參考文獻 |
[1] Wang, Z. G., Wan, L. S., and Xu, Z. K., “Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview,” Journal of Membrane Science, vol. 304, no. 1-2, pp. 8-23, Nov 1, 2007.
[2] Bryjak, M., Hodge, H., and Dach, B., “Modification of porous polyacrylonitrile membrane,” Angewandte Makromolekulare Chemie, vol. 260, pp. 25-29, Nov, 1998.
[3] Abia, L., Armesto, X. L., Canle, M. et al., “Oxidation of aliphatic amines by aqueous chlorine,” Tetrahedron, vol. 54, no. 3-4, pp. 521-530, Jan 15, 1998.
[4] 張浩勤, 萬亞珍, 劉金盾 et al., “荷電納濾膜,” 化學通報, vol. 68, pp. 1-6, 2005.
[5] 童國倫, and 阮若屈, “最小心眼的薄膜-逆滲透膜與奈米濾膜,” 科學發展, vol. 429, pp. 20-24, 2008.
[6] Glater, J., “The early history of reverse osmosis membrane development,” Desalination, vol. 117, no. 1-3, pp. 297-309, Sep 20, 1998.
[7] Baker, R. W., Membrane Technology and Applications, 2nd Edition ed.: John Wiley & Sons, Ltd, 2004.
[8] 童國倫, 呂坤宗, 李雨霖 et al., “奈米過濾的發展及其應用,” 化工, vol. 51, no. 3, pp. 26-36, 2004.
[9] Fu, S., Yu, Y. X., Gao, G. H. et al., “Theoretical Investigation on the Separation Characteristics of Electrolyte Solutions with the Nanofiltration Membranes (Ⅰ):Single Electrolyte Solutions,” ACTA CHIMICA SINICA, vol. 64, no. 22, pp. 2241-2246, 2006.
[10] Fu, S., Yu, Y. X., and Wang, X. L., “Theoretical Investigation on the Separation Characteristics of Electrolyte Solutions with the Nanofiltration Membranes (Ⅱ): Mixed Electrolyte Solutions,” ACTA CHIMICA SINICA, vol. 65, no. 10, pp. 923-929, 2007.
[11] Bowen, W. R., and Welfoot, J. S., “Modelling the performance of membrane nanofiltration--critical assessment and model development,” Chemical Engineering Science, vol. 57, no. 7, pp. 1121-1137, 2002.
[12] Ahmad, A. L., Ooi, B. S., Mohammad, A. W. et al., “Composite nanofiltration polyamide membrane: A study on the diamine ratio and its performance evaluation,” Industrial & Engineering Chemistry Research, vol. 43, no. 25, pp. 8074-8082, Dec 8, 2004.
[13] Tang, B., Xu, T., and Wu, P., “Preparation of thin film composite membrane by interfacial polymerization method,” Progress In Chemistry, vol. 19, no. 9, pp. 1428-1435, 2007.
[14] Vandezande, P., Gevers, L. E. M., and Vankelecom, I. F. J., “Solvent resistant nanofiltration: separating on a molecular level,” Chemical Society Reviews, vol. 37, no. 2, pp. 365-405, 2008.
[15] Du, R. H., and Zhao, J. S., “Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane,” Journal of Membrane Science, vol. 239, no. 2, pp. 183-188, Aug 15, 2004.
[16] Du, R. H., and Zhao, J. S., “Positively charged composite nanofiltration membrane prepared by poly(N,N-dimethylaminoethyl methacrylate)/polysulfone,” Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2721-2728, Feb 15, 2004.
[17] Miao, J., Chen, G. H., and Gao, C. J., “A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS),” Desalination, vol. 181, no. 1-3, pp. 173-183, Sep 5, 2005.
[18] Luo, M., Yu, S. C., and Gao, C. J., “Research progress of the application of the nanofiltration to water treatment,” Industrial Water Treatment, vol. 28, no. 1, pp. 13-17, 2008.
[19] Cyna, B., Chagneau, G., Bablon, G. et al., “Two years of nanofiltration at the Mery-sur-Oise plant, France,” Desalination, vol. 147, no. 1-3, pp. 69-75, Sep 10, 2002.
[20] Mir, J., Morato, J., and Ribas, F., “Resistance to chlorine of freshwater bacterial strains,” Journal of Applied Microbiology, vol. 82, no. 1, pp. 7-18, Jan, 1997.
[21] Virto, R., Manas, P., Alvarez, I. et al., “Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate,” Applied and Environmental Microbiology, vol. 71, no. 9, pp. 5022-5028, Sep, 2005.
[22] Sawaya, K., Kaneko, N., Fukushi, K. et al., “Behaviors of physiologically active bacteria in water environment and chlorine disinfection,” Water Science and Technology, vol. 58, no. 7, pp. 1343-1348, 2008.
[23] Young, S. B., and Setlow, P., “Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide,” Journal of Applied Microbiology, vol. 95, no. 1, pp. 54-67, 2003.
[24] Lowell, J. R., Friesen, D. T., McCray, S. B. et al., “Model compounds as predictors of chlorine sensitivity of interfacial polymer reverse osmosis membranes,” Proceedings of the 1987 International Congress on Membranes and Membrane Processes, 1987.
[25] Glater, J., Hong, S. K., and Elimelech, M., “The Search for a Chlorine-Resistant Reverse-Osmosis Membrane,” Desalination, vol. 95, no. 3, pp. 325-345, Jul, 1994.
[26] Takeyuki Kawaguchi, and Hiroki Tamura, “Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides,” Journal of Applied Polymer Science, vol. 29, no. 11, pp. 3359-3367, 1984.
[27] Armesto, X. L., Canle, M., Garcia, M. V. et al., “Aqueous chemistry of N-halo-compounds,” Chemical Society Reviews, vol. 27, no. 6, pp. 453-460, Nov, 1998.
[28] Dam, N., and Ogilby, P. R., “On the mechanism of polyamide degradation in chlorinated water,” Helvetica Chimica Acta, vol. 84, no. 9, pp. 2540-2549, 2001.
[29] Soice, N. P., Maladono, A. C., Takigawa, D. Y. et al., “Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes,” Journal of Applied Polymer Science, vol. 90, no. 5, pp. 1173-1184, Oct 31, 2003.
[30] Soice, N. P., Greenberg, A. R., Krantz, W. B. et al., “Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis,” Journal of Membrane Science, vol. 243, no. 1-2, pp. 345-355, Nov 1, 2004.
[31] Wu, S. Y., Zheng, C., and Zheng, G. D., “Truly chlorine-resistant polyamide reverse osmosis composite membrane,” Journal of Applied Polymer Science, vol. 61, no. 7, pp. 1147-1148, Aug 15, 1996.
[32] Il Kim, H., and Kim, S. S., “Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane,” Journal of Membrane Science, vol. 286, no. 1-2, pp. 193-201, Dec 15, 2006.
[33] Gabelich, C. J., Frankin, J. C., Gerringer, F. W. et al., “Enhanced oxidation of polyamide membranes using monochloramine and ferrous iron,” Journal of Membrane Science, vol. 258, no. 1-2, pp. 64-70, Aug 1, 2005.
[34] Tessaro, I. C., da Silva, J. B. A., and Wada, K., “Investigation of some aspects related to the degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning,” Desalination, vol. 181, no. 1-3, pp. 275-282, Sep 5, 2005.
[35] da Silva, M. K., Tessaro, I. C., and Wada, K., “Investigation of oxidative degradation of polyamide reverse osmosis membranes by monochloramine solutions,” Journal of Membrane Science, vol. 282, no. 1-2, pp. 375-382, Oct 5, 2006.
[36] Kwon, Y. N., and Leckie, J. O., “Hypochlorite degradation of crosslinked polyamide membranes I. Changes in chemical/morphological properties,” Journal of Membrane Science, vol. 283, no. 1-2, pp. 21-26, Oct 20, 2006.
[37] Kwon, Y. N., and Leckie, J. O., “Hypochlorite degradation of crosslinked polyamide membranes - II. Changes in hydrogen bonding behavior and performance,” Journal of Membrane Science, vol. 282, no. 1-2, pp. 456-464, Oct 5, 2006.
[38] Kwon, Y. N., Tang, C. Y., and Leckie, J. O., “Change of membrane performance due to chlorination of crosslinked polyamide membranes,” Journal of Applied Polymer Science, vol. 102, no. 6, pp. 5895-5902, Dec 15, 2006.
[39] Liu, M. H., Wu, D. H., Yu, S. C. et al., “Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes,” Journal of Membrane Science, vol. 326, no. 1, pp. 205-214, Jan 5, 2009.
[40] Light, W. G., Chu, H. C., and Tran, C. N., “Reverse osmosis TFC magnum elements for chlorinated/dechlorinated feedwater processing,” Desalination, vol. 64, pp. 411-421 1987.
[41] Abdel-Jawad, M., Ebrahim, S., Al-Tabtabaei, M. et al., “Advanced technologies for municipal wastewater purification: technical and economic assessment,” Desalination, vol. 124, no. 1-3, pp. 251-261, Nov 1, 1999.
[42] Konagaya, S., Kuzumoto, H., and Watanabe, O., “New reverse osmosis membrane materials with higher resistance to chlorine,” Journal of Applied Polymer Science, vol. 75, no. 11, pp. 1357-1364, Mar 14, 2000.
[43] Konagaya, S., and Tokai, M., “Synthesis of ternary copolyamides from aromatic diamine (m-phenylenediamine, diaminodiphenylsulfone), aromatic diamine with carboxyl or sulfonic group (3,5-diaminobenzoic acid, 2,4-diaminobenzenesulfonic acid), and iso- or terephthaloyl chloride,” Journal of Applied Polymer Science, vol. 76, no. 6, pp. 913-920, May 9, 2000.
[44] Konagaya, S., and Watanabe, O., “Influence of chemical structure of isophthaloyl dichloride and aliphatic, cycloaliphatic, and aromatic diamine compound polyamides on their chlorine resistance,” Journal of Applied Polymer Science, vol. 76, no. 2, pp. 201-207, Apr 11, 2000.
[45] Konagaya, S., Nita, K., Matsui, Y. et al., “New chlorine-resistant polyamide reverse osmosis membrane with hollow fiber configuration,” Journal of Applied Polymer Science, vol. 79, no. 3, pp. 517-527, Jan 18, 2001.
[46] Shintani, T., Matsuyama, H., and Kurata, N., “Development of a chlorine-resistant polyamide reverse osmosis membrane,” Desalination, vol. 207, no. 1-3, pp. 340-348, Mar 10, 2007.
[47] Shintani, T., Matsuyama, H., Kurata, N. et al., “Development of a chlorine-resistant polyamide nanofiltration membrane and its field-test results,” Journal of Applied Polymer Science, vol. 106, no. 6, pp. 4174-4179, Dec 15, 2007.
[48] McGrath, J. E., Park, H. B., and Freeman, B. D., Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers, United States Patent US 20070163951A1, 2007.
[49] Park, H. B., Freeman, B. D., Zhang, Z. B. et al., “Highly chlorine-tolerant polymers for desalination,” Angewandte Chemie-International Edition, vol. 47, no. 32, pp. 6019-6024, 2008.
[50] Paul, M., Park, H. B., Freeman, B. D. et al., “Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes,” Polymer, vol. 49, no. 9, pp. 2243-2252, Apr 29, 2008.
[51] Blotny, G., “Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis,” Tetrahedron, vol. 62, no. 41, pp. 9507-9522, Oct 9, 2006.
[52] Yan, Z., Xue, W. L., Zeng, Z. X. et al., “Kinetics of cyanuric chloride hydrolysis in aqueous solution,” Industrial & Engineering Chemistry Research, vol. 47, no. 15, pp. 5318-5322, Aug 6, 2008.
[53] 馬會民, 蘇美紅, and 梁樹權, “ 三嗪類光學探針與標記分析 ” Chinese Journal of Analytical Chemistry, vol. 31, no. 10, pp. 1256-1260, 2003.
[54] Desai, N. P., and Hubbell, J. A., “Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces,” Journal of Biomedical Materials Research, vol. 25, no. 7, pp. 829 - 843, 1991.
[55] Attafuah, E., and Hall, G. M., “Preparation and evaluation of a low fouling ultrafiltration membrane made from a biopolymer,” Journal of Membrane Science, vol. 108, no. 3, pp. 207-217, Dec 29, 1995.
[56] Bendas, G., Krause, A., Bakowsky, U. et al., “Targetability of novel immunoliposomes prepared by a new antibody conjugation technique,” International Journal of Pharmaceutics, vol. 181, no. 1, pp. 79-93, Apr 20, 1999.
[57] Borah, J., Mahapatra, S. S., Saikia, D. et al., “Physical, thermal, dielectric and chemical properties of a hyperbranched polyether and its linear analog,” Polymer Degradation and Stability, vol. 91, no. 12, pp. 2911-2916, Dec, 2006.
[58] Li, C., Yang, X. G., Yang, B. J. et al., “Synthesis and characterization of nitrogen-rich graphitic carbon nitride,” Materials Chemistry and Physics, vol. 103, no. 2-3, pp. 427-432, Jun 15, 2007.
[59] Ohe, T., Yoshimura, Y., and Abe, I., “Reaction of nylon 6 fiber with chitosan using cyanuric chloride,” Sen-I Gakkaishi, vol. 63, no. 7, pp. 165-171, Jul, 2007.
[60] Ohe, T., Yoshimura, Y., Abe, I. et al., “Chemical introduction of sugars onto PET fabrics using diamine and cyanuric chloride,” Textile Research Journal, vol. 77, no. 3, pp. 131-137, Mar, 2007.
[61] Kim, I. C., Yun, H. G., and Lee, K. H., “Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process,” Journal of Membrane Science, vol. 199, no. 1-2, pp. 75-84, Apr 30, 2002.
[62] Lohokare, H. R., Kumbharkar, S. C., Bhole, Y. S. et al., “Surface modification of polyacrylonitrile based ultrafiltration membrane,” Journal of Applied Polymer Science, vol. 101, no. 6, pp. 4378-4385, Sep 15, 2006.
[63] 許倚哲, “負電性奈米過濾膜之排鹽特性,” 化學工程與材料工程學系, 國立中央大學, 2007.
[64] Afonso, M. D., Hagmeyer, G., and Gimbel, R., “Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions,” Separation and Purification Technology, vol. 22-3, no. 1-3, pp. 529-541, Mar 1, 2001.
[65] Tanninen, J., Manttari, M., and Nystrom, M., “Effect of electrolyte strength on acid separation with NF membranes,” Journal of Membrane Science, vol. 294, no. 1-2, pp. 207-212, May 15, 2007.
[66] Credali, L., Baruzzi, G., and Guidotti, M., Reverse osmosis anisotropic membranes based on polypiperazine amides, United States Patent US4129559, 1987.
[67] Kim, T. U., Drewes, J. E., Summers, R. S. et al., “Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes,” Water Research, vol. 41, no. 17, pp. 3977-3988, Sep, 2007.
[68] Park, N., Lee, S., Yoon, S. R. et al., “Foulants analyses for NF membranes with different feed waters: coagulation/sedimentation and sand filtration treated waters,” Desalination, vol. 202, no. 1-3, pp. 231-238, Jan 5, 2007.
[69] Jayarani, M. M., and Kulkarni, S. S., “Thin-film composite poly(esteramide)-based membranes,” Desalination, vol. 130, no. 1, pp. 17-30, Sep 1, 2000.
[70] 楊智堯, “以三聚氰氯為單體的抗氯型奈米過濾膜,” 化學工程與材料工程學系, 國立中央大學, 2008.
[71] Chang, Y., Shih, Y. J., Ruaan, R. C. et al., “Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility,” Journal of Membrane Science, vol. 309, no. 1-2, pp. 165-174, Feb 15, 2008.
[72] Tu, C. Y., Liu, Y. L., Lee, K. R. et al., “Surface grafting polymerization and modification on poly (tetrafluoroethylene) films by means of ozone treatment,” Polymer, vol. 46, no. 18, pp. 6976-6985, Aug 23, 2005.
|