博碩士論文 963204002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.142.171.100
姓名 孫國浩(Kuo-Hao Sun)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
(The study of Electromigration on Lead-free SnAgBiIn Solder with Cu Electrodes)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長
★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究
★ 無鉛銲料與碲化鉍基材之界面反應研究★ 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗使用錫銀鉍銦無鉛銲錫在Si晶片U型溝槽中製作出銲料導線並研究其電遷移行為。兩極的銅導線首先以電鍍方式製備於溝槽中,將自行混合的實驗銲料84Sn3Ag3Bi10In(數字部分表示重量比)迴焊於電極中間完成實驗導線,電遷移實驗於不同溫度及電流密度等實驗條件下進行。添加Bi與In的84Sn3Ag3Bi10In銲錫液相線溫度降至203°C,而於相同對應溫度下比較84Sn3Ag3Bi10In與94Sn3Ag3Bi的失效時間,發現84Sn3Ag3Bi10In有較長的失效時間,本論文進而探討84Sn3Ag3Bi10In在電遷移效應下的反應機制。
在電極界面處會因為Cu原子溶入焊料而生成介金屬化合物Cu6(Sn,In)5,化合物的存在有助於銲錫凸塊與印刷電路板上的金屬墊層能夠更穩定的結合;銲料中出現Cu6(Sn,In)5及ζ-phase兩種介金屬化合物,ζ-phase為Ag4Sn 與Ag3In之固溶相。利用EPMA分析導線中介金屬化合物微量的成分變化,並估算其自由能以討論電遷移效應對銲料微結構之影響。結果顯示,ζ-phase的形成在電遷移失效機制中扮演很重要的角色。
摘要(英) Pb-free SnAgBiIn solder lines were prepared in Si(001) U-grooves to investigate the behaviors under electromigration. Cu electrodes were electroplated in the grooves and the solders were consequently reflowed between the electrodes. The samples were tested under various temperatures and current densities. The addition of indium and bismuth could decrease the melting point of 84Sn3Ag3Bi10In to 203°C, Average failure time was compared for 84Sn3Ag3Bi10In and 89Sn3Ag3Bi at the same homologous temperature. The results show that the 84Sn3Ag3Bi10In has longer life time than 89Sn3Ag3Bi. Therefore, we will discuss the mechanism of microstructure evolution 84Sn3Ag3Bi10In under electromigration effect.
The intermetallic compound formed between the solders and Cu electrodes are Cu6(Sn,In)5, and those formed inside the solder had the composition of ζ-phase, which is the solid solution of Ag4Sn and Ag3In. The exact composition of the compounds under current was identified by EPMA. Gibbs free energies of the formation of compounds were calculated to discuss the variations of microstructure by current. The results suggested that the existence of ζ-phase plays an important role under electromigration.
關鍵字(中) ★ 失效時間
★ 無鉛銲料
★ 電遷移
關鍵字(英) ★ failure time
★ lead free solder
★ electromigration
論文目次 中文摘要 .................................i
英文摘要 ................................ii
誌謝 ...............................iii
目錄 ................................iv
圖目錄 ................................vi
表目錄 ................................ix
第一章 序論.............................1
1.1 構裝層級.........................1
1.2 構裝技術.........................2
1.2.1 球閘陣列封裝.....................2
1.2.2 打線接合.........................3
1.2.3 覆晶接合.........................3
1.3 電遷移效應.......................5
1.4 研究目的.........................6
第二章 文獻回顧.........................7
2.1 無鉛銲錫.........................7
2.1.1 Sn-Ag銲錫系統....................9
2.1.2 Sn-Bi銲錫系統...................10
2.1.3 Sn-In銲錫系統...................11
2.1.4 Sn-Ag-Bi-In銲錫系統.............12
2.2 電遷移現象......................13
2.2.1 Sn-Pb銲錫系統...................14
2.2.2 Sn-Ag銲錫系統...................16
2.2.3 Sn-Bi銲錫系統...................17
2.2.4 Sn-In銲錫系統...................19
2.3 銲料線研究方法..................20
第三章 實驗方法........................21
3.1 銲料合金........................21
3.1.1 銲料合金製備....................21
3.1.2 熔點量測........................21
3.2 電遷移試片......................22
3.2.1 試片製作流程....................22
3.2.2 電鍍製程........................24
3.3 電遷移實驗及試片分析............24
3.3.1 電子顯微鏡......................25
3.3.2 能量散佈分析儀..................26
3.3.3 波長散佈分析儀..................26
第四章 實驗結果與討論..................28
4.1 銲料熔點分析....................28
4.2 失效時間........................29
4.3 介面反應........................32
4.3.1 種子層與液態銲錫之介面反應......32
4.3.2 電場作用下之介面反應............33
4.4 介金屬化合物組成分析............39
4.4.1 自由能之比較....................49
4.5 擴散係數及DZ*...................53
第五章 結論............................56
參考文獻.................................57
參考文獻 1. W. Shockley, “The path to the conception of the junction transistor”, IEEE Trans. Elec. Dev., ED-23, 597 (1976).
2. 陳信文等編著,電子構裝技術與材料,高立圖書有限公司,台灣,民國八十三年。
3. R. J. Wassink, “Soldering in Electronics”, Electrochemical Pub. Ltd., pp. 99, (1984).
4. J. H. Lau, Flip Chip Technologies, McGraw-Hill Companies Inc., New York, 1997.
5. K. N. Tu, A. M. Gusak and M. Li, “Physics and materials challenges for lead-free solders”, J. Appl. Phys., 93, 1335 (2003).
6. K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng., R, 38, 55 (2002).
7. H. J. Fecht, M. X. Zhang, Y. A. Chang and J. H. Perepezko, “Metastable phase equilibria in the lead-tin alloy system: Part II. Thermodynamic Modelling”, Metall. Mater. Trans. A, 20, 795 (1989).
8. 張淑如,「鉛對人體之危害」,勞工安全衛生簡訊,第12期,民國八十四年。
9. J. Cannis, “Green IC Packaging”, Advanced Packaging, 8, 33 (2001).
10. S. W. Chen, C. H. Wang, S. K. Lin and C. N. Chiu, “Phase diagrams of Pb-free solders and their related materials systems”, J. Mater. Sci. - Mater. Electron., 18, 19 (2007).
11. C. M. Chuang, P. C. Shih, and K. L. Lin, “Mechanical strength of Sn-3.5Ag-based solders and related bondings”, J. Electron. Mater., 33, 1 (2004).
12. W. Yang, L. E. Felton, and R. W. Messler, “The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints”, J. Electron. Mater., 24, 1465 (1995).
13. S. K. Kang and A. K. Sarkhel, “Lead (Pb)-free solders for electronic packaging”, J. Electron. Mater., 23, 701 (1994).
14. 鄧軒宇,「Sn-3.5Ag-0.5Cu無鉛銲錫受階梯狀負荷之潛變性質」,國立中央大學,機械工程研究所,碩士論文,民國九十四年。
15. J. F. Li, S. H. Mannan, M. P. Clode, D. C. Whalley, and D. A. Hutt, “Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects”, Acta Mater., 54, 2907 (2006).
16. P. T. Vianco, and J. A. Rejent, “Properties of ternary Sn-Ag-Bi solder alloys: Part I- thermal properties and microstructural analyses”, J. Electron. Mater., 28, 1127 (1999).
17. Y. Kariya, and M. Otsuka, “Effect of bismuth on the isothermal fatigue properties of Sn-3.5mass% Ag solder alloy”, J. Electron. Mater., 27, 866 (1998).
18. K. Suganuma, “Advances in lead-free electronics soldering”, Curr. Opin. Solid State Mater. Sci., 5, 55 (2001).
19. M. S. Yeh, “Effects of indium on the mechanical properties of ternary Sn-In-Ag solders”, Metall. Mater. Trans. A, 34, 361 (2003).
20. J. W. Morris, J. L. F. Goldstein and Z. Mei, “Microstructure and me-chanical properties of Sn-In and Sn-Bi solders”, JOM, 45, 25 (1993).
21. J. L. Freer, and J. W. Morris, “Microstructure and creep of eutectic indium/tin on copper and nickel substrates”, J. Electron. Mater., 21, 647 (1992).
22. H. M. Wu, F. C. Wu, and T. H. Chuang, “Intermetallic reactions in a Sn-20In-2.8Ag solder ball-grid-array package with Au/Ni/Cu pads”, J. Electron. Mater., 34, 1385 (2005).
23. K. S. Kim, T. Imanishi, K. Suganuma, M. Ueshima, and R. Kato, “Properties of low temperature Sn-Ag-Bi-In solder systems”, Microelectron. Reliab., 47, 1113 (2007).
24. A. T. Wu, M. H. Chen and C. H. Huang, “Formation of intermetallic compounds in SnAgBiIn solder system on Cu substrates”, J. Alloys Comp., 476, 436 (2009).
25. A. T. Wu, M. H. Chen and C. N. Siao, “The effects of solid-state aging on the intermetallic compounds of Sn-Ag-Bi-In solders on Cu substrates”, J. Electron. Mater., 38, 252 (2009).
26. H. B. Huntington, A. S. Nowick and J. J. Burton, Diffusion in solid: Recent development, Academic Press, New York, 1975.
27. P. S. Ho and T. Kwok, “Electromigration in metals”, Rep. Prog. Phys., 52, 301 (1989).
28. H. Gan and K. N. Tu “Polarity effect of electromigration on kinetics of mintermetallic compound formation in Pb-free solder V-groove samples”, J. Appl. Phys., 97, 063514 (2005).
29. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineering and Materials Scientists, Macmillan, New York, 1992.
30. A. K. Sinha, “Metallization technology for very-large-scale integration circuits”, Thin Solid Films, 90, 271 (1982).
31. H. U. Schreiber, “Electromigration mechanisms in aluminum lines”, Solid-State Electron., 28, 1153 (1985).
32. H. Zhang, G. S. Cargill III, Y. Ge, A. M. Maniatty and W. Liu, ”Strain evolution in Al conductor lines during electromigration”, J. App. Phys., 104, 123533 (2008).
33. C. Y. Liu, C. Chen, C. N. Liao and K. N. Tu, “Microstructure-electromigration correlation in a thin stripe of eutectic SnPb solder stressed between Cu electrodes”, Appl. Phys. Lett., 75, 58 (1999).
34. C. Y. Liu, C. Chen and K. N. Tu, “Electromigration in Sn - Pb solder strips as a function of alloy composition”, J. App. Phys., 88, 5703 (2000).
35. Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in eutectic SnPb solder lines”, J. Appl. Phys., 89, 4332 (2001).
36. J. W. Nah, J. O. Suh, K. N. Tu, S. W. Yoon, V. S. Rao, V. Kripesh and F. Hua, “Electromigration in flip chip solder joint having a thick Cu column bump and a shallow solder interconnect”, J. Appl. Phys., 100, 123513 (2006).
37. Y. L. Lin, Y. S. Lai, Y. W. Lin, and C. R. Kao, “Effect of UBM thickness on the mean time to failure of flip-chip solder joints under electromigration”, J. Electron. Mater., 37, 96 (2008).
38. Y. C. Chuang, and C. Y. Liu, “The effect of thermomigration on phase coarsening in a eutectic SnPb alloy”, J. Electron. Mater., 36, 1495 (2007).
39. A T. Huang, A. M. Gusak, K. N. Tu and Y. S. Lai, “Thermomigration in SnPb composite flip chip solder joints”, App. Phys. Lett., 88, 141911 (2006).
40. Y. H. Chen, T. L. Shao, P. C. Liu, C. Chen and T. Chou, “Microstructural evolution during electromigration in eutectic SnAg solder bumps”, J. Mater. Res., 20, 2432 (2005).
41. M. Ding, G. Wang, B. Chao, P. S. Ho, P. Su and T. Uehling, “Effect of contact metallization on electromigration reliability of Pb-free solder joints”, J. Appl. Phys., 99, 094906 (2006).
42. M. Shatzkes and J. R. Lloyd, “A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2”, J. Appl. Phys., 59, 3890 (1986).
43. R. K. K. Mahidhara et al., Design and Reliability of Solders and Solder Interconnects, TMS, U.S., 1997.
44. T. Y. Lee, K. N. Tu and D. R Fear, “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, J. Appl. Phys., 90, 4502 (2001).
45. K. Yamanaka, Y. Tsukada and K. Suganuma, “Electromigration effect on solder bump in Cu/Sn–3Ag–0.5Cu/Cu system”, Scr. Mater., 55, 867 (2006).
46. K. Yamanaka, Y. Tsukada and K. Suganuma, “Studies on solder bump electromigration in Cu/Sn–3Ag–0.5Cu/Cu system”, Microelectron. Reliab., 47, 1280 (2007).
47. Q. L. Yang and J. K. Shang, “Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect”, J. Electron. Mater., 34, 1363 (2005).
48. C. M. Chen and C. C. Huang, “Atomic migration in eutectic SnBi solder alloys due to current stressing”, J. Mater. Res., 23, 1051 (2008).
49. C. M. Chen and C. C. Huang, C. N. Liao, and K. M. Liou, “Effects of copper doping on microstructural evolution in eutectic SnBi solder stripes under annealing and current stressing”, J. Electron. Mater., 36, 760 (2007).
50. C. M. Chen and C. C. Huang, “Effects of silver doping on electromigration of eutectic SnBi solder”, J. Alloys Compd., 461, 235 (2008).
51. K. Yamanaka, Y. Tsukada and K. Suganuma, “Solder electromigration in Cu/In/Cu flip chip joint system”, J. Alloys Compd., 437 186 (2007).
52. J. P. Daghfal and J. K. Shang, “Current-induced phase partitioning in eutectic indium-tin Pb-free solder interconnect”, J. Electron. Mater., 36, 1372, (2007).
53. H. Gan, W. J. Choi, G. Xu and K. N. Tu, “Electromigration in solder joints and solder lines”, JOM, 54, 34, (2002).
54. Y. C. Hsu, D. S. Chen, P. C. Liu, and C. Chen, “Measurement of electromigration parameters of lead-free SnAg3.5 solder using U-groove lines”, J. Mater. Res., 20, 2831, (2005).
55. J. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, 1992.
56. J. R. Black, “Electromigration - A brief survey and some recent results”, IEEE Trans. Electron Devices, 16, 338 (1969).
57. 曾偉志,「多層組內連線中的電遷移及應力遷移現象」,電子月刊,2, 80,(1996)。
58. W. J. Choi, E. C. C. Yeh and K. N. Tu, “Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization”, J. Appl. Phys., 94, 5665, (2003).
59. S. W. Chen, C. H. Wang, S. K. Lin, C. N. Chiu and C. C. Chen, ”Phase trans-formation and microstructural evolution in solder joints”, JOM, 59, 39 (2007).
60. X. J. Liu, H. S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda and K. Yamaguchi, “Experimental determination and thermodynamic calcula-tion of the phase equilibria in the Cu-In-Sn system”, J. Electron. Mater., 30, 1093, (2001).
61. X. J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior and J Pstrus, “Experimental determination and thermodynamic cal-culation of the phase equilibria and surface tension in the Sn-Ag-In system”, J. Electron. Mater., 31, 1139, (2002).
62. A. T. Dinsdale, “SGTE Data for Pure Elements”, CALPHAD 15, 317 (1991).
63. T. M. Korhonen, and J. K. Kivilahti, “Thermodynamics of the Sn-In-Ag solder system”, J. Electron. Mater., 27, 149 (1998).
64. Y. W. Yen, S. W. Chen, “Phase equilibria of the Ag-Sn-Cu ternary system”, J. Mater. Res., 19, 2298 (2004).
65. C. Y. Liu, L. Ke, Y. C. Chuang and S. J. Wang, “Study of electromigration-induced Cu consumption in the flip-chip Sn/Cu solder bumps”, J. Appl. Phys., 100, 083702 (2006).
66. B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im and P.S. Ho, “Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing”, Acta Mater., 55, 2805 (2007).
67. C. Chen and S. W. Liang, “Electromigration issues in lead-free solder joints”, J. Mater. Sci. - Mater. Electron., 18, 259 (2007).
指導教授 吳子嘉(Albert T. Wu) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明