博碩士論文 963204014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.221.68.196
姓名 蕭秋男(Ciou-Nan Siao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
(In situ Measurement of Stress Evolution in Tin Strip under Electromigration by Synchrotron X-ray Diffraction)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 鋁鍺薄膜封裝研究
★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長
★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究
★ 無鉛銲料與碲化鉍基材之界面反應研究★ 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用同步輻射X光說明錫導線在電遷移效應下的臨場應力分佈,藉由高強度的X光可準確地測量微小的應力變化。可直接地測量電遷移效應所造成的背向應力,也可估算不同電流密度下的有效擴散係數。觀察焦耳熱效應且計算焦耳熱所造成的溫度增加量。考慮表面上的堅硬氧化層對應力分佈及變化的嚴重影響。觀察電遷移效應後的試片表面微結構變化。
在100°C、電流密度為1×103 A/cm2下,電遷移效應所造成的應力梯度約為5.5 MPa/cm;電流密度為5×103 A/cm2下,電遷移效應所造成的應力梯度約為16.5 MPa/cm。在5×103 A/cm2下,焦耳熱效應所造成的溫度增高約15°C。在100°C、電流密度為1×103 A/cm2和5×103 A/cm2下,估算錫的有效擴散係數分別為7.16×10-14 m2/s和6.01×10-14 m2/s。在長期的電遷移下,陰極端有孔洞生成,陽極端有凸塊產生。
摘要(英) This investigation elucidates stress evolution in situ in tin strips under electromigration using synchrotron radiation X-ray. Minute variations in stress are measured precisely using intense X-rays. Back stress that is induced by electromigration was directly measured. The effective diffusivities at various current densities were calculated. The effect of Joule heating was observed and the increase in temperature was calculated. The protective oxide layer on the surfaces is considered to influence critically the kinetics of stress evolution. The morphology of tin strips after electromigration was observed.
Electromigration induced stress gradients are about 5.5 MPa/cm with current density of 1×103 A/cm2 and 16.5 MPa/cm with current density of 5×103 A/cm2 at 100°C. The evaluate increases in temperature by Joule heating is approximately 15°C. The diffusivity of Sn with current density of 1×103 and 5×103 A/cm2 at 100°C has been calculated to be 6.01×10-14 and 6.01×10-14 m2/s. Voids form at the cathode and hillocks form at the anode in the prolonged test of electroigration.
關鍵字(中) ★ 電遷移
★ 應力
★ 同步輻射
關鍵字(英) ★ electromigration
★ synchrotron
★ stress
論文目次 摘要................................................................................................................................I
Abstract ........................................................................................................................ II
目錄.............................................................................................................................. III
圖目錄........................................................................................................................... V
表目錄........................................................................................................................ VII
第一章 序論 ................................................................................................................. 1
1.1 研究背景..................................................................................................... 1
1.2 研究動機..................................................................................................... 3
第二章 文獻回顧 ......................................................................................................... 5
2.1 電遷移理論................................................................................................. 5
2.1.1 電遷移的驅動力 ............................................................................... 5
2.1.2 電遷移的臨界電流和臨界長度 ....................................................... 7
2.1.3 電遷移的背向應力 ........................................................................... 9
2.2 電遷移導線應力的量測........................................................................... 12
2.2.1 鋁導線的應力量測 ......................................................................... 12
2.2.2 鋁(銅)導線的應力量測................................................................... 13
2.3 同步輻射簡介........................................................................................... 15
第三章 實驗方法 ....................................................................................................... 16
3.1 試片製作................................................................................................... 16
3.1.1 絕熱層的生長 ................................................................................. 16
3.1.2 微影蝕刻 ......................................................................................... 16
3.1.3 薄膜鍍製 ......................................................................................... 17
3.1.4 電鍍錫 ............................................................................................. 17
3.2 試片處理................................................................................................... 19
3.2.1 退火(Annealing) .............................................................................. 19
3.2.2 拋光 ................................................................................................. 19
3.3 電遷移實驗............................................................................................... 20
3.4 試片分析................................................................................................... 21
3.4.1 光學顯微鏡 ..................................................................................... 21
3.4.2 電子顯微鏡 ..................................................................................... 21
3.4.3 電子背向散射繞射 ......................................................................... 22
3.4.4 八環X光繞射儀 ............................................................................ 22
第四章 結果與討論 ................................................................................................... 23
4.1 電鍍錫的優選方向................................................................................... 23
4.2 初期的電遷移效應................................................................................... 25
4.2.1 微結構的變化 ................................................................................. 25
4.2.2 應力的分析與測量 ......................................................................... 27
4.2.3 焦耳熱效應 ..................................................................................... 32
4.2.4 擴散係數 ......................................................................................... 33
4.3 長時間的電遷移效應............................................................................... 38
4.3.1 微結構的變化 ................................................................................. 38
4.4 正逆方向通電的電遷移效應................................................................... 42
第五章 結論 ............................................................................................................... 46
參考文獻...................................................................................................................... 47
參考文獻 1. Cover of the July 1995 issue of IBM J. Res. Dev.
2. H. B. Huntington and A. R. Grone, J. Phys. Chem. Solid 20, 76 (1961).
3. J. R. Black, IEEE Trans Electron Device, ED-16, 348 (1969).
4. J. R. Black, Proc. IEEE, 57, 1587 (1969).
5. J. A. Blech and E. S. Meieran, J. Appl. Phys., 40, 485 (1969).
6. K. L. Lee, C. K. Hu and K. N. Tu, J. Appl. Phys., 78, 4428 (1995).
7. J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, J. Appl. Phys., 94, 7560 (2003).
8. W. J. Choi, E. C. C. Yeh and K. N. Tu, J. Appl. Phys., 94, 5665 (2003).
9. K. N. Tu, J. Appl. Phys., 94, 5451 (2003).
10. P. C. Wang, G. S. Cargill III, I. C. Noyan and C. K. Hu, Appl. Phys. Lett., 72,
1296 (1998).
11. P. C. Wang, I. C. Noyan, S. K. Kaldor, J. L. Jordan-Sweet, E. G. Liniger and C.
K.Hu, Appl. Phys. Lett., 76, 3726 (2000).
12. H. K. Kao, G. S. Cargill III and C. K. Hu. J. Appl. Phys., 89, 2588 (2003).
13. H. K. Kao, G. S. Cargill III, F. Giuliani, and C. K. Hu. J. Appl. Phys., 93, 2516
(2003).
14. A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, Appl.
Phys. Lett., 85, 2490 (2004).
15. A. T. Wu, A. M. Gusak, and K.N. Tu, and C. R. Kao, Appl. Phys. Lett., 86,
241902 (2005).
16. A. T. Wu and Y. C. Hsieh, Appl. Phys. Lett., 92, 121921 (2008)
17. V. B. Fiks, Sov. Phys., Solid state, 1, 14 (1959).
18. K. N. Tu, J. W. Mayer and L. C. Feldman, Pearson Education POD, 355 (1996).
19. C. Bosvieux and J. Friedel, J. Phys. Chem. Solid, 23, 123 (1962).
20. R. S. Sorbrllo, Phys. Rev. B, 31, 798 (1985).
21. R. Landauer and J. W. F. Woo, Phys. Rev. B, 10, 1266 (1974).
22. I. A. Blech, J. Appl. Phys., 47, 1203 (1976).
23. I. A. Blech and C. Herring, Appl. Phys. Lett., 29, 131 (1976)
24. C. Herring, J. Appl. Phys., 21, 437 (1950).
25. M. A. Korhonen, P. Borgesen, K. N. Tu and C. Y. Li, J. Appl. Phys., 73, 3790
(1993).
26. J. J. Clement and C. V. Thompson, J. Appl. Phys., 78, 900 (1995).
27. D. D. Brown, J. E. Sanchez, Jr., M. A. Korhonen and C. Y. Li, Appl. Phys. Lett.
67, 439 (1995).
28. R. Kirchheim, Acta Metall. Mater., 40, 309 (1992).
29. National Synchrotron Radiation Research Center” Synchrotron Light Source”.
30. N. Tamura, R.S. Celestre, A. A. MacDowell, H. A. Padmore, R. Spolenak, B. C.
Valek, N. Meier Chang, A. Manceau and J. R. Patel, Rev. Sci. Instrum., 73, 1369 (2002).
31. M. A. Korhonen, R. D. Black and C. Y. Li, J. Appl. Phys., 69, 1748 (1991).
32. Electronic thin film science for electrical engineers and materials scientists, K. N. Tu, J. W. Mayer, and L. C. Feldman, 1992 Macmillan Publishing Co.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明