博碩士論文 963204023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.219.47.239
姓名 許嘉鴻(Chia-Hung Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 水熱碳化之蔗糖以氫氧化鉀活化製備活性碳及其性質
(Hydrothermal carbonized sucrose as precursors for activated carbon; preparation and properties)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以蔗糖為原料,採用了水熱碳化法(Hydrothermal carbonization, HTC)先製作出大小介於次微米到數十微米之含碳粒子或粒子團聚物,然後直接將水熱產物(或再經絕氧碳化後)用氫氧化鉀進行高溫化學活化,製作高比表面積的活性碳。研究目標以達到大於3000 m2/g的商業化高表面積活性碳水準(AX-21),且孔徑分佈以微孔(<1 nm)及超微孔(1~2 nm)為主的活性碳。
實驗探討於水熱時是否添加碳酸氫銨、是否需要將水熱產物絕氧碳化及碳化溫度、活化溫度、活化劑比例、活化劑浸泡方法等因素,並將不同條件製備之前驅物及活性碳產物進行分析。主要分析對象為活性碳產率(Yield)、表面官能基(FTIR)、結晶性(XRD)、表面形態(SEM)、比表面積及孔徑分佈(ASAP)、微量金屬元素(ICP-AES)、碘吸附等。
經過上述研究,發現以添加碳酸氫銨、再以450 ℃絕氧碳化之產物進行活化,以氫氧化鉀/炭化物比例為4將炭化產物與氫氧化鉀溶液混合浸泡60分鐘後烘乾,然後進行800 ℃、60分鐘活化之條件所製作之產物相對較好。可獲得比表面積3280 m2/g、總孔洞體積、微孔體積1.34 cm3/g、微孔及超微孔佔孔體積比例88.4 %、平均孔徑1.85 nm的活性碳,產率為10.3 wt%。但是此產物仍含有約3.8 wt%之鉀元素,而且碘吸附量並沒有AX-21高。所以可能將活化時間延長或在活化升溫時在400 ℃持溫一段時間使氫氧化鉀能更均勻接觸反應面積,或許可以得到孔徑較均一且約1~2 nm的活性碳產物。
摘要(英) The objective of this research is to achieve a high specific surface area (>3000 m2/g) that was observed in some commercial activated carbons, and at the same time able to modify the distribution of micropores and super-micropores.
The biomass-sucrose was chosen as the raw material for activated carbon in this research. The precursor was made by the hydrothermal carbonization of sucrose into sub-micron to tens of micron carbonaceous particles or their aggregates. The precursor was then directly chemically activated with KOH at high temperature in tubular furnace, or activated after further carbonization in dry nitrogen. Activated carbon powders with very high specific surface area were obtained.
The following operation variables were also studied; (1) the benefit of adding ammonium bicarbonates during the hydrothermal carbonization step. (2) The necessity of dry carbonization after the hydrothermal step and the proper temperature for such step. (3) The activation temperature, the soaking method and the amount of KOH activator used. The products were analyzed with FTIR, SEM, XRD, ASAP, ICP-AES and iodine adsorption.
We conclude that the proper process steps for producing high specific surface area activated carbon at high yield were (1) hydrothermal carbonization with the addition of ammonium bicarbonates, (2) dry carbonization at 450 °C, and (3) Chemical activation at 800 °C with KOH/C ratio of 4. The yield of our best activated carbon was 10.3 wt%, based on the amount of sucrose employed. The total pore volume was 1.517 cm3/g, and the specific surface area reached 3280 m2/g. 88.4% of the pore volume was contributed by micropores and the average pore size was 1.84 nm. The only problem was the incomplete removal of KOH, which amounted to 3.8 wt% of potassium in the final product. Therefore, although our product had a higher specific surface area than the commercial AX-21 sample, the iodine number was lower. We believe that by increasing the activation time or holding the activation temperature at 400 °C for 2 hours, such problems may be resolved.
關鍵字(中) ★ 比表面積
★ 氫氧化鉀
★ 活性碳
關鍵字(英) ★ activated carbon
★ potassium hydroxide
★ specific surface
論文目次 Abstract i
摘要 iii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 序論 1
1.1 活性碳簡介 1
1.2 活性碳分類 2
1.2.1 粉末狀活性碳(Powdered activated carbon ,PAC) 2
1.2.2 顆粒狀活性碳(Granular activated carbon ,GAC) 2
1.2.3 圓柱狀或球狀活性碳(Cylinder or Spherical activated carbon, CAC or SAC) 2
1.2.4 纖維狀活性碳(Activated carbon fiber, ACF) 2
1.2.5 聚合物塗佈活性碳(Polymers coated carbon) 3
1.3 活性碳製備與應用 3
1.3.1 物理活化 3
1.3.2 化學活化 3
1.3.3 活性碳應用 4
第二章 文獻回顧 5
2.1 水熱碳化法製作活化前驅物 5
2.2 活化製程參數控制 9
2.2.1 活化前驅物的碳化程度 9
2.2.2 活化前驅物粒子大小 9
2.2.3 活化劑種類 10
2.2.4 活化劑比例、溫度及時間 10
2.2.5 鈍氣流量 11
2.2.6 活化劑浸泡方法 12
第三章 活性碳製備與儀器分析 13
3.1 實驗藥品 13
3.2 實驗步驟 14
3.2.1 水熱合成(Hydrothermal synthesis) 16
3.2.2 碳化(Carbonization) 18
3.2.3 活化(Activation) 20
3.2.4 活性碳清洗(Washing) 23
3.3 儀器與分析條件 24
3.3.1 產率之分析與計算 24
3.3.2 感應耦合電漿原子發射光譜儀(ICP-AES) 25
3.3.3 傅利葉紅外線光譜儀(FTIR) 25
3.3.4 粉末X-光繞射儀(XRD) 26
3.3.5 掃瞄式電子顯微鏡(SEM) 27
3.3.6 恆溫氮氣吸附(ASAP) 27
3.3.7 碘吸附當量(Iodine number) 28
第四章 結果分析與討論 33
4.1 碳酸氫銨對產物的影響 33
4.1.1 水熱及碳化產物 33
4.1.2 活化產物 41
4.2 活化製程的影響 45
4.2.1 活化前驅物-表面形貌 45
4.2.2 活化劑比例 47
4.2.3 活化溫度 49
4.2.4 活化劑浸泡方法 51
4.3 產率 53
4.4 碘吸附 55
4.5 微量金屬元素分析 57
第五章 結論與建議 58
參考文獻 60
參考文獻 (1) Titirici MM, Thomas A, Antonietti M. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 2007; 31(6): 787-9.
(2) Wang Q, Li H, Chen LQ, Huang XJ. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001; 39(14): 2211-4.
(3) Wang Q, Li H, Chen L, Huang X. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics 2002 Dec; 152-153: 43-50.
(4) Sun XM, Li YD. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie-International Edition 2004; 43(5): 597-601.
(5) Titirici MM, Antonietti M, Baccile N. Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chemistry 2008; 10(11): 1204-12.
(6) Li SH, Wang EB, Tian CG, Mao BD, Kang ZH, Li QY, et al. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties. Journal of Solid State Chemistry 2008; 181(7): 1650-8.
(7) Joo JB, Kim P, Kim W, Kim J, Kim ND, Yi J. Simple preparation of hollow carbon sphere via templating method. Current Applied Physics 2008; 8(6): 814-7.
(8) Wan Y, Min YL, Yu SH. Synthesis of silica/carbon-encapsulated core-shell spheres: Templates for other unique core-shell structures and applications in in situ loading of noble-metal nanoparticles. Langmuir 2008; 24(9): 5024-8.
(9) Cui XJ, Antonietti M, Yu SH. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small 2006; 2(6): 756-9.
(10) Pietrzak R, Nowicki P, Wachowska H. The influence of oxidation with nitric acid on the preparation and properties of active carbon enriched in nitrogen. Applied Surface Science 2009 Jan 1; 255(6): 3586-93.
(11) Cao Q, Xie KC, Lv YK, Bao WR. Process effects on activated carbon with large specific surface area from corn cob. Bioresource Technology 2006; 97(1): 110-5.
(12) Qiao WM, Ling LC, Zha QF, Liu L. Preparation of a pitch-based activated carbon with a high specific surface area. Journal of Materials Science 1997; 32(16): 4447-53.
(13) Diaz-Teran J, Nevskaia DM, Fierro JLG, Lopez-Peinado AJ, Jerez A. Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD. Microporous and Mesoporous Materials 2003 Jun 19; 60(1-3): 173-81.
(14) Lillo-Rodenas MA, Cazorla-Amoros, Linares-Solano. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 2003 Feb; 41(2): 267-75.
(15) Lozano-Castello D, Lillo-Rιenas MA, Cazorla-Amoros, Linares-Solano. Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon 2001 Apr; 39(5): 741-9.
(16) Burg P, Fydrych P, Cagniant D, Nanse G, Bimer J, Jankowska A. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods. Carbon 2002 Aug; 40(9): 1521-31.
(17) Yue-Yan Lin. Size control of monodispersed colloidal carbon spherules. 2008.
(18) Ramos-Fernandez JM, Martinez-Escandell M, Rodriguez-Reinoso F. Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials. Carbon 2008 Feb; 46(2): 384-6.
(19) Ruiz V, Blanco C, Santamaria R, Ramos-Fernandez JM, Martinez-Escandell M, Sepulveda-Escribano A, et al. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009; 47(1): 195-200.
(20) MEGA-CARBON COMPANY. Nature Gas Storage with Bonded Carbon. 2009.
指導教授 蔣孝澈(Anthony Chiang) 審核日期 2009-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明