博碩士論文 953204036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.142.171.100
姓名 周情凱(Ching-kai Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討磁性粒子於回收絲狀真菌的研究
(Investigate the magnetic particles on the recovery of filamentous fungi research)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 絲狀真菌是指真菌的一種型態,是以絲狀菌絲構成的。真菌對人類而言是一種相當重要的資源,它的衍生功能相當的多,像是生長過程中所產的代謝物,在我們的醫療、農業及工業等方面皆佔有很重要的地位。目前學術界對於真菌已有相當的研究,其中一種就是將真菌行固定化,而固定化菌體就是希望能達到回收再利用的目的。菌體經由固定化後可以節省菌體生長的時間並減少營養源的消耗,且可以重複利用菌體將所產生的代謝物產量給提高,但一般利用不織布或棉布的固定化方法會影響到菌體生長的情形,菌體的型態改變之後勢必會影響到菌體的代謝情況。
本研究以屬於絲狀真菌的裂褶菌(Schizophyllum commune)為研究的主軸,先利用氧化鐵磁性粒子(Fe3O4)來回收菌體,以達固定化的目地,並且利用Fed-batch 1次的方式來探討其對代謝物多醣產量的影響,並與一般的固定化方式(不織布)比較。
結果顯示,氧化鐵磁性粒子(Fe3O4)可以成功用於回收裂褶菌,並且實行1次Fed-batch實驗後,發現裂褶菌多醣產量較batch高2.4倍,產率也提升了3倍左右,而一般的固定化方法卻未能有效提高產物含量及產率。
另外在行Fed-batch時我們減少氮源的含量,發現多醣量可以較batch的多醣量高出約3倍,效果比未將氮源減少的2.4倍還好,單位菌體對產物的轉化率Yp/x也可提升1.7倍,而一般的固定化方法卻無此效果。
Fe3O4之所以能回收裂褶菌,是因為其會黏附在菌體的表面,本研究也簡單利用定性的方法來探討黏附的行為,並以其它絲狀真菌Aspergillus niger及Penicillim brevicompactum來驗證。
為了改善Fe3O4無法從菌體上脫落的缺點,本研究以溫度敏感性磁性粒子(PolyNIPAAm-Fe3O4)來進行裂褶菌的回收,此磁性粒子擁有LCST(Lower Critical Solution Temperature)的性質。結果發現在室溫25℃時PolyNIPAAm-Fe3O4並不會有吸附菌體的現象,而把環境溫度提升到50℃時才會有吸附的行為。
摘要(英) Filamentous fungi refers to a type of fungus, is composed of filamentous hyphae. Fungi were very important resources in terms of human, and its considerable multi-functional derivatives, such as the growth process of the metabolites produced in our health care, agriculture and industries are a very important position. At present, the fungus has been considerable academic research, which is immobilizing fungi; immobilized cell is to achieve the purpose of recycling. Immobilized cell by cell growth can save time and reduce the consumption of nutrients, and can re-use will be produced by fungal metabolites to increase the yield, but generally the use of fixed method of non-woven or cotton cloth will affect the fungi Growth of the case, the morphology changed after the cell is bound to affect the metabolism of fungi.
In this study, belonging to the filamentous fungi Schizophyllum commune for the study of the spindle, the first use of magnetic particles (Fe3O4) to recover the cell to achieve the purposes immobilized, and the use of Fed-batch 1 time the way to explore its metabolites yield of polysaccharide and with the general approach of the fixed (non-woven) to compare.
The results showed that magnetic particles (Fe3O4) can be successfully used for recovery of Schizophyllum commune, and the implementation of 1 Fed-batch experiments, we found that production of Schizophyllum commune polysaccharide than 2.4 times the high batch production rate increased about 3 times , and immobilized in general are not effective methods to improve content and product yield.
In addition, among the Fed-batch, we reduce the nitrogen source, the amount of polysaccharide can be found in the polysaccharide than the batch volume about 3 times than not reduce the nitrogen 2.4 times better, the product of unit cell of the conversion rate of Yp / x can also be upgraded to 1.7 times, and general methods of no fixed effect.
Fe3O4 reason Schizophyllum commune recovery because of its will in the cell surface adhesion, the simple use of qualitative research methods to study the adhesion behavior, and other filamentous fungi Aspergillus niger and Penicillim brevicompactum to verify.
In order to improve on Fe3O4 fungal shedding from the shortcomings of this study, the temperature sensitivity of magnetic particles (PolyNIPAAm-Fe3O4) to carry out the recovery of Schizophyllum commune, the magnetic particles have a LCST (Lower Critical Solution Temperature) in nature. The results showed that at room temperature at 25 ℃ PolyNIPAAm-Fe3O4 does not have the phenomenon of bacterial adsorption, and the ambient temperature to 50 ℃ when the act will be adsorbed.
關鍵字(中) ★ 裂褶菌
★ 固定化
★ 磁性粒子
關鍵字(英) ★ magnetic particle
★ immobilization
★ recovery
論文目次 摘 要 I
Abstract III
誌 謝 V
目 錄 VI
圖 目 錄 XI
表 目 錄 XV
第一章 緒 論 1
1-1研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 真菌 3
2-1.1 真菌介紹 3
2-1.2 真菌應用 3
2-1.3 真菌的分類 4
2-1.4 真菌多醣體 5
2-1.5 β-D-葡聚糖 7
2-1.6 真菌多醣商業價值 8
2-2裂褶菌 (Schizophyllum commune) 9
2-2.1 簡介 9
2-2.2 裂褶菌多醣 10
2-2.3 裂褶菌多醣應用 13
2-3 微生物固定化 14
2-3.1 固定化發展 14
2-3.2 固定化方法 16
2-3.3 固定化微生物以提升產物產量 20
2-4 無機磁性粒子 25
2-4.1 無機磁性粒子特性 25
2-4.2 氧化鐵磁性奈米粒子的製備 26
2-4.3 Fe3O4磁性粒子於固定化應用 27
2-5 溫度敏感性磁性粒子 29
2-5.1 LCST的形成原因 29
2-5.2 溫度敏感性磁性粒子於固定化的應用 30
第三章 實驗材料與方法 33
3-1 實驗規劃 33
3-2實驗材料與設備 34
3-2.1實驗藥品 34
3-2.2 實驗儀器與設備 35
3-2.3 實驗菌株: 37
3-2.4培養基組成 38
3-3 實驗方法 40
3-3.1 氧化鐵磁性粒子(Fe3O4)的製備 40
3-3.2 溫度敏感性磁性粒子(PolyNIPAAm-co-Fe3O4)的製備 41
3-3.3 尼龍不織布於固定化裂褶菌搖瓶實驗 44
3-3.4 尼龍不織布於固定化裂褶菌1次Fed-batch搖瓶實驗 44
3-3.5 添加氧化鐵磁性粒子(Fe3O4) 於裂褶菌搖瓶實驗 45
3-3.6 氧化鐵磁性粒子(Fe3O4) 後添加於裂褶菌及回收1次Fed-batch搖瓶實驗 46
3-3.7 Fe3O4 不同添加量於回收裂褶菌1次Fed-batch搖瓶實驗 46
3-3.8 溫度敏感性磁性粒子回收裂褶菌的研究 47
3-3.9 磁性粒子於不同外在環境下的磁力展現 48
3-4 實驗分析方法 49
3-4.1氧化鐵磁性粒子(Fe3O4)與溫度敏感性磁性粒子(PolyNIPAAm-co-Fe3O4)性質分析 49
3-4.2 發酵液處理流程 51
3-4.3 利用光學顯微鏡(OM)觀察磁性粒子黏附菌體現象 54
3-4.4 磁性粒子於不同外在環境下的磁力展現分析方法 54
第四章 實驗結果與討論 55
4-1 氧化鐵磁性粒子(Fe3O4)製備 55
4-2 溫度敏感性磁性粒子(PolyNIPAAm-co-Fe3O4)的製備 57
4-2.1 製備穩定磁性流體 (PAA-co-Fe3O4) 57
4-2.2 穩定磁性流體與Styrene合成 (PS-co-Fe3O4) 63
4-2.3 溫度敏感性磁性粒子合成 (PolyNIPAAm-co-Fe3O4) 66
4-3尼龍不織布於固定化裂褶菌搖瓶實驗結果 73
4-4 尼龍不織布於固定化裂褶菌1次Fed-batch搖瓶實驗 75
4-5. 探討氧化鐵磁性粒子(Fe3O4) 於回收裂褶菌及Fed-batch搖瓶實驗 76
4-5.1 添加氧化鐵磁性粒子(Fe3O4) 於裂褶菌搖瓶實驗 77
4-5.2 氧化鐵磁性粒子(Fe3O4) 後添加於裂褶菌及回收1次Fed-batch搖瓶實驗 81
4-5.3 Fe3O4與尼龍不織布於裂褶菌1次Fed-batch比較 87
4-6 Fe3O4不同添加量於裂褶菌1次Fed-batch之搖瓶實驗 89
4-7 探討氧化鐵磁性粒子(Fe3O4)黏附於絲狀真菌上的因素 92
4-7.1 氧化鐵磁性粒子(Fe3O4)與菌體的表面特性 92
4-7.2 探討黏附因素 92
4-7.3 Fe3O4於Aspergillus niger及Penicillim brevicompactum的黏附 96
4-8 溫度敏感性磁性粒子回收裂褶菌的研究 99
4-9 磁性粒子於不同外在環境下的磁力展現 102
第 五 章 結 論 與 建 議 109
5-1 結論 109
5-2 建議 111
第六章 參考文獻 112
參考文獻 蔡孟勳,“ 探討通氣量對於樟芝發酵生產抗氧化物質之影響 ”,國立中央大學化學工程與材料工程研究所碩士論文,2004。
周柏甫,“ 探討菌體形態對於裂褶菌多醣體生產之影響 ”,國立中央大學化學工程與材料工程研究所碩士論文,2001。
蘇茂森、劉冠甫、張正芳、廖一久,“ 由Schizophyllum commune萃取之Beta-1,3-glucan應用於強化草蝦苗活力之研究 ”,水產研究,1993。
張正芳、蘇茂森、陳宏遠、廖一久, “ 由Schizophyllum commune萃取之Beta-1,3-glucan與多聚磷酸態維生素C(polyphosphorylated L-ascorbic acid)對強化草蝦抵抗弧菌與受傷組織復原能力之研究 ”,水產研究,1993。
陳書豪, “ 探討樟芝的溫度變化對液態發酵與故泰發酵生產三萜類與多醣體之影響 ”,國立中央大學化學工程與材料工程研究所碩士論文,2006。
梁志欽, “ 松杉靈芝浸漬發酵的培養條件對產物的影響 ”,國立台灣大學農業化學研究所碩士論文,1991。
賴慶亮, “ 菇的化學、生化學 ”,國立編譯館,13-374,1997。
食品工業,財團法人食品工業發展研究所,第10期,第32卷。
許英欽, “ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究 ”,國立中央大學化學工程與材料工程研究所碩士論文,2002。
周玉蕙, “ 溫度感應型磁性乳膠顆粒之製備與研究 ”,國立台灣大學化學工程研究所碩士論文,2004。
陳人豪, “ 磁性奈米粒子製備及其於電磁波遮蔽之應用 ”,國立中央大學化學工程與材料工程研究所碩士論文,2006。
張揚狀, “ 表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用 ” 國立成功大學化學工程系博士論文,2005。
葉晨聖,化工資訊月刊,2004,第7期,第64卷。
洪榮駿, “ 油基磁性流體之研發與特性探討 ”,私立大葉大學機械工程研究所碩士論文,2005。
李昂,化工資訊,2001,第10期,第44卷。
鍾志祥, “ 探討固定纖維素水解酵素於幾丁聚醣擔體之研究 ”,國立中央大學化學工程與材料工程研究所碩士論文,2007。
馬振基, “ 奈米材料科技原理與應用 ”,2003。
林家正, “ 磁性溫感型乳膠顆粒之製造與研究 ”,國立台灣大學化學工程研究所,2006。
陳國誠, “ 固定化酵素與固定化菌體 ”,藝軒圖書出社,1992,263-312。
黃忠良編撰, “ 磁性流體理論應用 ”,復漢出版社,1988。
陸立美, “ 聚丙烯酸系構造對其分散性之影響 ”,國立成功大學化學工程研究所碩士論文,1989。
林佳龍,“ 聚(氮-異丙基丙烯醯胺)衍生溫度感應型共聚微膠體:製備,性質及應用 ”,國立台灣大學材料科學與工程學研究所博士論文,2005。
黃世宏, “ 氧化鐵磁性奈米粒子在酵素固定化及分離上之應用研究 ”,國立成功大學化學工程研究所碩士論文,2003。
陳國誠, “ 生物固定化技術與產業應用 ”,茂昌圖書,1990,P.353。
Asku Z, karabayir G. (2008) Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresource Technology. 99, 7730-7741.
Bailey J.E., Ollis D.F. (1986) Appli enzyme catalysis. Biochemical Engineering fundamentals, Chapter4. McGraw-Hill, Singapore. 157-226.
Blanch H.W., Clark D.S. (1996) Immobilized biocatalysts. Biochemical Engineering, Marcel Dekker, Inc., New York. 103-161.
Boutris C, Chatzi E.G., Kiparissides C. (1997) Characterization of the LCST behavior of aqueous poly(N-isopropylacylamide)solution by thermal and cloud point techniques. Polymer. 10, 2567-2570.
Chaplin, Kennedy. (1994) In : M.F. Chaplin and Kennedy J.F., Editores, Carbohydrate Analysis : A Practical Approach, IRL Press at Oxford University Press, New York, 81-87.
Chen Y, Qian Z, Zhang Z. (2008) Novel preparation of magnetite/polystyrene composite particles via inverse emulsion polymerization. Colloids and Surfaces. A, Physicochemical and Engineering Aspects. 312, 209-213.
Chibata I. (1978) Preparetion of immobilized enzymes and microbial cells. Immobilized Enzymes, Chapter2. Halsted Press, New York, 9-107.
Deng Y, Yang W, Wang C, Fu S. (2003) A Novel approach for preparation of thermoresponsive polymer magnetic microspheres with Core-Shell structure. Advanced Materials. 15, 1729-1732.
Ding X.B., Sun Z.H., Zhang W.C., Peng Y.X., Wan G.X., Jiang Y.Y. (2000) Adsorption/Desorption of protein on magnetic particles covered by thermosensitive polymers. Journal of Applied Polymer Science. 77, 2915-2920.
Dyal A, Loos K, Noto, Chang S.W., Spagnoli C, Shafi K.V.P.M., Ulman A, Cowman M, Gross R.A. (2003) Activity of Candida rugosa Lipase Immobilized on γ-Fe2O3 Magnetic Nanoparticles. Journal of the American Chemical Society. 125, 1684-1685.
Gadd G.M. (1988) Accumulation of metals by microorganisms and algae. Biotechnology Vol 6b(Rehm H.J., Reed G.Eds.)VCH Publishers, New York, 6b, 401-433.
Groboillot A, Boadi D.K., Poncelet D., Neufeld R.J. (1994) Immobilization of cells for application in the food industry. Critical Reviews in Biotechcology. 14(2), 75-107.
Hartmeier W. (1988) Methods of immobilization. Immobilized biocatalysts, Chapter2. Heidelberg New York, 9-107.
Hazen K.C. (1990) Cell surface hydrophobicity of medically important fungi, especially Candida species. In Microbial Cell Surface Hydrophobicity. 249-295.
Huang Z, Tang F. (2004) Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles. Journal of Colloid and Interface Science. 275, 142-147.
Huo D, Li Y, Qian Q, Kobayashi T. (2006) Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid). Colloids and Surfaces. B, Biointerfaces. 50, 36-42.
Jones L, O’Shea P, (1994) The electrostatic nature of the cell surface of Candida albicans : a role in adhesion. Experimental Mycology. 18, 111-120.
Jörg M, Udo R, Fritz W, (1995) Investigations on the regioselective hydrolysis of a branched β-1,3-glucan. Carbohydrate Pliymers. 27, 271-276.
Khan A. (2007) Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core-shell microgel particles. Journal of Colloid and Interface Science. 313, 697-704.
Klibanov A.M. (2005) Immobilized enzymes and cells as priactical catalysts. Science. 219, 722-727.
Koneracka M, Kopcansky P, Antalik M, Timko M, Ramchand C.N., Lobo D, Mehta R.V. Upadhyay R.V. (1999) Immobilization of proteins and enzymes to fine magnetic particles. Journal of Magnetism and Magnetic Materials. 201, 427-430.
Kubota K, Hamano K, Kuwahara N, Fujishige S, Ando I. (1990) Characterization of poly(N-isopropylacrylamide) in water. Polymer Journal. 22(12), 1051-1057.
Larsson P.O., Ohlson S.O., Mosbach K. (1976) New approach to steroid conversion using activated immobilized microorganism. Nature. 263, 796-797.
Lin C.L., Lee C.F., Chiu W.Y., (2005) Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. Journal of Colloid and Interface Science. 291, 411-420.
Mao X, Guo G, Huang J, Du Z, Huang Z, Ma L, Li P, Gu L. (2006) A novel method to prepare chitosan powder and its application in cellulose immobilization. Journal of Chemical Technology and Biotechnology. 81, 189-195.
Mateo C, Palomo J.M., Fernandez-Lorente G, Guisan J.M., Fernandez-Lafuente R. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techiques. Enzyme and Microbial Technology. 40, 1451-1463.
Munzberg J, Rau U, Wagner F. (1995) Investigations on the regioselective hydrolysis of a branched β-1,3-glucan. Carbohydrate Polymers. 27, 271-276.
Ogawa A, Wakisaka Y, Tanaka T, Sakiyama T, Nakanishi K. (1995) Production of kojic acid by Membrane-Surface Liquid Culture of Aspergillus oryzae NRRL484. Journal of Fermentation and Bioengineering. 80, 41-45.
Ogawa A, Yasuhara A, Tanaka T, Sakiyama T, Nakanishi K. (1995) Production of neutral protease by Membrane-Surface Liquid Culture of Aspergillus oryzae IAM2704. Journal of Fermentation and Bioengineering. 80, 35-40.
Peng Z.G., Hidajat K, Uddin M.S. (2004) Adsorption and desorption of lysozyme on nano-sized magneric particles and its conformational changes. Colloids and Surfaces. B, Biointerfaces. 35, 169-174.
Peng Z.G., Hidajat K, Uddin M.S. (2004) Adsorption of bovine serum albumin on nanosized magnetic particles. Journal of Colloid and Interface Science. 271, 277-283.
Pinheiro I.R., Facciotti M.C.R. (2008) Retamycin production by immobilized cells of Streptomyces olindensis ICB20 in repeated-batch cultures. Process Biochemistry. 43, 661-666.
Qiu G, Wang Q, Wang C, Lau W, Guo Y. (2007) Polystyrene/ Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization. Ultrasonics Sonochemistry. 14, 55-61.
Saude N, Junter G.A. (2002) Production and molecular weight characteristics of alginate from free and immobilized-cell cultures of Azotobacter vinelandii. Process Biochemistry. 37, 895-900.
Shamim N, Hong L, Hidajat K, Uddin M.S. (2007) Thermosensitive polymer(N-isopropylacrylamide) coated nanomagnetic particles : Preparation and characterization. Colloids and Surfaces. B, Biointerfaces. 55, 51-58.
Shamim N, Hong L, Hidajat K, Uddin M.S. (2006) Thermosensitive-polymer-coated magnetic nanoparticles : Adsorption and desorption of Bovine Serum Albumin. Journal of Colloid and Interface Science. 304, 1-8.
Smith S.N., Chohan R, Armstrong R.A., Whipps J.M. (1998) Hydrophobicity and surface electrostatic charge of conidia of the mycoparasite Coniothyrium mitians. Mycological Research. 102(2) 243-249.
Tako M. (1996) Molecular origin for the thermal stability of schizophyllan. Polymer Gels and Networks. 4, 303-313.
Tanaka T, Eguchi S, Aoki T, Tamura T, Saitoh H, Taniguchi M, Ohara H, Nakanishi K, Lloyd D.R. (2007) Production of laccase by membrane-surface liquid culture of Trametes versicolor using a poly(L-lactic acid)membrane. Biochemical Engineering Journal. 33, 188-191.
Tay A, Yang S.T. (2002) Production of L(+)-Lactic Acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering. 80, 1-12.
Tong X.D., Xue B, Sun Y. (2001) A novel magnetic affinity support for protein adsorption and purification. Biotechnology Progress. 17, 134-139.
Tosa T, Shibatani T. (1995) Industrial application of immobilized biocatalysts in Japan. Annals of the New York Academy of Sciences. 750, 364-375.
Wang Z.X. (1989) Analysis and appraisal of fourier transform infrared spectroscopy of polymer. Sichuan University Press, Chengdu, China.
Wessels J.G..H., Sietsma J.H. Wall structure and growth in Schizophyllum commune. Chemical Structure of the Hyphal wall.
Xu Z.N., Yang S.H. (2007) Production of mycophenolic acid by Penicillium brecompactum immobilized in a rotating figrous-bed bioreactor. Enzyme and Microbial Technology. 40, 623-628.
Yu J, Zhang X, Tan T. (2007) An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. Journal of Biotechnology. 129, 415-420.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明