參考文獻 |
參考文獻
[1] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale Selective-Area Epitaxl Growth of Si Using An Ultrathin SiO2/Si3Ni4 Mask Patterned by An Atomic Force Microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.
[2] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered Magnetic Nanostructures: Fabrication and Properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[3] Q. Yan, F. L, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling Nanoholes In Colloidal Spheres by Selective Etching,” J. Mater. Chem. 16 (2006) 2132–2134.
[4] A. Winkleman, B. D. Gates, L. S. McCarty, G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[5] W. Ma, D. Hesse, and U. Gcsele, “Formation of Ferroelectric Perovskite Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas Pressure Effect during Pulsed Laser Deposition,” Small (2005) 837 –841.
[6] N. Li and M. Z. Allmang. “Size-tunable Ge Nano-particle Arrays Patterned on Si Substrates with Nanosphere Lithography and Thermal Annealing,” J. Appl. Phys. 41 (2002) 4626–4629.
[7] E. Ge´raud, V. Pre´vot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template,” Chem. Mater. 18 (2006) 238-240.
[8] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres:Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[9] P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles,” Curr. Opinion. Coll. Interf. Sci. 6 (2001) 383-401.
[10] M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic Fabrication of Model Systems in Heterogeneous Catalysis and Surface Science Studies,” Langmuir 14 (1998) 1458-1464.
[11] G. Horneck, B. K. Christa, “Astrobiology: The Quest for the Conditions of Life, Part V Complexity and Life, Molecular Self-Assembly and the Origin of Life,” Spriger press (2001) 360-372.
[12] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[13] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO):Synthesis of Hexagonal Mesoporous Silica Opals,” Adv. Mater. 12 (2000) 1940-1944.
[14] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres,” Langmuir 22 (2006) 7358-7363.
[15] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic Crystals,” Adv. Mater. 17 (2005) 2455–2458.
[16] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,” Encyclopedia of Nanosci. and Nanotech. X (2003) 1–23.
[17] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns,” Chem. Phys. Lett. 408 (2005) 241–246.
[18] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[19] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[20] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[21] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10 (1994) 23-36.
[22] K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf. A 109 (1996) 363-374.
[23] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[24] R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[25] P. Yang, J. Huang, A. R. Tao, S. Connor, and R. He, “A General Method for Assembling Single Colloidal Particle Lines,” Nano Lett. 6 (2006) 524-529.
[26] Jianlin Li, Shuai Zhang, Haihua Chena, Zhong-Ze Gua, Zuhong Lua, “Three-dimensional Non-close-packed Arrays Formed by Soft PMMA Spheres,” Colloids Surf., A , 299 (2007) 54–57.
[27] R. Xie and X. Y. Liua, “Epitaxial Assembly and Ordering of Two-Dimensional Colloidal Crystals,” Appl. Phys. Lett. 92 (2008) 083106-1~3.
[28] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea,” Chapter 4, 2003, Prentice Hall.
[29] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
[30] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[31] G. Zhang, D. Wang, and H. M?hwald, “Fabrication of Multiplex Quasi-Three-Dimensional Grids of One-Dimensional Nanostructures via Stepwise Colloidal Lithography,” Nano Lett. 7 (2007) 3410-3413.
[32] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, ”Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks,” Small 4 (2005) 439-444.
[33] G. Zhang, D. Wang, and H. M?hwald, “Ordered Binary Arrays of Au Nanoparticles Derived from Colloidal Lithography,” Nano Lett. 7 (2006) 127-132.
[34] M. T. Zin, K. Leong, N. Y. Wong, H. Ma and A. Jen, “Plasmon Resonant Structures with Unique Topographic Characteristics and Tunable Optical Properties for Surface-Enhanced Raman Scattering,” Nanotechnology 18 (2007) 455301-1~6.
[35] Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology,” Jpn. J. Appl. Phys. 45 (2006) 582-584.
[36] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays,” Nano Lett. 4 (2004) 2223-2226.
[37] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography,” Nano Lett. 5 (2005) 1784-1788.
[38] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas,” Adv. Mater. 16 (2004) 2155-2159.
[39] D. Byrne, A. Schilling, J. F. Scott and J. M. Gregg, “Ordered Arrays of Lead Zirconium Titanate,” Nanotechnology 19 (2008) 165608-1~5.
[40] Y. Zhang, X. Wang, and Y. Wang, “Ordered Nanostructures Array Fabricated by Nanosphere Lithography,” J. Alloys Compd. 452 (2008) 473–477.
[41] W. Cai, G. Duan, Y. Li, Z. Li, B. Cao, and Y. Luo, “Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer,” J. Phys. Chem. B. 110 (2006) 7184-7188.
[42] W. Cai, G. Duan, Y. Luo, Z. Li, and Y. Lei, “Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition,” J. Phys. Chem. B. 110 (2006) 15729-15733.
[43] D. C. Gonzaleza, M. E. Kizirogloua, X. Lia, A. A. Zhukovb, H. Fangohrd, P. A. J. de Grootb, P. N. Barttletc, and C. H. de Groot, “Long Range Ordering in Self-assembled Ni Arrays on Patterned Si,” Journal of Magnetism and Magnetic Materials 316 (2007) e78–e81.
[44] M. E. Kiziroglou, X. Li, D. C. Gonzalez, and C. H. de Groot, “Orientation and Symmetry Control of Inverse Sphere Magnetic Nanoarrays by Guided Self-assembly,” J. Appl. Phys. 100 (2006) 113720-1~5.
[45] P. N. Bartlett, M. A. Ghanem, P. de Groot, and Alexander Zhukov, “A Double Templated Electrodeposition Method for the Fabrication of Arrays of Metal Nanodots,” Electrochemistry Communications 6 (2004) 447–453.
[46] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hona, “Fabrication of Various Nickel Nanostructures by Manipulating the One-Step Electrodeposition Process,” J. Electrochem. Soc., 154 (2007) E77-E83.
[47] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating,” Adv. Mater. 16 (2004) 417-422.
[48] O. D. Velev, D. M. Kuncicky, B. G. Prevo, and O. D. Velev, “Controlled Assembly of SERS Substrates Templated by Colloidal Crystal Films,” J. Mater. Chem. 16 (2006) 1207–1211.
[49] X. S. Zhao, L. Wang, and Q. Yan, “From Planar Defect in Opal to Planar Defect in Inverse Opal,” Langmuir 22 (2006) 3481-3484.
[50] T. Sumida, Y. Wada, T. Kitamura, and S. Yanagida, “Construction of Stacked Opaline Films and Electrochemical Deposition of Ordered Macroporous Nickel,” Langmuir 18 (2006) 3886-3894.
[51] O. D. Velev; A. M. Lenhoff, “Colloidal Crystals as Templates for Porous Materials,” Curr. Opin. Colloid Interface Sci. 5 (2000) 56-63.
[52] I. Zubel and M. Kramkowska, “Development of Etch Hillocks on Different Si(hkl) Planes in Silicon Anisotropic Etching,” Surf. Sci. 602 (2008) 1712–1721.
[53] T. K. Carns, M. O. Tanner, and K. L. Wang,” Chemical Etching of Si1-XGeX in HF:H202:CH3COOH,” J. Electrochem. Soc. 142 (1995) 1260-1266.
[54] E. A. Fitzgerald, K. C. Wu, M. T. Currie, N. Gerrish, D. Bruce, and J. Borenstein, Microelectromechanical Structures for Materials Research in Proceedings for Fall MRS (1998) 223-227,.
[55] B. Wang, S. J. Chua, and J. Teng, “Novel 2D Ordered Arrays of Nanostructures Fabricated Through Silica Masks Formed by Bilayer Colloidal Crystals as Templates,” IEEE (2005).
[56] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[57] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
[58] D. Wang, G. Zhang, and H. Mohwald, “Nanoembossment of Au Patterns on Microspheres,” Chem. Mater.18 (2006) 3985-3992.
[59] P. Chen, C.W. Kuo, J. Y. Shiu, and Y. H. Cho, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks,” Adv. Mater. 15 (2003) 1065-1068.
[60] K. Seeger and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars,” J. Phys. D: Appl. Phys. 32 (1999) 129–132.
[61] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang, “Fabrication of Nanopillars by Nanosphere Lithography,” Nanotechnology 17 (2006) 1339–1343.
[62] W. Li, L. Xu, W. M. Zhao, P. Sun, X. F. Huang, and K. J. Chen, “Fabrication of Large-scale Periodic Silicon Nanopillar Arrays for 2D Nanomold Using Modified Nanosphere Lithography ,” Appl. Surf. Sci. 253 (2007) 9035–9038.
[63] H. L. Chen1, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using Colloidal Lithography to Fabricate and Optimize Sub-wavelength Pyramidal and Honeycomb Structures in Solar Cells,” Opt. Express 15 (2007) 14793-14803.
[64] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744–748.
[65] K. Goto, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep-Submicron CMOS Devices,” IEDM (1995) 449-452.
[66] F. D. Heurle, C. S. Petrsson, L. Slot, B. Strizker, “Diffusion in Intermetallic Compounds with The CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Film,” J. Appl. Phys. 53 (1982) 5678-5681.
[67] L. J. Chen, J. W. Mayer, and K. N. Tu, “Formation and Structure of Epitaxial Silicides on Silicon,” Thin Solid Films 93 (1982) 135-141.
[68] S. P. Maruarka, “Silicide for VLSI Applications,” Academic Press, New York(1983).
[69] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1–0.6 μm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996) 999-1001.
[70] R. Beyers, and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin Films,” J. Appl. Phy. 57 (1985) 5240-5245.
[71] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti and Ni-Salicided Polysilicon Films,” IEEE Tran. Electron Devices ED-41 (1994) 2305-2317.
[72] J. Y. Yew, L. J. Chen, and W. F. Wu, “Effects of Lateral Confinement on The Growth of CoSi And CoSi2 on (001)Si Inside 0.2-2 μm Oxide Openings Prepared by Electron Beam Lithography,” Materials Chemistry and Physics 61 (1999) 42-45.
[73] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial Growth of CoSi2, on (111)Si Inside Miniature-size Oxide Open by Rapid Thermal Annealing,” J. Appl. Phys. 69 (1991) 4282-4285.
[74] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura and K. Nagayama, “Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment,” Colloid. Polym. Sci. 277 (1999) 914-930.
[75] H. Cong and W. Cao, “Colloidal Crystallization Induced by Capillary Force,” Langmuir 19 (2003) 8177-8181.
[76] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique,” Langmuir. 20 (2004) 10998-11004.
[77] C. S. Chang, C. W. Nieh, and L. J. Chen, “Formation Epitaxial NiSi2 of Single Orientation on (111)Si Inside Miniature Size Oxide Openings,” Appl. Phys. Lett. 50 (1987) 259-261.
[78] S. L. Cheng, S. W. Lu, H. Chen, “Interfacial reactions of 2-D periodic arrays of Ni metal dots on (001)Si,” J. Phys. Chem. Solids 69 (2008) 620–624.
[79] S. L. Cheng, S. W. Lu, S. L. Wong, H. Chen, “Growth of Size-Tunable Periodic Ni Silicide Nanodot Arrays on Silicon Substrates,” Appl. Surf. Sci. 253 (2006) 2071–2077.
[80] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, H. Chen, “Fabrication of Periodic Nickel Silicide Nanodot Arrays Using Nanosphere Lithography,” Thin Solid Films 494 (2006) 307 – 310.
[81] M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, “Fabrication of Nano-Dot and Nano-Ring-Arrays by Nanosphere Lithography,” Appl. Phys. A 63 (1996) 617–619. |