博碩士論文 963204015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.14.144.189
姓名 林永隆(Ying-Lung Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討不同Ag/TiO2之製備方法在亞甲基藍光催化分解的影響
(Study on the Effects of Different Ag/TiO2 Synthesis Processes on Methylene Blue Degradation)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的為發展高光催化活性之光觸媒,並應用於有機污染物之分解。以貴金屬改質二氧化鈦光觸媒已被廣泛地研究,然而,如價格昂貴之鉑、鈀、金和銠等貴金屬其成本太高,而難以被一般工業所接受。本實驗主題為改用成本較低之銀金屬來改質二氧化鈦,以期增加二氧化鈦表面活性位置,進而提高光催化效率。製備銀改質二氧化鈦的方法有三,分別為溶膠凝膠法,化學沉積法與光沉積法。
在溶膠凝膠法中,所製備的二氧化鈦溶膠與銀改質二氧化鈦溶膠可以維持中性懸浮,其前驅物為四氯化鈦、氨水、過氧化氫水溶液與硝酸銀。其樣品結構鑑定方面,主要是以X光繞射儀(XRD),穿透式電子顯微鏡(TEM),高解析度穿透式電子顯微鏡(HR–TEM)與X光電子能譜儀(XPS)進行材料鑑定與元素分析。其奈米銀粒子大小約為 2 nm。以浸漬塗佈法所製備的二氧化鈦溶膠與銀改質二氧化鈦溶膠可塗佈於各種玻璃基材表面,其薄膜結構之鑑定是以掃描式電子顯微鏡(SEM)與原子力探針顯微鏡(AFM)進行膜厚與表面性質之分析。最後以 10 ppm 亞甲基藍水溶液為光反應標準物,利用紫外可見光光譜儀(UV–vis)分析濃度,進行光反應活性之鑑定。其結果顯示,銀改質二氧化鈦溶膠之優於二氧化鈦溶膠。本實驗所製備之溶膠具有附著性極高,不易剝落之優點,加入銀改質後,除了對亞甲基藍有更高的光催化降解活性,也具備有自潔與殺菌之效果。
在化學沉積法中,所製備之銀改質二氧化鈦其前驅物為 P–25二氧化鈦、十六烷基三甲基溴化銨、硼氫化鈉、硝酸銀,銀擔載量係利用感應偶合電漿質譜分析儀(ICP)進行測定,結果顯示,幾乎所有的銀前驅物都能夠擔載在二氧化鈦表面而不流失。其奈米銀顆粒大小約為 5–10 nm,以 10 ppm 亞甲基藍水溶液為光反應標準物,利用紫外可見光光譜儀(UV–vis)分析濃度,進行光反應活性之鑑定。其結果顯示,銀改質二氧化鈦之光催化活性優於二氧化鈦,而由於遮蔽效應,過多的銀顆粒會阻擋進入二氧化鈦表面的光子而降低光反應的量子效率,造成其光催化活性並不與銀擔載量成正比。
在光沉積法中,所製備之銀改質二氧化鈦其前驅物為 P–25二氧化鈦及硝酸銀,紫外光照射時間為 15分鐘。銀擔載量係利用感應偶合電漿質譜分析儀(ICP)進行測定,其結果顯示將會有約 70%–85% 之銀前驅物在製備過程中流失。其奈米銀顆粒大小約為 1.5–2.5 nm,以 10 ppm 亞甲基藍水溶液為光反應標準物,利用紫外可見光光譜儀(UV–vis)分析濃度,進行光反應活性之鑑定。其結果顯示,銀改質二氧化鈦之光催化活性優於二氧化鈦,且也優於化學沉積法所製備之銀改質二氧化鈦。
本研究結果顯示以光沉積法所製備之銀改質二氧化鈦之活性最佳,其原因為光沉積法所製備之銀顆粒較小且分散性佳,在不增加電子電洞再結合中心的前提下,有效地捕捉光子所激發之電子,大大地增加了二氧化鈦表面活性位置,而提高了反應活性。電子與所吸附的氧分子與水分子反應分解成氧離子與氫氧自由基,這些高活性物質會與亞甲基藍分子反應而分解成小分子如二氧化碳與水分子。從實驗結果得知,銀擔載量的多寡並不是影響活性的主要因素,而是與奈米銀顆粒的分散性及顆粒大小、附著方式有關。
摘要(英) The objective of this research was to develop a photocatalyst which is active in photoreaction to destruct organic compounds in waste gas and waste water. Noble metal deposited on titanium dioxide has been widely studied as a modified photocatalyst in organic pollutants destruction under UV light irradiation. However, noble metals such as Pt, Pd, Rh, and Au are too expensive to be used in industrial application. In order to find an efficient way to improve the quantum efficiency of photocatalyst, we increase the numbers of active sites by silver deposition. The materials we studied were silver modified titanium dioxide synthesis by sol–gel method, chemical deposition, and photodeposition.
In sol–gel process, neutral suspension silver titanium dioxide sol was successfully prepared using titanium tetrachloride, ammonia, hydrogen peroxide, and silver nitrate. The nanoparticles in the sol were characterized by X–ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR–TEM) and X–ray photoelectron spectroscopy (XPS). Titanium dioxide has anatase–type structure in rhombus shape and the size of silver was about 2 nm. The sol of titanium dioxide and silver titanium dioxide are easy coating on the surface of glass substance by dip–coating method, and properties of the films were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and contact angle analysis. The thickness of the films was 700 to 1200 nm depending on the coating times and the films showed super–hydrophilic property under UV light scattering. Both the sols and the films of titanium dioxide and silver titanium dioxide were completely destruct methylene blue under UV light irradiation, and the concentration of methylene blue was measured by UV–vis spectroscopy (UV–vis). The results showed that the photoefficiency of silver titanium dioxide is higher than titanium dioxide.
In chemical deposition process, silver titanium dioxide was prepared using P–25 titanium dioxide, silver nitrate, cetyltrimethyl ammonium bromide, and sodium borohydride as materials. Inductively–coupled plasma–mass spectrometry (ICP–MS) were used to determined the contents of silver in the silver titanium dioxide. The particle size of silver on TiO2 was about 5–10 nm. The results of MB degradation under UV light irradiation showed that Ag/TiO2 had a higher activity than TiO2.
In photodeposition process, silver titanium dioxide was prepared using P–25 titanium dioxide, and silver nitrate as materials, and UV light scattering time was 15 minutes at room temperature. Inductively–coupled plasma–mass spectrometry (ICP–MS) was used to determined the contents of silver in the silver titanium dioxide. The particle size of silver on TiO2 was about 1.5–2.5 nm. The results of MB degradation under UV light irradiation showed that Ag/TiO2 had a higher activity than TiO2.
Silver titanium dioxide synthesized by photodeposition showed the best photoactivity in this study due to the smaller silver particles attached on titanium dioxide surface with high dispersion. Silver nanoparticles could successfully deposit on TiO2 surface and play important roles as electron traps. Without being recombination centers of electrons and holes, silver nanoparticles increase the actives sites and make electrons easily act with the adsorbed substances such as O2 and OH– and form O2– and OH radical. The reactive species could degrade the MB efficiently into small molecules like CO2, H2O, and etc. However, silver amounts is proposed not to be the determined factor in the synthesis, but the dispersion, particle size and attachment style of Ag.
關鍵字(中) ★ 奈米銀
★ 光沉積法
★ 光觸媒
★ 亞甲基藍降解
★ 二氧化鈦
★ 銀改質二氧化鈦
★ 光觸媒薄膜
★ 溶膠凝膠法
★ 化學沉積法
關鍵字(英) ★ methylene blue degradation
★ photocatalysis
★ silver cocatalyst
★ silver nanoparticle.
★ photodeposition
★ chemical deposition
★ sol-gel method
★ thin film
★ silver titanium dioxiode
★ titanium dioxiode
論文目次 摘要 I
Abstract III
Table of Contents V
List of Tables X
List of Figures XI
Chapter 1 Titanium Dioxide Photocatalyst 1
1.1 Introduction 1
1.2 Titanium dioxide properties 2
1.2.1 Properties of semiconductor 3
1.2.2 Characterization of TiO2 structures 8
1.3 Titanium dioxide nanomaterial preparation by liquid phase synthesis 13
1.3.1 Sol–gel method 13
1.3.2 Co–precipitation method 15
1.3.3 Hydrothermal method 15
1.4 Modified titanium dioxide 16
1.4.1 Noble metal doping 17
1.4.2 Transition metal doping 20
1.4.3 Anion doping 21
1.4.4 Composite TiO2 22
1.4.5. Core–shell structure synthesis 22
1.5 Application of photocatalyst 24
1.5.1 Hydrophilic, anti–fogging and self–cleaning surface 28
1.5.2 VOC degradation 31
1.5.3 Water purification 32
1.5.4 Cancer treatment 33
1.6 Photoactivity test by methylene blue destruction 34
Reference 40
Chapter 2 Photocatalytic Destruction of Methylene Blue by Titanium Dioxide Sol and Silver Titanium Dioxide Sol Coated on Glass Substance 46
Abstract 46
2.1 Introduction 47
2.2 Experimental 51
2.2.1 Materials and apparatuses 51
2.2.1.1 Material 51
2.2.1.2 Apparatus 51
2.2.2 Synthesis of TiO2 sol 52
2.2.3 Synthesis of Ag/TiO2 sol 54
2.2.4 Dip–coating method 57
2.2.5 Characterization 57
2.2.5.1 XRD 58
2.2.5.2 TEM and HRTEM 58
2.2.5.3 XPS 59
2.2.5.4 SEM 59
2.2.5.5 AFM 59
2.2.5.6 Contact angle analysis 60
2.2.5.7 UV–vis 60
2.2.6 Degradation of methylene blue 61
2.2.6.1 Apparatus of liquid phase reaction 61
2.2.6.2 Apparatus of thin film reaction 63
2.2.6.3 Concentration calculation 65
2.3 Results and discussion 67
2.3.1 Characterization techniques 67
2.3.1.1 XRD patterns 67
2.3.1.2 SEM images 72
2.3.1.3 TEM/HRTEM and EDS analysis 76
2.3.1.4 XPS results 84
2.3.1.5 Contact angle 88
2.3.1.6 AFM analysis 89
2.3.2 Synthesis factors and photocatalytic activity 91
2.3.2.1 Effect of pH value of Ti(OH)4 gel 91
2.3.2.2 Effects of heating temperature and time in crystallization 93
2.3.2.3 Effect of H2O2/TiO2 ratio 95
2.3.2.4 Effects of Ag cocatalyst 96
2.4 Conclusion 102
Reference 104
Chapter 3 Synthesis of Silver Titanium Dioxide by Chemical Deposition 107
Abstract 107
3.1 Introduction 108
3.2 Experimental 111
3.2.1 Materials and apparatuses 111
3.2.1.1 Material 111
3.2.1.2 Apparatus 111
3.2.2 Synthesis of Ag/TiO2 power 112
3.2.3 Characterization 114
3.2.3.1 ICP–MS 114
3.2.3.2 XRD 114
3.2.3.3 TEM and HRTEM 115
3.2.3.4 XPS 115
3.2.3.5 UV–vis 116
3.2.4 Degradation of methylene blue 116
3.3 Results and discussion 117
3.3.1 ICP–mass results 117
3.3.2 XRD results 119
3.3.3 TEM/HR–TEM results and EDS analysis 121
3.3.4 XPS results 126
3.3.5 Photoactivity test 137
3.4 Conclusion 138
Reference 139
Chapter 4 Synthesis of Silver Titanium Dioxide by Photodeposition Method 142
Abstract 142
4.1 Introduction 143
4.2 Experimental 147
4.2.1 Materials and apparatus 147
4.2.1.1 Material 147
4.2.1.2 Apparatus 147
4.2.2 Synthesis of Ag/TiO2 power 147
4.2.3 Characterization 150
4.2.4 Characterization 150
4.2.4.1 ICP–MS 150
4.2.4.2 XRD 151
4.2.4.3 TEM and HRTEM 151
4.2.4.4 XPS 151
4.2.4.5 UV–vis 152
4.2.5 Degradation of methylene blue 152
4.3 Results and discussion 154
4.3.1 ICP–mass results 154
4.3.2 XRD results 155
4.3.3 HR–TEM and EDS analysis 157
4.3.4 XPS results 160
4.3.5 Photoactivity test 171
4.4 Conclusion 172
Reference 173
Chapter 5 Conclusion 176
5.1 Photocatalysis mechanism of Ag/TiO2 176
5.2 Ag/TiO2 synthesis method 176
5.2.1 Sol–gel method 176
5.2.2 Chemical deposition method 177
5.2.3 Photodeposition method 178
5.3 Comparison of Ag/TiO2 photoreaction activity synthesized between chemical deposition process and photodeposition process 179
5.3.1 Ag particle size 179
5.3.2 Attachment style 180
5.3.3 The ratio of OH–/O2– in Ag/TiO2 180
參考文獻 Aruna, S.T.; Tirosh, S. and Zaban, A., Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers, J. Mater. Chem. (2000), 10, 2388–2391.
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., Silver–modified Titanium Dioxide Thin Films for Efficient Photodegradation of Methyl Orange”, Appl. Catal., B (2003), 42, 187–201.
Asahi, R. ; Morikawa, T.; Ohwaki, T.; Aoki, K. and Taga, Y., Visible–light photocatalysis in nitrogen–doped titanium oxides, Science 293 (2001), 269–271.
Balek, V.; Li, D.; Subrt, J.; Vecerníková, E.; Hishita, S.; Mitsuhashi, T. and Haneda, H., Characterization of nitrogen and fluorine co–doped titania photocatalyst: effect of temperature on microstructure and surface activity properties, J. Phys. Chem. Solids (2007), 68, 5–6, 770–774.
Beltran, A.; Gracia, L. and Andres, Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs, J., J. Phys. Chem. B (2006), 110, 23417_23423.
Chen, Q.; Tang, C. and Zheng, G., First–principles study of TiO2 anatase (101) surfaces doped with N, Physica B (2009), 404, 1074–1078.
Choi, W; Termin, A and Hoffmann, M. R., The role of metal ion dopants in quantum–sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. (1994), 98. 13669–13679.
Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner D.; Youngblood, J. and Mcarthy, T. J., Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples, Langmuir (1999), 15, 3395–3399.
Choi, W. Y.; Termin, A. and Hoffmann, M. R., Effects of Metal–Ion Dopants on the Photocatalytic Reactivity of Quantum–Sized TiO2 Particles, Angew. Chem., Int. Ed. (1994), 33, 1091–1092.
Dobosz, A. and Sobczyński, A., The Influence of Silver Additives on Titania Photoactivity in the Photooxidation of Phenol, Water Res. (2003), 37, 1489–1496.
Dvoranova, D.; Brezova, V.; Mazur, M. and Malati, M. A., Investigations of metal–doped titanium dioxide photocatalysts, Appl. Catal., B–Environ. (2002), 37, 91–105.
Epling, W. S.; Peden, C. H. F.; Henderson, M. A. and Diebold, U., Surf. Sci. (1998), 412–413, 333–343.
Fetterolf, M. L., Patel, H. V. and Jennings, J. M., Adsorption of Methylene Blue and Acid Blue 40 on Titania from Aqueous Solution, J. Chem. Eng. Data (2003), 48, 831–835.
Frank, S. N. and Bard, A. J., Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders, J. Phys. Chem. (1977), 81, 1484–1488.
Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature (1972), 238, 37–38.
Fujishima, A.; Hashimoto, K. and Watanabe, T., 1st edition, BKC, Tokyo, 1999.
Fujishima, A.; Hashimoto, K. and Watanabe, T., TiO2 Photocatalysis Fundamentals and Applications, BKC Inc., Japan, 1999.
Fujishima, A.; Zhang, X. and Tryk, D. A., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. (2008), 63, 515–582.
Fujishima, A.; Ohtsuki, J.; Yamashita, T. and Hayakawa, S., Behavior of tumor cells on photoexcited semiconductor surface, Photomed. Photobiol. (1986), 8, 45–46.
Giannakopoulou, T.; Todorova, N.; Trapalis, C. and Vaimakis, T., Effect of fluorine doping and SiO2 under–layer on the optical properties of TiO2 thin films, Mater. Lett. (2007), 61, 23–24, 4474–4477.
Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. and X. Chen, Highly efficient formation of visible light tunable TiO2–xNx photocatalysts and their transformation at the nanoscale, J. Phys. Chem. B (2004), 108, 4, 1230–1240.
Hashimoto, K.; Irie, H. and Fujishima A., TiO2 photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys. 2005, 44, 8269
Hazlett R. D., Mittal K.L. (Ed.), Wettability and Adhesion, VSP, Utrecht, 1993, 173.
Herrmann, J. M.; Tahiri, H.; Ait–Ichou, Y.; Lassaletta, G.; González–Elipe, A. R. and Fernández, A., Characterization and Photocatalytic Activity in Aqueous Medium of TiO2 and Ag/TiO2 Coating on Quartz, Appl. Catal., B–Environ. (1997), 13, 219–228.
Huang, D.; Liao, S.; Liu, J. M.; Dang, Z. and Petrik, L., Preparation of visible–light responsive N–F–codoped TiO2 photocatalyst by a sol–gel–solvothermal method, J. Photochem. Photobiol., A (2006), 184, 3, 282–288.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M., Photocatalytic Degradation Pathyway of Methylene Blue in Water, Appl. Catal., B–Environ. (2001), 31, 145–157.
Jia, H.; Xu, H.; Hu, Y., Tang Y. and Zhang, L., TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties, Electrochemistry Communications (2007), 9, 354–360.
Kang, M., Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol, J. Mol. Catal A: Chem. (2003), 97, 173–183.
Karvinen, S.; Hirva, P. and Pakkanen, T. A., Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2, J. Mol. Struct.–Theochem (2003), 626, 271–277.
Kim, C. S.; Moon, B. K.; Park, J. H. and Son, S. M., Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant, J. Cryst. Growth (2003), 254, 405–410.
Kim, S. B. and Hong, S. C., Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Appl. Catal., B–Environ. (2002), 35, 305–315.
Kolen’ko, Y. V.; Burukhin, A. A.; Churagulov, B. R. and Oleynikov, N. N., Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions, Mater. Lett. (2003), 57, 1124–1129.
Kreutler, B. and Bard, J. A., Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates, J. Am. Chem. Soc. (1978), 100, 4317–4318.
Kudo, A., Photocatalyst materials for water splitting, Catal. Surv. Asia (2003), 7, 31–38.
Lin, Y. C. and Lin, C. H., Catalytic and photocatalytic degradation of ozone via utilization of controllable nano–Ag modified on TiO2, Environmental Progress (2008), 27, 4, 496–502.
Li, J.; Xu, J.; Dai, W. L.; Li, H. and Fan K., Direct hydro–alcohol thermal synthesis of special core–shell structured Fe–doped titania microspheres with extended visible light response and enhanced photoactivity, Appl. Catal., B–Environ. (2009), 85, 162–170.
Li, X. Y.; Yue, P. L. and Kutal, C., Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles, New J. Chem. (2003), 27, 1264–1269.
Linsebigler, A. L., Lu, G., Yates J. T. and Jr., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 95, 735–758 (1995).
Li, F. B. and Li, X. Z., The Enhancement of Photodegradation Efficiency using Pt/TiO2 Catalyst, Chemosphere (2002), 48, 1103–1111.
Li, F. B. and Li, X. Z., Photocatalytic Properties of Gold/gold ion–modified Titanium Dioxide for Wastewater Treatment, Appl. Catal., A (2002), 228, 15–27.
Lakshmi, S., Renganathan, R. and Fujita, S., Study on TiO2–mediated Photocatalytic Degradation of Methylene Blue, J. Photochem. Photobiol., A (1995), 88, 163–167.
Li, X. Z.; Li, F. B.; Yang, C. L. and Ge, W. K., Photocatalytic Activity of WOx–TiO2 under Visible Light Irradiation, J. Photochem. Photobiol., A (2001), 141, 209–217.
Mohammadi, R.; Wassink, J. and Amirfazli, A., Effect of Surfactants on Wetting of Super–Hydrophobic Surfaces, Langmuir (2004), 20, 9657–9662.
Matsunaga, T.; Tomoda, R., Nakajima, T. and Wake, H., Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 1985, 29, 211–214.
Meichtry, J. M.; Rivera, V.; Iorio, Y. D., Rodríguez, H. B., Román, E. S.; Grela M. A. and Litter, M. I., Photoreduction of Cr(VI) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2, Photochemical & Photobiological Sciences (2009), 8, 5, 604–612.
Martin, S. T. ; Morrison, C. L.; Hoffmann, M. R., Photochemical mechanism of size–quantized vanadium–doped TiO2 particles, J. Phys. Chem. (1994), 98, 13695–13704.
Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T. and Matsumura, M., Preparation of S–doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal., A (2004), 265, 1, 115–121.
O’Regan, B and Grätzel, M., A low–cost, high–efficiency solar cell based on dye–sensitized colloidal TiO2 films, Nature (1991), 353, 737–739.
Pruden, A. L. and Ollis, D. F., Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water, J. Catal. (1983), 82, 404–417.
Poznyak, S. K.; Kokorin, A. I. and Kulak A. I., Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes, J. Electroanal. Chem. (1998), 442, 99–105.
Pedraza, F. and Vasquez, A., Obtention of TiO2 rutile at room temperature through direct oxidation of TiCl3, J. Phys. Chem. Solids (1999), 60, 445–448.
Wang, W.; Zhang, J.; Chen, F.; He, D. and Anpo, M., Preparation and photocatalytic properties of Fe3+–doped Ag@TiO2 core–shell nanoparticles, J. Colloid Interface Sci. (2008), 323, 182–186.
Kawai, A. and Nagata, H., Wetting behavior of liquid on geometrical rough–surface formed by photolightgraphy, Japan. J. Appl. Phys. (1994), 33, 1283–1285.
Oner, D. and Mcarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability, T. J., Langmuir (2000), 16, 7777–7782.
Wolfram, E. and Faust, R., Wenzel J.F. Faraday (Ed.),Wetting, Spreading and Adhesion, Academic Press, London, 1978, Chapter 10.
Rauf, M. A. and Ashraf, S. S., Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J. (2009), 151, 10–18.
Sato, S., Photocatalytic activity of NOx–doped TiO2 in the visible light region, Chem. Phys. Lett. (1986), 123, 1–2, 126–128.
Sonawane R. S.; Kale B. B. and Dongare M. K., Preparation and photo–catalytic activity of Fe–TiO2 thin films prepared by sol–gel clip coating, Mater. Chem. Phys. (2004), 85, 52–57.
Sonawane, R.S.; Hegde, H.G. and Dongare, M.K., Preparation of titanium(iv) oxide thin–film photocatalyst by sol–gel dip coating, Mater. Chem. Phys. (2003), 77, 744–750.
Sökmen, M. and Özkan, A., Decolourising Textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis, J. Photochem. Photobiol., A (2002), 147, 77–81.
Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M., Nagendra, C. L.; Philip, R., Vijayamohanan, K. and Pradeep, T., Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core–Shell nanoparticles: one–step synthesis, characterization, spectroscopy, and optical limiting properties, Langmuir (2003), 19, 3439–3445.
Uelzen, T. and Muller, J., Wettability enhancement by rough surfaces generated by thin film technology, Thin Solid Films. (2003), 434, 311–315.
Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J. and Shen, T., The surface chemistry of hybrid nanometer–sized paeticles I. Photochemical deposition of gold on ultrafine TiO2 particles, Colloids Surfaces A: Physicochem. And Eng. Aspects (1998), 131, 271–280.
Wang, R.; Hashimoto, K.; Fujishma, A.; Chikuni, M.; Kojima E.; Kitamura, A.; Shimohigoshi, M. and Watanabe, T., Light induced amphiphilic surfaces, Nature (1997), 388, 431–432.
Wenzel, R. N., J. Phys. Colloid Chem. (1949), 53, 1466–1467.
Wu, S. X.; Ma, Z.; Qin, Y. N.; He, F.; Jia, L. S. and Zhang, Y. J., XPS study of copper doping TiO2 photocatalyst, Acta Phys. Chim. Sin. (2003), 19, 967–969.
Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. and Hu, M. Z.–C., Effects of Particle Size of TiO2 on Photocatalytic Degradation of Methylene Blue in Aqueous Suspensions, Ind. Eng. Chem. Res. (1999), 38, 373–379.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N., Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method, Thin Solid Film (2000), 379, 7–14.
Yu J.G. and Zhao X.J., Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Materials Research Bulletin (2000), 35, 1293–1301.
Yildiz, A.; Lisesivdin, S. B.; Kasap, M. and Mardare, D., Non–adiabatic small polaron hopping conduction in Nb–doped TiO2 thin film, Physica. B, Condensed matter (2009), 404, 8–11, 1423–1426.
Yin, S.; Fujishiro, Y.; Wu, J.; Aki, M. and Sato, T., Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions, J. Master. Proc. Tech. (2003), 137, 45–48.
Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N., Photooxidative N–demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation, J. Photochem. Photobiol., A (2001), 140, 163–172.
Zhao, X. F.; Meng, X. F.; Zhang, Z. H.; Liu, L. and Jia, D. Z., Preparation and photocatalytic activity of Pb–doped TiO2 thin films, J. Inorg. Mater. (2004), 19, 140–146.
Cojocaru, B.; Neatu, S.; Parvulescu, V. I.; Somoghi, V.; Petrea, N., Epure, G.; Alvaro, M. and Garcia, H., Synergism of Activated Carbon and Undoped and Nitrogen-doped TiO2 in the Photocatalytic Degradation of the Chemical Warfare Agents Soman, VX, and Yperite, ChemSusChem (2009), 427–436.
Ahmed, M. S. and Attia, Y. A., Aerogel materials for photocatalytic detoxification of cyanide istes in water, J. Non–crystalline Solids (1995), 186, 402–407.
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., Silver–modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal., B–Environ. (2003), 42, 187–201.
Bamwenda, G. R.; Tsubota, S.; Kobayashi, T. and Haruta, M. J., Photoinduced hydrogen–production from an aqueous–solution of ethylene–glycol over ultrafine gold supported on TiO2, Photochem. Photobiol. A (1994), 77, 59–67.
Babapour, A.; Akhavan, O.; Azimirad R. and Moshfegh, A. Z., Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix, Nanotechnology (2006), 17, 763–771.
Bischoff, B. L. and Anderson, M. A., Peptization process in the sol–gel preparation of porous anatase TiO2, Chem. Mater. (1995), 7, 1772–1778.
Bouabid, K.; Ihlal, A.; Amira, Y.; Sdaq, A.; Assabbane, A.; Ait–Ichou, Y.; Outzourhit, A.; Ameziane, E. L. and Nouet, G., Optical study of TiO2 thin films prepared by sol–gel, Ferroelectr. (2008), 372, 69–75.
Chopin, T.; Denis, S. and Fourre, P., US Patent (1992), 5149519.
Chrysicopoulou, P.; Davazoglou, D.; Trapalis, C. and Kordas, G., Optical properties of very thin (< 100nm) sol–gel TiO2 films, Thin Solid Films (1998), 323, 188–193.
Dibble, L. A. and Raupp, G. B. Fluidized–bed photocatalytic oxidation of trichloroethylene in contaminated airstreams, Environ. Sci. Technol. (1992), 26, 492–495.
Chang, J. A.; Vithal, M.; Baek, I. C. and Seok, S. I., Morphological and phase evolution of TiO2 nanocrystals prepared from peroxo titanate complex aqueous solution: Influence of acetic acid, J. Solid State Chem. (2009), 182, 749–756.
Galindo, C.; Jacques, P. and Kalt, A., Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations, Chemosphere (2001), 45, 997–1005.
He, X.; Zhao, X. and Liu, B., Studies on a possible growth mechanism of silver nanoparticles loaded on TiO2 thin films by photoinduced deposition method, J. Non–Cryst. Solids (2008), 354, 1267–1271.
Jagadale, T. C.; Takale, S. P.; Sonawane, R. S.; Joshi, H. M. ; Patil, S. I.; Kale, B. B. and Ogale, S. B., N–Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol–Gel Method, J. Phys. Chem. C (2008), 112, 14595–14602.
Krylova, G. V.; Gnatyuk, Y. I.; Smirnova, N. P.; Eremenko, A. M. and Gun’ko, V. M., Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method, J. Sol-Gel Sci. Technol. (2009), 50, 216–228.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C.L., Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts, Sep. Purif. Technol. (2007), 58, 148–151.
Li, J; Xu, J.; Dai, W. L. and Fan, K., Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure, J. Phys. Chem. C (2009), 113, 8343–8349.
Lee, D. S. and Liu, T. K., Preparation of TiO2 sol using TiCl4 as a precursor, J. Sol–Gel Sci. Tech. (2002), 25, 121–136.
Miao, L.; Jin, P.; Kaneko, K.; Terai, A.; Nabatova–Gabain, N. and Tanemura, S., Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering, Appl. Surf. Sci. (2003), 212–213, 255–263.
Moulder, J. F.; Stickle, W. F.; Sobol, P. E. and Bomben, K. E., Handbook of X–ray Photoelectron Spectroscopy. Physical Electronics (1995).
Rigo, M.; Canu, P.; Angelin, L. and Valle, G. D., Kinetics of TiCl4 hydrolysis in a moist atmosphere, Ind. Eng. Chem. Res. (1998), 37, 1189–1195.
Rauf, M.A. and Ashraf, S. S., Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J. (2009), 151, 10–18.
Sonawane, R. S.; Kale, B. B. and Dongare, M. K., Preparation and photo–catalytic activity of Fe–TiO2 thin films prepared by sol–gel clip coating, Mater. Chem. Phys. (2004), 85, 52–57.
Senthilkumaar, S.; Porkodi, K.; Gomathi, R.; Maheswari, A. G. and Manonmani, N., Sol–gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution, Dyes Pigments (2006), 69, 22–30.
Sonawane, R. S.; Hegde, H. G. and Dongare, M. K., Preparation of titanium(iv) oxide thin–film photocatalyst by sol–gel dip coating, Mater. Chem. Phys. (2003), 77, 744–750.
Traversa, E.; Di Vona, M. L.; Nunziante, P.; Licoccia, S.; Sasaki, T. and Koshizaki, N., Sol–gel preparation and characterization of Ag–TiO2 nanocomposite thin films, J. Sol–Gel. Sci. Technol. (2000), 19, 733–736.
Wolf, A. and Schuth, F., A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal., A (2002), 226, 1–13.
Wang, J.; Zhao, H.; Liu, X.; Li, X.; Xu, P. and Han, X., Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis, Catal. Commun. (2009), 10, 1052–1056.
Weir, B. A. and Sundstrom, D. W., AIChE National Meeting (1989), San Francisco, Paper 52B.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N., Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method, Thin Solid Film (2000), 379, 7–14.
Yu, J. G. and Zhao X. J., Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Mater. Res. Bull. (2000), 35, 1293–1301.
Zhu, Y. F.; Zhang L.; Gao, C. and Cao, L., The synthesis of nanosized TiO2 powder using a sol–gel method with TiCl4 as a precursor, J. Mater. Sci. (2000), 35, 4049–4054.
Zhang, H. and Chen, G., Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method, Environ. Sci. Technol. (2009), 43, 2905–2910.
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., Silver–modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal., B–Environ. (2003), 42, 187–201.
Babapour, A.; Akhavan, O.; Azimirad R. and Moshfegh, A. Z., Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix, Nanotechnology (2006), 17, 763–771.
Bamwenda, G. R.; Tsubota, S.; Kobayashi, T. and Haruta, M. J., Photoinduced hydrogen–production from an aqueous–solution of ethylene–glycol over ultrafine gold supported on TiO2, Photochem. Photobiol. A 1994, 77, 59–67.
Barmatov, E. B.; Pebalk, D. A. and Barmatova, M. V., Influence of silver nanoparticles on the phase behavior of side–chain liquid crystalline polymers, Langmuir (2004), 20, 10868–10871.
Bischoff, B. L. and Anderson, M. A., Peptization process in the sol–gel preparation of porous anatase TiO2, Chem. Mater. (1995), 7, 1772–1778.
Burda, C.; Chen, XB.; Narayanan, R. and El–Sayed, M., Photocatalytic degradation of azo dyes by nitrogen–doped TiO2 nanocatalysts, Chem. Rev. (2005), 105, 1025–1102.
Chopin, T.; Denis, S. and Fourre, P., US Patent 5 (1992), 149519.
Chrysicopoulou, P.; Davazoglou, D.; Trapalis, C. and Kordas, G., Optical properties of very thin (< 100nm) sol–gel TiO2 films, Thin Solid Films (1998), 323, 188–193.
Dibble, L. A. and Raupp, G. B., Fluidized–bed photocatalytic oxidation of trichloroethylene in contaminated airstreams, Environ. Sci. Technol. (1992), 26, 492–495.
Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light Phil., Philos. Trans. R. Soc. London (1857), 147, 145–153.
Haruta, M., Size– and support–dependency in the catalysis of gold, Catal. Today (1997), 36, 153–166.
Kim, H. S.; Ryu, J. H.; Jose, B.; Lee, B. G.; Ahn, B. S. and Kang, Y. S., Formation of silver nanoparticles induced by poly(2,6–dimethyl–1,4–phenylene oxide), Langmuir (2001), 17, 5817–5820.
Krylova, G. V.; Gnatyuk, Y. I.; Smirnova, N. P.; Eremenko, A. M. and Gun’ko, V. M., Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method, J Sol–Gel Sci Technol (2009), 50, 216–228.
Li, J; Xu, J.; Dai, W. L. and Fan, K., Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure
J. Phys. Chem. C (2009), 113, 8343–8349.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C. L., Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts, Separation and Purification Technology (2007), 58, 148–151.
Link, S.; El–Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B (1999), 103, 8410–8426.
Mishra,Y.K.; Mohapatra, S.; Kabiraj, D.; Mohanta, B.; Lalla, N.P.; Pivin, J.C. and Avasthi, D.K., Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering, Scripta Materialia (2007), 56, 629–632.
Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T. and Abe, M., Preparation of highly dispersed core/shell–type titania nanocapsules containing a single Ag nanoparticle, J. Am. Chem. Soc. (2006), 128, 4944–4945.
Salgueirino–Maceira, V.; Caruso, F. and Liz–Marzan, L. M., Coated colloids with tailored optical properties, J. Phys. Chem. B (2003), 107, 10990–10994.
Sahu, S. N.; Choudhury, R. K. and Jena, P., Nano–scale materials , Nova science publishers INC: Hauppauge (2006), 381–382.
Sato, T.; Yonezawa, Y.; Hada, H. and Gakkaishi, N. S., J. Soc. Photogr. Sci. Technol. Jpn. (Nippon Shashin Gakkaishi) (1988), 51, 122–134.
Sun, B. Y. and Chiu, D. T., Synthesis, loading, and application of individual nanocapsules for probing single–cell signaling, Langmuir (2004), 20, 4614–4620.
Turkevich, J.; Garton, G.; Stevenson, P. C., Colloidal gold part II, J. Colloid Sci. (1954), 9, 26–35.
Ung, T.; Liz–Marzan, L. M. and Mulvaney, P., Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions, Langmuir (1998), 14, 3740–3748.
Wang, W.; Zhang, J.; Chen, F.; He, D. and Anpo, M., Preparation and photocatalytic properties of Fe3+–doped Ag@TiO2 core–shell nanoparticles, J. Colloid Interface Sci. (2008), 323, 182–186.
Yonezawa, T. and Toshima, N., Structure and catalysis of metal colloids, Hyomen (1996), 34, 426–438.
Wang, J.; Zhao, H.; Liu, X.; Li, X.; Xu, P. and Han, X., Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis, Catalysis Communications (2009), 10, 1052–1056.
Wolf, A. and Schuth, F., A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal., A (2002), 226, 1–13.
Xin, B. F.; Jing, L. Q.; Ren, Z. Y.; Wang, B. Q. and Fu, H. G., Effects of simultaneously doped and deposited ag on the photocatalytic activity and surface states of TiO2, J. Phys. Chem. B (2005), 109, 2805–2809.
Sclafani, A.; Mozzanege, M. N. and Herrmann, J. M., Influence of silver deposits on the photocatalytic activity of titania, J. Catal. 1997, 168, 117–120.
You, X. F.; Chen, F.; Zhang, J. L. and Anpo, M., A novel deposition precipitation method for preparation of Ag–loaded titanium dioxide, Catal. Lett. 2005, 102, 247–250.
Zhang, H. and Chen, G., Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method, Environ. Sci. Technol. (2009), 43, 2905–2910.
Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q. and Wei, K. M., Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property, J. Phys. Chem. C 2008, 112, 10773–10777.
Babapour, A.; Akhavan, O.; Azimirad R. and Moshfegh, A. Z., Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix, Nanotechnology (2006), 17, 763–771.
Bamwenda, G. R.; Tsubota, S.; Kobayashi, T. and Haruta, M. J., Photoinduced hydrogen–production from an aqueous–solution of ethylene–glycol over ultrafine gold supported on TiO2, Photochem. Photobiol. A 1994, 77, 59–67.
Chan, S.C. and Barteau, M.A., Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition, Langmuir 2005, 21, 5588–5595
Einaga, H., Effect of silver deposition on TiO2 for photocatalytic oxidation of benzene in the gas phase, React. Kinet. Catal. Lett. (2006), 88, 357−362.
Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. (1995), 95, 69–96.
Iliev, V.; Tomova, D.; Todorovska, R.; Oliver, D.; Petrov, L.; Todorovsky, D. and Uzunova–Bujnova, M., Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution, Appl. Catal., A (2006), 313, 115−121.
Ibusuki, T., and Takeuchi, K., Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis, J. Mol. Catal. (1994), 88, 93–102.
Iwase, A.; Kato, H. and Kudo, A., Nanosized Au particles as an efficient cocatalyst for photocatalytic overall water splitting, Catal. Lett. (2006), 108, 7–10.
Korzhak, A. V.; Ermokhina, N. I.; Stroyuk, A. L.; Bukhtiyarov, V. K.; Raevskaya, A. E.; Litvin, V. I.; Kuchmiy, S. Y.; Ilyin, V. G. and Manorik, P. A., Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites, J. Photochem. Photobiol., A (2008), 198, 126–134.
Kim, S. B. and Hong, S. C., Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Appl. Catal., B–Environ. (2002), 35, 305–315.
Krylova, G. V.; Gnatyuk, Y. I.; Smirnova, N. P.; Eremenko, A. M. and Gun’ko, V. M., Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method, J Sol–Gel Sci Technol (2009), 50, 216–228.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C. L., Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts, Sep. Purif. Technol. (2007), 58, 148–151.
Li, J; Xu, J.; Dai, W. L. and Fan, K., Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure
J. Phys. Chem. C (2009), 113, 8343–8349.
Negishi, N.; Iyoda, T.; Hashimoto, K. and Fujishima, A., Preparation of transparent TiO2 thin–film photocatalyst and its photocatalytic activity, Chem. Lett. (1995), 9, 841–842.
Ma, C. M.; Ku, Y.; Kuo, Y. L.; Chou, Y. C. and Jeng, F. T., Effects of Silver on the Photocatalytic Degradation of Gaseous Isopropanol, Water, Air, Soil Pollut. (2009), 197, 313–321.
Quiller, R. G.; Benz, L.; Haubrich, J.; Colling, M. E. and Friend, C. M., Surface Chemistry of Organic Pollutants: Styrene, Ozone, and Water on TiO2(110), J. Phys. Chem. C (2009), 113, 2063–2070.
Ren, L.; Zeng, Y. P. and Jiang, D., Preparation, characterization and photocatalytic activities of Ag–deposited porous TiO2 sheets, Catal. Commun. (2009), 10, 645–649.
Sclafani, A.; Mozzanege, M. N. and Herrmann, J. M., Influence of silver deposits on the photocatalytic activity of titania, J. Catal. 1997, 168, 117–120.
Subramanian, V.; Wolf, E. E. and Kamat, P. V., Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles, Langmuir (2003), 19, 469–474.
Wang, J.; Zhao, H.; Liu, X.; Li, X.; Xu, P. and Han, X., Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis, Catalysis Communications (2009), 10, 1052–1056.
Wolf, A. and Schuth, F., A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal., A 2002, 226, 1–13.
Xin, B. F.; Jing, L. Q.; Ren, Z. Y.; Wang, B. Q. and Fu, H. G., Effects of simultaneously doped and deposited ag on the photocatalytic activity and surface states of TiO2, J. Phys. Chem. B 2005, 109, 2805–2809.
Yamaguti, K. and Sato, S., Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc. Faraday Trans. I (1985), 81, 1237–1246.
Yu, J. C.; Tang, H. Y.; Yu, J.; Chan, H. C.; Zhang, L.; Xie, Y.; Wang, H. and Wong, S. P., Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods, J. Photochem. Photobiol., A (2002), 153, 211–219.
You, X. F.; Chen, F.; Zhang, J. L. and Anpo, M., A novel deposition precipitation method for preparation of Ag–loaded titanium dioxide, Catal. Lett. 2005, 102, 247–250.
Zhao, D.; Sun, C. Y.; Chen, C. C.; Ma, W. H. and Zhao, J. C., Photochemical degradation of organic pollutants polybrominated diphenyl ether congeners and cyanuric acid, Progress in chemistry ( 2009), 21, 400–405.
Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q. and Wei, K. M., Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property, J. Phys. Chem. C 2008, 112, 10773–10777.
Zhang, H. and Chen, G., Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method, Environ. Sci. Technol. (2009), 43, 2905–2910.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2009-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明