博碩士論文 953204042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.137.177.124
姓名 王業文(Yeh-Wen Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
(Initial Salt Screening Procedures for the Manufacturing Route: Case Example of Two Different Salt Forms of Racemic (R,S)-(±)-Ibuprofen)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在藥物市場中,大約有50%的藥物都是外消旋性混合物。因此,在藥物的研發上,對掌性質變的越來越重要了。在本論文中,右旋布洛芬((S)-(+)-Ibuprofen)和外消旋布洛芬(racemic (R,S)-(±)-Ibuprofen)分別在「初步溶劑篩選」及「初步鹽類篩選」程序中被選為模式藥物。在初步溶劑篩選中,我們可以獲得在製藥業中相當重要的四個性質:溶解度、晶貌、結晶度及多形體性質。這個方法以簡單、經濟的方式,獲得一系列可用在量產情況的工程數據。另外,在這個方法中所建立的「多形體表」代表了材料特性,也同時提供了每個可能發現活性藥物多形體的機會。多形體表也和Hansen parameter互相結合來預測活性藥物在未知溶劑中的溶解度。
在初步鹽類篩選程序中,外消旋布洛芬被用來和七種製藥業中常用的鹼做酸鹼中和反應,藉此篩選出關於外消旋布洛芬可能的鹽類。在這套方法中只考慮兩種結晶方法:降溫和反溶劑法以配合量產方面的需求。此外,大量的水被用來做主要的溶劑以避免因弱酸或弱鹼的解離常數(pKa)在非水溶液中偏移,導致酸鹼之間的鹼離常數差(ΔpKa)小於二,以至於錯失掉形成鹽類的機會。外消旋布洛芬在這個方法中被篩選出兩鹽類:外消旋布洛芬鈉鹽二水合物及外消旋布洛芬三羥甲基氨基甲烷鹽。其中,後者在本研究中為新發現的鹽類。我們也利用FTIR來辨別它們的特徵官能基。OM、DSC及TGA分析可獲得其晶貌及熱性質。由PXRD及SXD可決定其晶體結構及分子結構。這兩種鹽類也在pH值-溶解度測試、吸濕性測試及溶解速率測試中被互相比較。由吸濕性測試可以知道外消旋布洛芬三羥甲基氨基甲烷鹽具有低吸濕性,在儲藏方面可能具有良好的穩定性。由溶解速率測試可得知外消旋布洛芬三羥甲基氨基甲烷鹽可能可以作為長效藥來使用。
摘要(英) In the pharmaceutical market, approximately 50% are racemics (mixture of enantiomers); therefore, chirality becomes more and more important in drug discovery and development. In this thesis (S)-(+)-Ibuprofen and racemic (R,S)-(±)-Ibuprofen were used as active pharmaceutical ingredients (APIs) in “initial solvent screening” and “initial salt screening” procedures respectively. In initial solvent screening, the four important properties in pharmaceutical industry such as solubility, crystal habit, crystallinity, and polymorphism of (S)-(+)-Ibuprofen could be obtained. This approach was an easy, economical, and close to scale-up condition approach for obtaining a serious of engineering data. The “form space” constructed in this method was a material characteristic that can provide the API every opportunity to discover a new polymorph, and it could be combined with Hansen model to form a solubility sphere to predict the API solubility property in an unknown solvent.
In initial salt screening procedure, racemic (R,S)-(±)-Ibuprofen was reacted with seven bases used commonly in pharmaceutical industry to find possible salt. In this procedure only two crystallization pathways such as temperature cooling and the addition of anti-solvent were to be considered to a close-to scale-up conditions. Besides, water was used as a main solvent to avoid missing any opportunities for salt formation. Two salts: racemic (R,S)-(±)-Ibuprofen sodium dihydrate and racemic (R,S)-(±)-Ibuprofen tris(hydroxymethyl)aminomethane were produced by the method of initial salt screening. Their functional groups were identified by FTIR, and the crystal habit and thermal properties were determined by OM and DSC, TGA, respectively. Their crystal structures were determined by PXRD and SXD. They were also compared in their pH-solubility profiles, moisture sorption studies, and dissolution rate tests. Under these tests, racemic (R,S)-(±)-Ibuprofen tris(hydroxymethyl)aminomethane was considered to be stable during storage and could become a sustain-released drug.
關鍵字(中) ★ 結晶度
★ 晶貌
★ 溶解度
★ 三羥甲基氨基甲烷
★ 多形體表
★ 鹽類篩選
★ 多形體
★ 溶劑篩選
★ 布洛芬
關鍵字(英) ★ solvent screening
★ ibuprofen
★ salt screening
★ tris(hydroxymethyl)aminomethane
★ polymorph
★ crystal habit
★ from space
★ solubility
★ crystallinity
論文目次 摘要......................................................i
Abstract................................................iii
Acknowledgement...........................................v
List of Tables...........................................ix
List of Figures...........................................x
Chapter 1 Executive Summary...............................1
1.1 Introduction..........................................1
1.2 Brief Introduction of Chiral Compound.................3
1.3 Conceptual Framework..................................4
References................................................7
Chapter 2 Analytical Instruments..........................9
2.1 Introduction..........................................9
2.2 Thermal Analysis.....................................12
2.2.1 Differential Scanning Calorimetry (DSC)............12
2.2.2 Thermal Gravimetric Analysis (TGA).................14
2.3 Spectroscopic Analysis...............................16
2.3.1 Powder X-ray Diffraction (PXRD)....................16
2.3.2 Single Crystal X-ray Diffraction (SXD).............18
2.3.3 Fourier Transform Infrared Spectroscope (FTIR).....20
2.4 Microscopic analysis.................................21
2.4.1 Optical Microscope (OM)............................21
2.5 Conclusions..........................................23
Reference ................................................24
Chapter 3 Solubility, Crystal Habit, Crystallinity, and Polymorphism of (S)-(+)-Ibuprofen-by Initial Solvent Screening ................................................27
3.1 Introduction.........................................27
3.1.1 Solubility.........................................28
3.1.2 Crystal Habit......................................30
3.1.3 Crystallinity......................................30
3.1.4 Polymorphism .......................................31
3.1.5 Hansen Parameters..................................33
3.1.6 (S)-(+)-Ibuprofen.................................34
3.2 Materials............................................34
3.3 Experimental Section.................................38
3.3.1 Solvent Screening Process..........................38
3.3.2 Analytical Measurements............................39
3.4 Results and Discussions..............................40
3.4.1 Solubility Studies.................................40
3.4.2 Crystal habit Study................................47
3.4.3 Crystallinity Study................................51
3.4.4 Polymorphism Study.................................53
3.4.5 Hansen Parameters study............................55
3.5 Conclusions..........................................59
References...............................................60
Chapter 4 Initial Salt Screening Procedures for the Manufacturing Route: Case Example of Racemic (R,S)-(±)-Ibuprofen ................................................64
4.1 Introduction.........................................64
4.1.1 Drug Candidate and Its Form........................64
4.1.2 The Aim of Salt Formation..........................67
4.1.3 Review of Salt Selection/Formation.................68
4.1.4 Racemic (R,S)-(±)-Ibuprofen........................71
4.2 Materials............................................72
4.3 Experimental Section.................................76
4.3.1 Salt Formation Procedures..........................76
4.3.2 pH-Solubility Studies..............................79
4.3.3 Moisture Absorption Studies........................79
4.3.4 Dissolution Test...................................79
4.3.5 Analytical Instruments.............................81
4.4 Results and Discussions..............................84
4.4.1 Screening Results..................................84
4.4.2 FTIR study.........................................87
4.4.3 OM, DSC, TGA, and PXRD Study.......................89
4.4.4 pH-Solubility Study................................94
4.4.5 Moisture Absorption Study..........................98
4.4.6 Dissolution Test...................................99
4.4.7 Single-Crystal X-ray Diffraction (SXD)............100
4.5 Conclusions.........................................103
References..............................................105
Chapter 5 Conclusions and Future Work...................111
參考文獻 Chapter 1
1. S. Kraljevic, P. J. Stambrook, and K. Pavelic, Accelerating drug discovery,” EMBO reports, 5(9), 837-842 (2004).
2. J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, “The price of innovation: new estimates of drug development costs,” J. Health Econ., 22(2), 151-185 (2003).
3. M. S. Lipsky, MD, and L. K. Sbarp, “From idea to market: the drug approval process,” JABFP., 14(5), 362-367 (2001).
4. A. Mehta, “Birth of a drug,” Mod. Drug Discovery., 7, 37-42 (2004).
5. J. Wechsler, “Manufacturers face new challenges battling global threats,” Pharm. Tech., 30(8), 24-32 (2005).
6. T. O’Toole, “Hearing on project bioshield reauthorization issues,” http://www.upmc-biosecurity.org/website/resources/hearings/content/Hearings_2006/20060406bioshldreauth.pdf.
7. T. Lee and F. B. Hsu, “A cross-performance relationship between Carr’s index and dissolution rate constant: the study of acetaminophen batches,” Drug Dev. Ind. Pharm., 33(11), 1273 -1284 (2007).
8. P. H. Karpinski, “Polymorphism of active pharmaceutical ingredients,” Chem. Eng. Technol., 29(2), 233-237 (2006).
9. D. Singhal, and W. Curatolo, “Drug polymorphism and dosage form design: a practical perspective,” Adv. Drug Deliv. Rev., 56(3), 335-347 (2004).
10. J. Bernstein, R. J. Davey, and Jan-Olav Henck, “Concomitant polymorphs,” Angew. Chem. Int. Ed., 38(23), 3440-3461 (1999).
11. W. H. DeCamp, “The impact of polymorphism on drug development: a regulator’s viewpoint,” Am. Pharm. Rev., 4(3), 70-77 (2001).
12. Rahul Banerjee, Prashant M. Bhatt, Nittala V. Ravindra, and Gautam R. Desiraju, “Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities,” Cryst. Growth Des., 5(6), 2299-2309 (2005).
13. G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant, “Racemic compound of species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003).
14. A. Somogyi, F. Bochner, and D. Foster, “Inside the isomers: the tale of chiral switches,” Aust. Prescr., 27(2), 47-49 (2004).
15. T. R. Kommuru, M. A. Khan, and I. K. Reddy, “Racemate and enantiomers of ketoprofen: phase diagram, thermodynamic studies, skin permeability, and use 16. S. L. Morissette, Ö Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug Deliv. Rev., 56(3), 275-300 (2004).
17. E. D. Carlson, P. Cong, W. H. Chandler Jr., P. J. Desrosiers, C. J. Freitag, and J. F. Varni, “Apparatuses and methods for creating and testing pre-formulations and systems for same,” United States Patent, 6939515 (2005).
Chapter 2
1. A.W. Newman and S. R. Byrn, “Solid-state analysis of the active pharmaceutical ingredient in drug products,” Drug Discovery Today, 8(19), 898-905 (2003).
2. S. Pfeffer-Hennig, P. Piechon, M. Bellus, C. Goldbronn, and E. Tedesco, “Physico-chemical characterization of an active pharmaceutical ingredient,” J. Therm. Anal. Calorim., 77(2), 663-679 (2004).
3. L. Yu, S. M. Reutzel and G. A. Stephenson, “Physical characterization of polymorphic drugs: an integrated characterization strategy,” PSTT, 1(3), 118-127 (1998).
4. D. Giron, “Contribution of thermal methods and related techniques to the rational development of pharmaceuticals—part 1,” PSTT, 1(5), 191-199 (1998).
5. Sophie-Dorothée Clas, C. R. Dalton, and B. C. Hancock, “Differential scanning calorimetry: applications in drug development,” PSTT, 2(8), 311-320 (1999).
6. T. L. Threlfall, “Analysis of organic polymorphs: a review,” The analyst, 120(10), 2435-2460 (1995).
7. D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvate,” Thermochim. Acta, 248(2), 1-59 (1995).
8. G. W. H. Höhne, W. F. Hemminger, and H. -J. Flammersheim, “Types of differential scanning calorimeters and modes of operation,” Ch 2 in Differential scanning calorimetry, 2nd Ed., (Springer, New York, USA, 2003), P. 12.
9. T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, polymorphism, crystallinity, crystal habit, and drying scheme of (R,S)-(±)-sodium ibuprofen dihydrate,” Pharm. Tech., 31(6), 82-87 (2007).
10. L. E. Mcmahon, P. Timmins, A. C. Williams, and P. York, “Characterization of dihydrates prepared from carbamazepine polymorphs,” J. Pharm. Sci., 85(10), 1064-1069 (1996).
11. A. J. C. Cabeza, G. M. Day, W. D. S. Motherwell, and W. Jones, “Solvent inclusion in form II carbamazepine,” Chem. Commun., 2007(16), 1600- 1602 (2007).
12. S. A. Kustrin, V. W. T. Rades, D. Saville, and I. G. Tucker, “Powder diffractometric assay of two polymorphic forms of ranitidine hydrochloride,” Int. J. Pharm., 184(1), 107-114 (1999).
13. T. C. Huang, “Automatic x-ray single crystal structure analysis system for small molecule,” The Rigaku J., 21(2), 43-46 (2004).
14. Y. Zhang and D. J. W. Grant, “Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 61(9), m435-m438 (2005).
15. L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom refinement of (S)-(+)-ibuprofen,” Acta Crystallogr. Sect. E: Struct. Rep. Online, 59(9), o1357-o1358 (2003).
16. L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom refinement of (S)-(+)-ibuprofen. corrigendum,” Acta Crystallogr. Sect. E: Struct. Rep. Online, 62(7), e17-e18 (2006).
17. C. Ciacovazzo, H. L. Monaco, G. Artioli, D. viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, “Experimental methods in X-ray and neutron crystallography,” Ch 5 in Fundamentals of crystallography, 2nd Ed., (Oxford university press, 2002), p. 336.
18. R. Potter, “An X-ray single-crystal linear diffractometer,” J. Sci Instrum., 39, 379-380 (1962).
19. D. A. Skoog, F. J. Holler, and T. A. Nieman, “An introduction to infrared spectrometry,” Ch 16 in Principles of instrumental analysis, 5th Ed., (Thomson Learnin, USA, 2001), pp. 382-383.
20. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis, 5th Ed., (Thomson Learnin., USA, 2001) pp.182-183, 396.
21. D. E. Bugay, “Characterization of the solid-state: spectroscopic techniques,” Adv. Drug Delivery Rev., 48(1), 43-65 (2001).
22. T. Bruzzese, and R. Ferrari, “Method of relieving pain and treating inflammatory conditions in warm-blooded animals,” United States Patent, 4279926 (1981).
23. K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Handbook, 2nd Ed., (Marcel Dekker, Inc., New York, USA, 1997), pp720-730.
24. K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental properties of powder Beds,” Ch 3 in Powder Technology Handbook, 2nd Ed., (Marcel Dekker, Inc., New York, USA, 1997), pp. 413-423.
25. K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Handbook, 2nd Ed., (Marcel Dekker, Inc., New York, USA, 1997), pp. 659-661.
Chapter 3
1. T. Togkalidou, R. D. Braatz, and B. K. Johnson, O. Davidson, and A. Andrews, “Experimental design and inferential modeling in pharmaceutical crystallization,” AIChE J., 47(1), 160-168 (2001).
2. T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” Pharm. Tech., 30(10), 72-92 (2006).
3. N. Blagden and R. J. Davey, “Polymorph selection: challenges for the future?,” Cryst. Growth Des., 3(6), 873-885 (2003).
4. D. Winn and M. F. Doherty, “Modeling crystal shapes of organic materials grown from solution,” AIChE J., 46(7), 1348-1367 (2000).
5. M. Fujiwara, Z. K. Nagy, J. W. Chew, and R. D. Braatz, “First-principles and direct design approaches for the control of pharmaceutical crystallization,” J. Process Contr., 15(5), 493-504 (2005).
6. S. N. Bhattachar, L. A. Deschenesa, and J. A. Wesleya, “Solubility: it's not just for physical chemists,” Drug Discovery Today, 11(21-22), 1012-1018 (2006).
7. G. Granero, María M. de Bertorello, and M. C. Brinñón, “Solubility profiles of some isoxazolyl–naphthoquinone derivatives,” Int. J. Pharm., 190(1), 41-47 (1999).
8. M. Fujiwara, P. S. Chow, D. L. Ma, and R. D. Braatz, “Crystallization using laser backscattering and ATR-FTIR spectroscopy: metastability, agglomeration, and control,” Cryst. Growth Des., 2(5), 363-370 (2002).
9. N. Kubota, “A new interpretation of metastable zone widths measured for unseeded solutions,” J. Cryst. Growth., 310(3), 629-634 (2008).
10. W. Mullin, “Solutions and solubility,” Ch 3 in Crystallization, 3rd Ed., (Butterworth-Heinemann, Oxford, UK, 1992), pp. 117-118.
11. P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli, “Influence of crystal habit on the compression anddensification mechanism of ibuprofen,” J. Crys. Growth., 243(2), 345-355 (2002).
12. N. Rasenack and B. W. Müller, “Ibuprofen crystals with optimized properties,” Int. J. Pharm., 245(1-2), 9-24 (2002).
13. N. Rasenack and B. W. Müller, “Crystal habit and tableting behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
14. H. A. Garekani, F. Sadeghi, A. Badiee, S. A. Mostafa, and A. R. Rajabi-Siahboomi, “Crystal habit modifications of ibuprofen and their physicomechanical characteristics,” Drug Dev. Ind. Pharm., 27(8), 803-809 (2001).
15. A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
16. D. Gao and J. H. Rytting, “Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
17. C. J. Strachan, T. S. Rades, D. A. Newnham, K. C. Gordon, M. Pepper, and P. F. Taday, “Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials,” Chem. Phys. Lett., 390(1-3), 20-24 (2004).
18. D. Giron, “Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates,” Thermochim. Acta, 248, 1-59 (1995).
19. L. X. Yu, M. S. Furness, A. Raw, K. P. W. Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. H. Jr., Y. Y. Chiu, and A. S. Hussain, “Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications,” Pharm. Res., 20(4), 531-536 (2004).
20. C. Rustichelli, G. Gamberini, V. Ferioli, M. C. Gamberini, R. Ficarra, and S. Tommasini, “Solid-state study of polymorphic drugs: carbamazepine,” J. Pharm. Biomed. Anal., 23(1), 41-54 (2000).
21. T. Threlfall, “Crystallisation of polymorphs: thermodynamic insight into the role of solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
22. T. Lee, and Y. S. Lin, “Dimorphs of Sucrose,” Int. Sugar J., 109(1303), 440-445 (2007).
23. D. Singhal and W. Curatolo, “Drug polymorphism and dosage form design: a practical perspective,” Adv. Drug Deliv. Rev., 56(3), 335-347 (2004).
24. C. Sun and D. J. W. Grant, “Influence of crystal structure on the tableting properties of sulfamerazine polymorphs,” Pharm. Res., 18(3), 274-280 (2004).
25. B. C. Hancock, P. York, and R. C. Rowe, “The use of solubility parameters in pharmaceutical dosage form design,” Int. J. Pharm., 148(1), 1-21 (1997).
26. J. Breitkreutz, “Prediction of intestinal drug absorption properties by three-dimensional solubility parameters,” Pharm. Res., 15(9), 1370-1375 (1998).
27. J. Burke, “Solubility Parameters: Theory and Application,” AIC book and paper group annual, 3, P13-58 (1984).
28. G. Leising, R. Resel, F. Stelzer, S. Tasch, A. Lanziner, and G. Hantich, “Physical aspects of dexibuprofen and racemic ibuprofen,” J. Clin. Pharmacol., 36(12 Suppl), 3S-6S (1996).
29. S. T. Kaehler, W. Phleps, and E. Hesse, “Dexibuprofen: pharmacology, therapeutic, use and safety,” Inflammopharmacology, 11(4-6), 371-383 (2003).
30. N. G. Anderson, “Solvent selection,” Ch 4 in Practical process research & development, (Academic press, New York, 2000), pp. 81-111.
31. L. C. Garzón, and F. Martínez, “Temperature dependence of solubility for ibuprofen in some organic and aqueous solvents,” J. Sol. Chem., 33(11), 1379-1395 (2004).
32. J. W. Mullin, “Solutions and solubility,” Ch 3 in Crystallization, 3rd Ed., (Butterworth-Heinemann, Oxford, UK, 1992), p. 93.
33. Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal morphology engineering by "tailor-made" inhibitors; a new probe to fine intermolecular interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
34. J. M. E. Buyan, N. Shankland, and D. B. Sheen, “Solvent effects on the crystal habit of ibuprofen,” J. Pharm. Sci., 58 1505-1509 (1969).
35. G. L. Perlovich, S. V. Kurkov, L. K. Hansen, and A. Baure-Brandl, “Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (±)-ibuprofen,” J. Pharm. Sci., 93(3), 654-666 (2004).
36. I. Ludlam-Brown and P. York, “The crystalline modification of succinic acid by variations in crystallization conditions,” J. Phys. D Appl. Phys., 26(8B), B60-B65 (1993).
Chater 4
1. P. H. Stahl, and B. Sutter, “Salt selection,” Ch 12 in Polymorphism in the pharmaceutical industry, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006), pp 309-310.
2. C. Sun and, D. J. W. Grant, “Compaction properties of L-Lysine salts,” Pharm. Res., 18(3), 281-286 (2001).
3. R. J. Bastin, M. J. Bowker, and B. J. Slater, “Salt selection and optimisation procedures for pharmaceutical new chemical entities,” Org. Proc. Res. Dev., 4(5), 427 -435 (2000).
4. K. R. Morris, M. G. Fakes, A. B. Thakur, A. W. Newman, A. K. Singh, J. J. Venit, C. J. Spagnuolo, and A. T. M. Serajuddin, “An integrated approach to the selection of optimal salt form for a new drug candidate,” Int. J. Pharm., 105(1), 209-217 (1994).
5. J. F. Remenar, J. M. MacPhee, B. K. Larsin, V. A. Tyagi, J. H. Ho, D. A. Mcllroy, M. B. Hickey, P. B. Shaw, and Ö. Almarson. “Salt selection and simultaneous polymorphism assessment via high-throughput crystallization: the case of sertraline,” Org. Proc. Res. Dev., 7(6), 990-996 (2003).
6. R. Banerjee, P. M. Bhatt, N. V. Ravindra, and G. R. Desiraju, “Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities,” Cryst. Growth Des., 5(6), 2299-2309 (2005)
7. B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of S-sodium ibuprofen,” United States Patent, 6242000 B1 (1997).
8. S. M. Berge, L. Bighley, and D. C. Monkhouse, “Pharmaceutical salts,” J. Pharm. Sci., 66(1), 1-19 (1977)
9. P. L. Gould, “Salt selection for basic drugs,” Int. J. Pharm., 33(3), 201-217 (1986).
10. C. A. Hirsch, R. J. Messenger, and J. L. Brannon, “Fenoprofen: drug form selection and preformulation stability studies,” J. Pharm. Sci., 67(2), 231-236 (1987).
11. H. S. Gwak, J. S. Choi, and H. K. Choi, “Enhanced bioavailability of piroxicam via salt formation with ethanolamines,” Int. J. Pharm., 297(1-2), 156-161 (2005).
12. S. Li, S. M. Wing, S. Sethia, H. Almoazen, Y. M. Joshi, and A. T. M. Serajuddin, “Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH,” Pharm. Res., 22(4), 628-635 (2005).
13. K. Kawakani, Y. Ida, and T. Yamaguchi, “Effect of salt type on hygroscopicity of a new cephalosporin S-3578,” Pharm. Res., 22(8), 1365-1373 (2005).
14. G. L. Endgel, N. A. Farid, M. M. Faul, L. A. Richardon, and L. L. Winneroski, “Salt form selection and characterization of LY333531 mesylate monohydrate,” Int. J. Pharm., 198(2), 239-247 (2000).
15. S. C. Ward, M. B. Hursthouse, D. C. Woods, and S. M. Lewis, “Systematic study into the salt formation of functionalized organic substrates,” http://eprints.soton.ac.uk/15855/01/all-hands-2003.pdf.
16. . P. Desrosiers et al, “High throughput screening techniques for preformulation: salt selection and polymorph studies,” Acta Cryst., A58(Supplement), C9 (2002).
17. A. van Langevelde, and E. Blomsma, “High-throughput screening in solid form selection,” Acta Cryst., A58(Supplement), C9 (2002).
18. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M.J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner. “High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug. Deliv. Rev., 56(3), 275-300 (2004).
19. E. H. Kerns, “High throughput physicochemical profiling for drug discovery,” J. Pharm. Sci., 90(11), 1838-1858 (2001).
20. E. C. Ware, and D. R. Lu, “An automated approach to salt for new unique trazodone salts,” Pharm. Res., 21(1), 177-184 (2004).
21. A. V. Trask, D. A. Haynes, W. D. S. Motherwell, and W. Jones, “Screening for crystalline salts via mechanochemistry,” Chem. Comm., (1), 51-53 (2006).
22. L. Kumar, A. Amin, and A. K. Bansal, “An overview of automated systems relevant in pharmaceutical salt screening,” Drug Discovery Today, 12(23-24), 1046-1053 (2006).
23. A. T. M. Serajuddin, “Salt formation to improve drug solubility,” Adv. Drug Deliv. Rev., 59(7), 603-616 (2007).
24. S. N. Black, E. A. Collier, R. J. Davey, and R. J. Roberts, “Structure, solubility, screening, and synthesis of molecular salts,” J. Pharm. Sci., 96(5), 1053-1068 (2007).
25. S. T. Kaehler, W. Phleps, and E. Hesse, “Dexibuprofen: pharmacology, therapeutic, use and safety,” Inflammopharmacology, 11(4-6), 371-383 (2003).
26. T. Lee, Y. H. Chen, and Y. W. Wang, “Effects of homochiral molecules of (S)-(+)-Ibuprofen and (S)-(-)-Sodium Ibuprofen dihydrate on the crystallization kinetics of racemic (R,S)-(±)-sodium ibuprofen dihydrate,” Cryst. Growth Des., 8(2), 415-426 (2008).
27. G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J.W. Grant, “Racemic species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003).
28. G. Geisslinger, K. Dietzel, H. Bezler, B. Nuernberg, and K. Brune, “Therapeutically relevant differences in the pharmacokinetical and pharmaceutical behavior of ibuprofen lysinate as compared to ibuprofen acid,” Int. J. Clin. Pharmacol. Ther. Toxicol., 27(7), 324-328 (1989).
29. B. Sádaba, M. A. Campanero, M. J. Muñoz-Juarez, I. Gil-Aldea, E. García-Quetglas, A. Esteras, and J. R. Azanza, “A comparative study of the pharmacokinetics of ibuprofen arginate versus dexibuprofen in healthy volunteers,” Eur. J. Clin. Pharmacol., 62(10), 849-854 (2006).
30. T. T. Kararli, T. E. Needham, C. J. Seul, and P. M. Finnegan, “Solid-state interaction of magnesium oxide and ibuprofen to form a salt,” Pharm. Res., 6(9), 804-808 (1989).
31. L. C. Garzón1 and F. Martínez, “Temperature dependence of solubility for ibuprofen in some organic and aqueous solvents,” J. Solution Chem., 33(11), 1379-1395 (2004).
32. T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” Pharm. Tech., 30(10), 72-92 (2006).
33. H. Dyrsting, K. Torben, “Drug salts,” United States Patent, 6077822 (2000).
34. C. F. Salat, J. F. Batlles, and J. C. Riera, “Tris (hydroxymethyl) aminomethane salt of thioctic acid,” United States Patent, 3718664 (1973).
35. K. Terashima, S. Kageyama, and H. Katsuyama, “Integral multilayer analytical element for use in the measurement of alkaline phosphatase activity,” United States Patent, 4900665 (1990).
36. A. F. M. Barton, “Solvent Scales,” Ch 8 in CRC Handbook of Solubility Parameters and other Cohesion Parameters, 2nd Ed., (CRC Press, Boston, USA, 1991) pp. 294-295.
37. M. Klenell, P. Snoeijs, and M. Pedersén, “Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane,” Hydrobiologia, 514(1-3), 41-53 (2004).
38. T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” Pharm. Tech., 30(10), 72-92 (2006).
39. S. Kim, C. Wei, and S. Kiang, “Crystallization process development of an active pharmaceutical ingredient and particle engineering via the use of ultrasonics and temperature cycling,” Org. Proc. Res. Dev., 7(6), 997-1001 (2003).
40. L. M. Oberoi, K. S. Alexander, and A. T. Riga, “Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients,” J. Pharm. Sci., 94(1), 93-101 (2005).
41. N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Amines, C=N, and N=O compounds,” Ch 11 in Introduction to infrared and raman spectroscopy, 3rd Ed., (Axademic Press Inc., San Diego, CA, 1990), pp. 339-343.
42. N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Ethers, alcohols, and phenols,” Ch 10 in Introduction to infrared and raman spectroscopy, 3rd Ed, (Axademic Press Inc., San Diego, CA, 1990), p333.
43. N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Carbonyl compounds,” Ch 9 in Introduction to infrared and raman spectroscopy, 3rd Ed, (Axademic Press Inc., San Diego, CA, 1990), p318.
44. Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal morphology engineering by “tailor-made” inhibitors; a new probe to fine intermolecular interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
45. T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, polymorphism, crystallinity, crystal habit, and drying scheme of (R,S)-(±)-sodium ibuprofen dihydrate,” Pharm. Tech., 31(6), 82-87 (2007).
46. G. G. Z. Zhang, S. Y. L. Paspal, R.Suryanaryanan, and D. J. W. Grant, “Racemic Species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003).
47. S. N. Bhattachar, L. A. Deschenes, and J. A. Wesley, “Solubility: it’s not just for physical chemists,” Drug Discovery Today, 11(21-22), (2006).
48. Z. T. Chowhan, “pH-solubility profiles of organic carboxylic acids and their salts,” J. Pham. Sci., 67(9), 1257-1260 (1978).
49. R. K. KhanKari and D. J. W. Grant, “Pharmaceutical hydrate,” Thermochim. Acta 248, 61-79 (1995).
50. Y. Zhang and D. J. W. Grant, “Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C61(9), m435-m438 (2005).
指導教授 李度(Tu Lee) 審核日期 2008-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明