalysis B: Environmental
,133-147, (1996).
[37] 顏駿翔,“添加Mn/r-Al2O3於觸媒濕式氧化程序處理2,4-二氯酚水溶液之研究,”,國立中山大學環境工程研究所碩士論文, (2001.6).
[38] 莊子賢,“濕式氧化及活性污泥法處理含多成分酚類化合物廢水之研究,”,私立元智大學化學工程研究所碩士論文, (1993.6).
[39] LEI L., HU X. and YUE P.-L.,“IMPROVED WET OXIDATION FOR THE TREATMENT OF DYEING WASTEWATER CONCENTRATE FROM MEMBRANE SEPARATION PROCESS”, Wat. Res. Vol. 32, NO.9, pp. 2753-2759, (1998)
[40] 周子卿,“苯之有機金屬催化氫化以合成環己烷之研究,”,國立中央大學化學工程研究所碩士論文, (1999.6).
[41] Béziat J.-C., Besson M., Gallezot P., and Durécu S.,“Catalytic Wet Air Oxidation on a Ru/TiO2 Catalyst in a Trickle-Bed Reactor,”, Ind. Eng. Chem. Res.38, 1310-1315, (1999).
[42] Besson M., Kallel A., Gallezot P., Zanella R., Louis C.,“Gold catalysts supported on titanium oxide for catalyticwet air oxidation of succinic acid”, Catalysis Comm unications 471-476, (2003).
[43] 林家驊,“添加Cu/La/Ce觸媒於濕式氧化程序處理含氨水溶液之研究”,國立中山大學環境工程研究所碩士論文, (2002.7).
[44] Cybulski A., Trawczy´nski J.,“Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts,”, Applied Catalysis B: Environmental, 1-13, (2004). |