![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:24 、訪客IP:52.15.225.105
姓名 郭明崇(Ming-Chiung Kuo) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 Cu/Sn/Ag晶圓鍵合技術及其 在氮化鎵薄膜轉移後應力研究
(Wafer bonding of Cu/Sn/Ag and the stress relief of GaN film )相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 摘要
近年來為了追求固態照明用之高功率發光二極體,將散熱性差的sapphire基板移除是一個重要發展的方向。而過去5-10年發展出的thin-GaN LED結構即是用以解決這個難題所製作而成的高功率發光二極體。在thin-GaN LED製程當中,把氮化鎵薄膜從sapphire轉移到有較好熱傳導性和導電性的矽基板上,必須使用wafer bonding的技術。而先前研究指出,在磊晶過程中,會因為sapphire和矽基板的熱膨脹係數(Coefficient of Thermal Expansion)不同而產生熱應力殘留在GaN磊晶層內[1][2],由於熱應力會導致GaN epi-layer內部量子效率降低[3],近而影響LED的發光效率。因此本研究將利用Cu/Sn/Ag晶圓鍵合製作Thin-GaN LED,並用此一技術將GaN磊晶層的應力降低。本實驗藉由Cu/Sn/Ag材料於低溫150 ℃成功的進行晶圓鍵結,並於GaN薄膜轉移後,比較不同鍵結金屬系統、溫度、時間的應力釋放量。最後探討經由晶圓鍵結程序後,可降低MQW因晶格不匹配所造成的極化效應,並由文獻[14]指出降低極化場效應對LED的light-output power、External quantum efficiency、發光波長的改善。
摘要(英) Abstract
To pursuit higher output power of LED for general lighting applications, the poor thermal and electrical conduction of the sapphire substrate is a hurdle to be solved. For the last few years, peoples believe that Thin-GaN LED is the one having a great potential to be the solution of high-power LED applications. To fabricate Thin-GaN LED, wafer bonding is often used to transfer the GaN epilayer onto the thermal conductive substrate, i.e., Si wafer in this work. Previous researches indicate that a high thermal stress would be resulted from the difference of the coefficient of thermal expansions between sapphire substrate and the transferring Si substrate. The thermal stress would cause serious cracking on the GaN epi-layer. Therefore, a low- temperature wafer bonding is the key step for a successful process of Thin-GaN LED. In this work, a low-temperature wafer bonding process using Cu-Sn-Ag solid diffusion bonding is successfully developed. The primary results show that an uniform bonding interface can be achieved at 150 ℃. Using Cu-Sn-Ag solid diffusion wafer bonding, GaN MOCVD epi-layer was transferred on the Si wafer, then, thin-GaN LED was processed. Then, the stress relief of thin-GaN LEDs was measured and compared with different bonding temperatures, systems, and process ambient.
關鍵字(中) ★ 薄膜應力
★ 晶圓鍵合關鍵字(英) ★ compressive stress relief
★ wafer bonding論文目次 第一章 緒論 ......... 1
第二章 文獻回顧 ................ 3
2-1 High-Power Light Emitting Diode ............... 3
2-2 晶圓鍵合(Wafer bonding) ......... 7
2-3 拉曼散射(Raman scattering) .......... 8
2-4 雷射剝離 .............. 11
第三章 實驗方法與步驟 .... 14
3-1 實驗材料 ..........14
3-2 實驗步驟 ...............14
3-3 鍵結金屬層的蒸鍍和選擇 ...........16
3-4 晶圓鍵結程序 ............17
3-5 銅錫銀界面原子濃度分佈的量測 .........21
3-6 Cu/Sn/Ag 鍵結系統運用於GaN薄膜轉移上 ......23
3-7 N-GaN薄膜應力的量測 ...........25
第四章 結果與討論 ........... 27
4-1 金屬化合物的生成 ............27
4-2 不同鍵結金屬對應力釋放的影響 .........29
4-3 GaN薄膜應力改變機制 .........32
4-4 鍵結錫層對GaN薄膜應力釋放的影響...........37
4-5 應力改變對 MQW 的影響 .......41
4-6 晶圓鍵結降低極化效應 ............48
第五章 結論 ....... 52
參考文獻 ............. 54
參考文獻 參考文獻
[1] T. Kozawa, T. Kachi, H. Kano, N. Koide and K. Manabe, “Thermal stress in GaN epitaxial layers grown on sapphire substrates”, J. Appl. Phys. 77, 4389 (1995).
[2] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong and Hui. Yang, “Stress and its effect on optical properties of GaN epi-layers grown on Si(111), 6H-SiC(0001), and c-plane sapphire”, Appl. Phys. Lett. 83, p. 677, (2003).
[3] E. Fred Schubert, “Light-emitting diodes”, Cambridge University Press, 2006, New York.
[4] D.N. Talwar, D. Sofranko, C. Mooney, S. Tallo, “Elastic, structural, bonding, and defect properties of zinc-blende BN, AlN, GaN, InN and their alloys”, Materials Science and Engineering B 90 (2002) 269–277
[5] W. B. Yu, J. Wei, C. M. Tan and G. Y. Huang, “Mathematical model of low-temperature wafer bonding under medium vacuum and its application”, IEEE Transactions on Advanced Packaging 28 (4) p. 650-658, 2005.
[6] J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J. –M. Wagner and F. Bechstedt, “Raman spectra of isotopic GaN”, Physical Review B, 56 (22), p. 14399-14406, 1997.
[7] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, “Thermal stress in GaN epitaxial layers grown on sapphire substrates”Appl. Phys. Lett. 77, 4389 (1995).
[8] J. Xu, R. Zhang, Y. O. Wang, X. Q. Xiu, B. Shen, S. L. Gu, Y. Shi, Z. G. Liu and Y. D. Zheng, “Preparation of large area freestanding GaN by laser lift-off technology”, Mater Lett, 56 p. 43, (2002).
[9] X. C. Wang, G. C. Lim, W. Liu, C. B. Soh and S. J. Chua, “Effects of 248 nm excimer laser irradiation on the properties of Mg-doped GaN”, Appl Surf Sci, 252 p. 2071, (2005).
[10] H-J. Albrecht, A. Juritza, K. Muller, W.H. Mullerz, J. Sterthauz, J. Villain, and A. Vogliano, “Interface Reactions in Microelectronic Solder Joints and Associated Intermetallic Compounds: An Investigation of their Mechanical Properties using Nanoindentation ”, 2003 Electronics Packaging Technology Conference, Page(s): 726-731
[11] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phys., Vol. 85, No. 6, 15 March 1999
[12] J. L. SaÂnchez-Rojas, J. A. Garrido, and E. MunÄoz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices” Physical Review B, Vol. 61, No. 4, 2773-2778, (2000)
[13] 賴志遠 Ⅲ族半導體的極化電場效應 國立中央大學物理學系博士論文 中華民國92年7月
[14] Jiuru Xu, Martin F. Schubert, Ahmed N. Noemaun, Di Zhu, Jong Kyu Kim, E. Fred Schubert, Min Ho Kim, Hun Jae Chung, Sukho Yoon, Cheolsoo Sone, and Yongjo Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes” Appl. Phys. Lett. 94, 011113, (2009)
指導教授 劉正毓(Cheng-yi Liu) 審核日期 2009-6-18 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare