博碩士論文 953901004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.133.137.10
姓名 王建勳(Chien-hsun Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米球微影術製備二維有序奈米結構之研究
(Periodic arrays 2D well-ordered nanostructures fabricated via nanosphere lithography)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究成功利用聚苯乙烯(Polystyrene, PS)奈米球微影術(Nanosphere Lithography,NSL)結合熱退火製程在(111)矽晶上製備出大面積、二維週期性排列的鎳金屬奈米點及矽化物奈米點陣列。並 探討所製備之鎳金屬點陣列與(111)矽晶基材間在不同溫度下熱退火處理時之界面反應。
從穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)及選區電子繞射(Select Area Electron Diffraction, SAED)分析中,可發現鎳金屬奈米點陣列在(111)Si基材上反應時,在低溫退火300 ℃時就已完全轉換為磊晶二矽化鎳(Epitaxial NiSi2,Epi-NiSi2) 。此結果指出鎳金屬奈米點在(111)Si基材進行界面矽化反應時,越小的鎳金屬奈米點越有利於Epi-NiSi2之磊晶反應成長。經鑑定後Epi-NiSi2之奈米點與(111)Si基材間之磊晶方位關係為[111]NiSi2//[111]Si,{220}NiSi2//{220}Si。此外,在較高溫退火試片中也觀察到Epi-NiSi2奈米點陣在(111)Si上有特定刻面形貌形成,經過鑑定比對之後,可知其刻面皆平行於<1 0>Si方向。另外在實驗中也可在矽基材上發現雙層奈米球模板的存在,而由雙層之奈米球模板製備出之Epi-NiSi2奈米點的結果來看,雙層奈米球模板可以在相同的球徑下可製備更小之奈米點陣列。
藉由結合奈米球微影術,熱處理製程,化學濕式選擇性蝕刻及電鍍技術,我們亦成功在矽晶與矽鍺基材上製備出大面積,形狀和尺寸可調變之金屬奈米結構(奈米碗及奈米柱)及奈米孔洞陣列。在本研究中也利用SEM,AFM,TEM及SAED分析針對所製備奈米結構之表面形貌的演變,尺寸均一性及其晶體結構等進行有系統的觀察鑑定。最後,從本實驗結果可清楚顯示若結合適當的控制技術及奈米球微影術不但能提供有效率又經濟的模板以在不同之基材上製備出尺度可調變之週期結構,進而能製備所需要之形狀,尺寸及週期性而不需要複雜之微影技術。
摘要(英) In the present study, we have demonstrated that 2D periodic arrays of nickel metal and silicide nanodots can be successfully fabricated on (111)Si substrates by using the polystyrene (PS) nanosphere lithography (NSL) technique and thermal annealing. The results of an investigation on the interfacial reactions between the Ni nanodots and (111)Si substrates after different heat treatments are reported.
From the TEM and SAED analysis, only epitaxial NiSi2 nanodots were found to form on (111)Si at a temperature as low as 300 °C. The results indicated that the growth of epitaxial NiSi2 is more favorable for the samples with smaller Ni nanodot sizes. The epitaxial NiSi2 nanodots were found to grow with an epitaxial orientation with respect to the (111)Si substrates: [111]NiSi2//[111]Si and {220}NiSi2//{220}Si. In addition, these epitaxial NiSi2 nanodots formed on (111)Si were observed to be heavily faceted and the faceted edges of the NiSi2 nanodot were identified to be parallel to <1 0>Si directions. On the other hand, during the experiments, the double-layered arrays of PS spheres were occasionally found to form on silicon substrates. The epitaxial NiSi2 nanodot arrays formed from the bilayer masks exhibit larger interparticle spacings and smaller particle sizes.
By combining the nanosphere lithography, heat treatments, wet chemical etching and electrodeposition techniques, we also successfully fabricate large-area shape- and size-tunable metal nanostructures (nanobowls and nanopillars) and nanohole arrays on Si and SiGe substrates. The morphology evolution, size uniformity and crystal structure of the produced nanostructures have been systematically investigated by SEM, AFM, TEM, and SAED analyses. The observed results present the exciting prospect that with appropriate controls, the colloidal NSL technique promises to offer an effective and economical patterning method for fabrication of a variety of well-ordered nanostructures with selected shape, size, and periodicity on different substrates without complex lithography.
關鍵字(中) ★ 奈米球微影術
★ 金屬矽化物
★ 奈米結構
關鍵字(英) ★ nanosphere lithography
★ nanostructures
論文目次 目錄
第一章 簡介 1
1-1 前言 1
1-2-1 各種奈米球自組裝技術 4
1-2-1-1 自然滴製法 4
1-2-1-2 旋轉塗佈法 5
1-2-1-3 LB-like 自組裝技術 5
1-2-1-4 電泳自組裝技術 6
1-3 微奈米球微影術 7
1-3-1 微影術的發展 7
1-3-2 利用奈米球微影術製備奈米結構 9
1-3-2-1 金屬薄膜沈積製程技術 9
1-3-2-2 電鍍沈積技術 10
1-3-2-3 無電鍍技術 11
1-3-2-4 反蛋白石結構 (Inverse Opal Structure,IOS) 11
1-4 蝕刻 12
1-4-1 濕式蝕刻 12
1-4-1-1 矽晶基材濕式蝕刻 12
1-4-1-2 矽鍺基材濕式蝕刻 13
1-4-2 乾式蝕刻 13
1-4-2-1 反應離子蝕刻技術 13
1-5 金屬矽化物 14
1-5-1 金屬矽化物在半導體工業上之應用及其製程 14
1-5-2 鎳金屬矽化物 16
1-6 研究動機 17
第二章 實驗步驟 19
2-1 奈米球模板及金屬矽化物奈米點及奈米結構陣列之製備 19
2-1-1 基材前處理 19
2-1-2 奈米球膠體溶液配製 20
2-1-3 自組裝奈米球陣列 20
2-1-4 金屬薄膜蒸鍍 21
2-1-5 奈米球舉離 21
2-1-6 退火熱處理 21
2-2 奈米球微影術製備有序奈米孔洞陣列結構之製程 22
2-2-1不同之半導體矽晶基材上製備之二維奈米孔洞陣列結構 22
2-2-1-1 基材前處理 22
2-2-1-2 自組裝奈米球陣列及金屬薄膜沈積 24
2-2-1-3 選擇性化學溼式蝕刻 24
2-3 奈米球微影術製備有序奈米柱陣列結構 25
2-4 分析儀器與鑑定 26
2-4-1 掃描式電子顯微鏡(SEM) 26
2-4-2 原子力顯微鏡(AFM) 26
2-4-3 穿透式電子顯微鏡(TEM)與X光能量散佈光譜儀 27
2-4-4 高分辨穿透式電子顯微鏡(HRTEM) 27
第三章 結果與討論 28
3-1 微奈米球模板之製備 28
3-2 鎳金屬與鎳矽化物奈米點陣列 31
3-2-1 鎳金屬及其矽化物外觀形貌觀察 31
3-2-2 鎳金屬與(111) Si基材之界面反應 33
3-2-3 鎳金屬與(111) Si及(001)Si基材之界面反應比較 36
3-3利用奈米球微影術於不同基材上製備有序奈米孔洞陣列結構 37
3-3-1在 (001) Si 基材上製備之有序奈米結構陣列及金屬金字塔結構 37
3-3-2 在(001) Si0.8Ge0.2基材上製備之有序奈米結構陣列 39
3-4奈米球微影術製備有序奈米柱陣列結構 40
3-4-1 奈米球模板熱處理 40
3-4-2 金屬電鍍沈積製程 40
第四章 結論與未來展望 43
4-1 結論 43
4-2 未來展望 45
4-2-1 在(111)矽基材上製備二維金屬鈷矽化物奈米點陣列 45
4-2-2 利用奈米孔洞陣列模板製備金屬結構 46
4-2-3 金屬奈米結構的應用 46
參考文獻 48
參考文獻 參考文獻
[1] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale Selective-Area Epitaxl Growth of Si Using An Ultrathin SiO2/Si3Ni4 Mask Patterned by An Atomic Force Microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.
[2] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered Magnetic Nanostructures: Fabrication and Properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[3] Q. Yan, F. L, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling Nanoholes In Colloidal Spheres by Selective Etching,” J. Mater. Chem. 16 (2006) 2132–2134.
[4] A. Winkleman, B. D. Gates, L. S. McCarty, G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[5] W. Ma, D. Hesse, and U. Gcsele, “Formation of Ferroelectric Perovskite Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas Pressure Effect during Pulsed Laser Deposition,” Small (2005) 837 –841.
[6] N. Li and M. Z. Allmang. “Size-tunable Ge Nano-particle Arrays Patterned on Si Substrates with Nanosphere Lithography and Thermal Annealing,” J. Appl. Phys. 41 (2002) 4626–4629.
[7] E. Ge´raud, V. Pre´vot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template,” Chem. Mater. 18 (2006) 238-240.
[8] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres:Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[9] P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles,” Curr. Opinion. Coll. Interf. Sci. 6 (2001) 383-401.
[10] M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic Fabrication of Model Systems in Heterogeneous Catalysis and Surface Science Studies,” Langmuir 14 (1998) 1458-1464.
[11] G. Horneck, B. K. Christa, “Astrobiology: The Quest for the Conditions of Life, Part V Complexity and Life, Molecular Self-Assembly and the Origin of Life,” Spriger press (2001) 360-372.
[12] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[13] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO):Synthesis of Hexagonal Mesoporous Silica Opals,” Adv. Mater. 12 (2000) 1940-1944.
[14] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres,” Langmuir 22 (2006) 7358-7363.
[15] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic Crystals,” Adv. Mater. 17 (2005) 2455–2458.
[16] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,” Encyclopedia of Nanosci. and Nanotech. X (2003) 1–23.
[17] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns,” Chem. Phys. Lett. 408 (2005) 241–246.
[18] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[19] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[20] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[21] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10 (1994) 23-36.
[22] K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf. A 109 (1996) 363-374.
[23] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[24] R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[25] P. Yang, J. Huang, A. R. Tao, S. Connor, and R. He, “A General Method for Assembling Single Colloidal Particle Lines,” Nano Lett. 6 (2006) 524-529.
[26] Jianlin Li, Shuai Zhang, Haihua Chena, Zhong-Ze Gua, Zuhong Lua, “Three-dimensional Non-close-packed Arrays Formed by Soft PMMA Spheres,” Colloids Surf., A , 299 (2007) 54–57.
[27] R. Xie and X. Y. Liua, “Epitaxial Assembly and Ordering of Two-Dimensional Colloidal Crystals,” Appl. Phys. Lett. 92 (2008) 083106-1~3.
[28] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea,” Chapter 4, 2003, Prentice Hall.
[29] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
[30] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[31] G. Zhang, D. Wang, and H. M?hwald, “Fabrication of Multiplex Quasi-Three-Dimensional Grids of One-Dimensional Nanostructures via Stepwise Colloidal Lithography,” Nano Lett. 7 (2007) 3410-3413.
[32] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, ”Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks,” Small 4 (2005) 439-444.
[33] G. Zhang, D. Wang, and H. M?hwald, “Ordered Binary Arrays of Au Nanoparticles Derived from Colloidal Lithography,” Nano Lett. 7 (2006) 127-132.
[34] M. T. Zin, K. Leong, N. Y. Wong, H. Ma and A. Jen, “Plasmon Resonant Structures with Unique Topographic Characteristics and Tunable Optical Properties for Surface-Enhanced Raman Scattering,” Nanotechnology 18 (2007) 455301-1~6.
[35] Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology,” Jpn. J. Appl. Phys. 45 (2006) 582-584.
[36] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays,” Nano Lett. 4 (2004) 2223-2226.
[37] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography,” Nano Lett. 5 (2005) 1784-1788.
[38] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas,” Adv. Mater. 16 (2004) 2155-2159.
[39] D. Byrne, A. Schilling, J. F. Scott and J. M. Gregg, “Ordered Arrays of Lead Zirconium Titanate,” Nanotechnology 19 (2008) 165608-1~5.
[40] Y. Zhang, X. Wang, and Y. Wang, “Ordered Nanostructures Array Fabricated by Nanosphere Lithography,” J. Alloys Compd. 452 (2008) 473–477.
[41] W. Cai, G. Duan, Y. Li, Z. Li, B. Cao, and Y. Luo, “Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer,” J. Phys. Chem. B. 110 (2006) 7184-7188.
[42] W. Cai, G. Duan, Y. Luo, Z. Li, and Y. Lei, “Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition,” J. Phys. Chem. B. 110 (2006) 15729-15733.
[43] D. C. Gonzaleza, M. E. Kizirogloua, X. Lia, A. A. Zhukovb, H. Fangohrd, P. A. J. de Grootb, P. N. Barttletc, and C. H. de Groot, “Long Range Ordering in Self-assembled Ni Arrays on Patterned Si,” Journal of Magnetism and Magnetic Materials 316 (2007) e78–e81.
[44] M. E. Kiziroglou, X. Li, D. C. Gonzalez, and C. H. de Groot, “Orientation and Symmetry Control of Inverse Sphere Magnetic Nanoarrays by Guided Self-assembly,” J. Appl. Phys. 100 (2006) 113720-1~5.
[45] P. N. Bartlett, M. A. Ghanem, P. de Groot, and Alexander Zhukov, “A Double Templated Electrodeposition Method for the Fabrication of Arrays of Metal Nanodots,” Electrochemistry Communications 6 (2004) 447–453.
[46] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hona, “Fabrication of Various Nickel Nanostructures by Manipulating the One-Step Electrodeposition Process,” J. Electrochem. Soc., 154 (2007) E77-E83.
[47] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating,” Adv. Mater. 16 (2004) 417-422.
[48] O. D. Velev, D. M. Kuncicky, B. G. Prevo, and O. D. Velev, “Controlled Assembly of SERS Substrates Templated by Colloidal Crystal Films,” J. Mater. Chem. 16 (2006) 1207–1211.
[49] X. S. Zhao, L. Wang, and Q. Yan, “From Planar Defect in Opal to Planar Defect in Inverse Opal,” Langmuir 22 (2006) 3481-3484.
[50] T. Sumida, Y. Wada, T. Kitamura, and S. Yanagida, “Construction of Stacked Opaline Films and Electrochemical Deposition of Ordered Macroporous Nickel,” Langmuir 18 (2006) 3886-3894.
[51] O. D. Velev; A. M. Lenhoff, “Colloidal Crystals as Templates for Porous Materials,” Curr. Opin. Colloid Interface Sci. 5 (2000) 56-63.
[52] I. Zubel and M. Kramkowska, “Development of Etch Hillocks on Different Si(hkl) Planes in Silicon Anisotropic Etching,” Surf. Sci. 602 (2008) 1712–1721.
[53] T. K. Carns, M. O. Tanner, and K. L. Wang,” Chemical Etching of Si1-XGeX in HF:H202:CH3COOH,” J. Electrochem. Soc. 142 (1995) 1260-1266.
[54] E. A. Fitzgerald, K. C. Wu, M. T. Currie, N. Gerrish, D. Bruce, and J. Borenstein, Microelectromechanical Structures for Materials Research in Proceedings for Fall MRS (1998) 223-227,.
[55] B. Wang, S. J. Chua, and J. Teng, “Novel 2D Ordered Arrays of Nanostructures Fabricated Through Silica Masks Formed by Bilayer Colloidal Crystals as Templates,” IEEE (2005).
[56] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[57] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
[58] D. Wang, G. Zhang, and H. Mohwald, “Nanoembossment of Au Patterns on Microspheres,” Chem. Mater.18 (2006) 3985-3992.
[59] P. Chen, C.W. Kuo, J. Y. Shiu, and Y. H. Cho, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks,” Adv. Mater. 15 (2003) 1065-1068.
[60] K. Seeger and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars,” J. Phys. D: Appl. Phys. 32 (1999) 129–132.
[61] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang, “Fabrication of Nanopillars by Nanosphere Lithography,” Nanotechnology 17 (2006) 1339–1343.
[62] W. Li, L. Xu, W. M. Zhao, P. Sun, X. F. Huang, and K. J. Chen, “Fabrication of Large-scale Periodic Silicon Nanopillar Arrays for 2D Nanomold Using Modified Nanosphere Lithography ,” Appl. Surf. Sci. 253 (2007) 9035–9038.
[63] H. L. Chen1, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using Colloidal Lithography to Fabricate and Optimize Sub-wavelength Pyramidal and Honeycomb Structures in Solar Cells,” Opt. Express 15 (2007) 14793-14803.
[64] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744–748.
[65] K. Goto, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep-Submicron CMOS Devices,” IEDM (1995) 449-452.
[66] F. D. Heurle, C. S. Petrsson, L. Slot, B. Strizker, “Diffusion in Intermetallic Compounds with The CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Film,” J. Appl. Phys. 53 (1982) 5678-5681.
[67] L. J. Chen, J. W. Mayer, and K. N. Tu, “Formation and Structure of Epitaxial Silicides on Silicon,” Thin Solid Films 93 (1982) 135-141.
[68] S. P. Maruarka, “Silicide for VLSI Applications,” Academic Press, New York(1983).
[69] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1–0.6 μm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996) 999-1001.
[70] R. Beyers, and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin Films,” J. Appl. Phy. 57 (1985) 5240-5245.
[71] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti and Ni-Salicided Polysilicon Films,” IEEE Tran. Electron Devices ED-41 (1994) 2305-2317.
[72] J. Y. Yew, L. J. Chen, and W. F. Wu, “Effects of Lateral Confinement on The Growth of CoSi And CoSi2 on (001)Si Inside 0.2-2 μm Oxide Openings Prepared by Electron Beam Lithography,” Materials Chemistry and Physics 61 (1999) 42-45.
[73] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial Growth of CoSi2, on (111)Si Inside Miniature-size Oxide Open by Rapid Thermal Annealing,” J. Appl. Phys. 69 (1991) 4282-4285.
[74] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura and K. Nagayama, “Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment,” Colloid. Polym. Sci. 277 (1999) 914-930.
[75] H. Cong and W. Cao, “Colloidal Crystallization Induced by Capillary Force,” Langmuir 19 (2003) 8177-8181.
[76] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique,” Langmuir. 20 (2004) 10998-11004.
[77] C. S. Chang, C. W. Nieh, and L. J. Chen, “Formation Epitaxial NiSi2 of Single Orientation on (111)Si Inside Miniature Size Oxide Openings,” Appl. Phys. Lett. 50 (1987) 259-261.
[78] S. L. Cheng, S. W. Lu, H. Chen, “Interfacial reactions of 2-D periodic arrays of Ni metal dots on (001)Si,” J. Phys. Chem. Solids 69 (2008) 620–624.
[79] S. L. Cheng, S. W. Lu, S. L. Wong, H. Chen, “Growth of Size-Tunable Periodic Ni Silicide Nanodot Arrays on Silicon Substrates,” Appl. Surf. Sci. 253 (2006) 2071–2077.
[80] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, H. Chen, “Fabrication of Periodic Nickel Silicide Nanodot Arrays Using Nanosphere Lithography,” Thin Solid Films 494 (2006) 307 – 310.
[81] M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, “Fabrication of Nano-Dot and Nano-Ring-Arrays by Nanosphere Lithography,” Appl. Phys. A 63 (1996) 617–619.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明